readme.md 2.9 KB
Newer Older
Daniel's avatar
Daniel committed
1

Daniel's avatar
Daniel committed
2
3
4
## 特别鸣谢

本程序中的预处理及后处理代码,来自于:https://github.com/chenkui164/FastASR
游雁's avatar
游雁 committed
5

Daniel's avatar
Daniel committed
6

Daniel's avatar
Daniel committed
7
8
## 线程数与性能关系

Daniel's avatar
Daniel committed
9
测试环境Rocky Linux 8,仅测试cpp版本结果(未测python版本),@acely 
Daniel's avatar
Daniel committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

简述:
在3台配置不同的机器上分别编译并测试,在fftw和onnxruntime版本都相同的前提下,识别同一个30分钟的音频文件,分别测试不同onnx线程数量的表现。

![线程数关系](images/threadnum.png "Windows ASR")

目前可以总结出大致规律:

并非onnx线程数越多越好
2线程比1线程提升显著,线程再多则提升较小
线程数等于CPU物理核心数时效率最好
实操建议:

大部分场景用3-4线程性价比最高
低配机器用2线程合适



Daniel's avatar
Daniel committed
28
29
30
31
##  演示

![Windows演示](images/demo.png "Windows ASR")

Daniel's avatar
Daniel committed
32
## 注意
Daniel's avatar
Daniel committed
33
本程序只支持 采样率16000hz, 位深16bit的 **单声道** 音频。
游雁's avatar
游雁 committed
34

Daniel's avatar
Daniel committed
35
36
## 快速使用

Daniel's avatar
Daniel committed
37
### Windows
SWHL's avatar
SWHL committed
38

Daniel's avatar
Daniel committed
39
 安装Vs2022 打开cpp_onnx目录下的cmake工程,直接 build即可。 本仓库已经准备好所有相关依赖库。
SWHL's avatar
SWHL committed
40

Daniel's avatar
Daniel committed
41
42
43
 Windows下已经预置fftw3、onnxruntime及openblas库


Daniel's avatar
Daniel committed
44
45
### Linux
See the bottom of this page: Building Guidance
Daniel's avatar
Daniel committed
46
47


Daniel's avatar
Daniel committed
48
49
50
51
###  运行程序

tester  /path/to/models/dir /path/to/wave/file

Daniel's avatar
Daniel committed
52
 例如: tester /data/models  /data/test.wav
Daniel's avatar
Daniel committed
53
54

/data/models 需要包括如下两个文件: model.onnx 和vocab.txt
Daniel's avatar
Daniel committed
55

Daniel's avatar
Daniel committed
56

Daniel's avatar
Daniel committed
57
## 支持平台
Daniel's avatar
Daniel committed
58
59
- Windows
- Linux/Unix
Daniel's avatar
Daniel committed
60
61
62

## 依赖
- fftw3
Daniel's avatar
Daniel committed
63
- onnxruntime
游雁's avatar
游雁 committed
64
65

## 导出onnx格式模型文件
zhifu gao's avatar
zhifu gao committed
66
安装 modelscope与FunASR,依赖:torch,torchaudio,安装过程[详细参考文档](https://github.com/alibaba-damo-academy/FunASR/wiki)
游雁's avatar
游雁 committed
67
68
69
70
71
72
73
74
75
```shell
pip install "modelscope[audio_asr]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
git clone https://github.com/alibaba/FunASR.git && cd FunASR
pip install --editable ./
```
导出onnx模型,[详见](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export),参考示例,从modelscope中模型导出:

```
python -m funasr.export.export_model 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' "./export" true
Daniel's avatar
Daniel committed
76
```
Daniel's avatar
Daniel committed
77

Daniel's avatar
Daniel committed
78
## Building Guidance for Linux/Unix
Daniel's avatar
Daniel committed
79
80
81
82
83
84
85
86
87

```
git clone https://github.com/RapidAI/RapidASR.git
cd RapidASR/cpp_onnx/
mkdir build
cd build
# download an appropriate onnxruntime from https://github.com/microsoft/onnxruntime/releases/tag/v1.14.0
# here we get a copy of onnxruntime for linux 64
wget https://github.com/microsoft/onnxruntime/releases/download/v1.14.0/onnxruntime-linux-x64-1.14.0.tgz
SWHL's avatar
SWHL committed
88
# ls
Daniel's avatar
Daniel committed
89
90
91
92
93
# onnxruntime-linux-x64-1.14.0  onnxruntime-linux-x64-1.14.0.tgz

#install fftw3-dev
apt install libfftw3-dev

SWHL's avatar
SWHL committed
94
# build
Daniel's avatar
Daniel committed
95
96
 cmake  -DCMAKE_BUILD_TYPE=release .. -DONNXRUNTIME_DIR=/mnt/c/Users/ma139/RapidASR/cpp_onnx/build/onnxruntime-linux-x64-1.14.0
 make
SWHL's avatar
SWHL committed
97

Daniel's avatar
Daniel committed
98
 # then in the subfolder tester of current direcotry, you will see a program, tester
Daniel's avatar
Daniel committed
99
100

````
Daniel's avatar
Daniel committed
101

Daniel's avatar
Daniel committed
102
### The structure of a qualified onnxruntime package.
Daniel's avatar
Daniel committed
103
104
105
106
107
```
onnxruntime_xxx
├───include
└───lib
```