readme.md 2.12 KB
Newer Older
Daniel's avatar
Daniel committed
1

游雁's avatar
游雁 committed
2

Daniel's avatar
Daniel committed
3
## 注意
Daniel's avatar
Daniel committed
4
本程序只支持 采样率16000hz, 位深16bit的 **单声道** 音频。
游雁's avatar
游雁 committed
5

Daniel's avatar
Daniel committed
6
7
## 快速使用

Daniel's avatar
Daniel committed
8
9
10
11
### Windows
 
 安装Vs2022 打开cpp_onnx目录下的cmake工程,直接 build即可。 本仓库已经准备好所有相关依赖库。
 
Daniel's avatar
Daniel committed
12
13
14
 Windows下已经预置fftw3、onnxruntime及openblas库


Daniel's avatar
Daniel committed
15
16
### Linux
See the bottom of this page: Building Guidance
Daniel's avatar
Daniel committed
17
18
19



Daniel's avatar
Daniel committed
20

Daniel's avatar
Daniel committed
21
22
23
24
25

###  运行程序

tester  /path/to/models/dir /path/to/wave/file

Daniel's avatar
Daniel committed
26
 例如: tester /data/models  /data/test.wav
Daniel's avatar
Daniel committed
27
28

/data/models 需要包括如下两个文件: model.onnx 和vocab.txt
Daniel's avatar
Daniel committed
29

Daniel's avatar
Daniel committed
30
31
32
```

```
Daniel's avatar
Daniel committed
33
## 支持平台
Daniel's avatar
Daniel committed
34

Daniel's avatar
Daniel committed
35
36
- Windows
- Linux/Unix
Daniel's avatar
Daniel committed
37
38
39

## 依赖
- fftw3
Daniel's avatar
Daniel committed
40
- onnxruntime
游雁's avatar
游雁 committed
41
42
43


## 导出onnx格式模型文件
zhifu gao's avatar
zhifu gao committed
44
安装 modelscope与FunASR,依赖:torch,torchaudio,安装过程[详细参考文档](https://github.com/alibaba-damo-academy/FunASR/wiki)
游雁's avatar
游雁 committed
45
46
47
48
49
50
51
52
53
```shell
pip install "modelscope[audio_asr]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html
git clone https://github.com/alibaba/FunASR.git && cd FunASR
pip install --editable ./
```
导出onnx模型,[详见](https://github.com/alibaba-damo-academy/FunASR/tree/main/funasr/export),参考示例,从modelscope中模型导出:

```
python -m funasr.export.export_model 'damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch' "./export" true
Daniel's avatar
Daniel committed
54
```
Daniel's avatar
Daniel committed
55

Daniel's avatar
Daniel committed
56
## Building Guidance for Linux/Unix
Daniel's avatar
Daniel committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

```
git clone https://github.com/RapidAI/RapidASR.git
cd RapidASR/cpp_onnx/
mkdir build
cd build
# download an appropriate onnxruntime from https://github.com/microsoft/onnxruntime/releases/tag/v1.14.0
# here we get a copy of onnxruntime for linux 64
wget https://github.com/microsoft/onnxruntime/releases/download/v1.14.0/onnxruntime-linux-x64-1.14.0.tgz
#ls 
# onnxruntime-linux-x64-1.14.0  onnxruntime-linux-x64-1.14.0.tgz

#install fftw3-dev
apt install libfftw3-dev

# build 
Daniel's avatar
Daniel committed
73
74
 cmake  -DCMAKE_BUILD_TYPE=release .. -DONNXRUNTIME_DIR=/mnt/c/Users/ma139/RapidASR/cpp_onnx/build/onnxruntime-linux-x64-1.14.0
 make
Daniel's avatar
Daniel committed
75
76
77
 
 # then in the subfolder tester of current direcotry, you will see a program, tester
 
Daniel's avatar
Daniel committed
78
79

````
Daniel's avatar
Daniel committed
80

Daniel's avatar
Daniel committed
81
### The structure of a qualified onnxruntime package.
Daniel's avatar
Daniel committed
82
83
84
85
86
87
```
onnxruntime_xxx
├───include
└───lib
```