paraformer_onnx.cpp 5.62 KB
Newer Older
mayong's avatar
mayong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
#include "precomp.h"

using namespace std;
using namespace paraformer;

ModelImp::ModelImp(const char* path, int mode,int nNumThread)
{
    string model_path = pathAppend(path, "model.onnx");
    string vocab_path = pathAppend(path, "vocab.txt");

    fe = new FeatureExtract(mode);

    //p_helper = new ModelParamsHelper(wenet_path.c_str(), 500);

    //encoder = new Encoder(&p_helper->params.encoder);
    //predictor = new Predictor(&p_helper->params.predictor);
    //decoder = new Decoder(&p_helper->params.decoder);



    sessionOptions.SetInterOpNumThreads(nNumThread);
    sessionOptions.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_EXTENDED);

#ifdef _WIN32
    wstring wstrPath = strToWstr(model_path);
    m_session = new Ort::Session(env, wstrPath.c_str(), sessionOptions);
#else
    m_session = new Ort::Session(env, model_path.c_str(), sessionOptions);
#endif

    string strName;
    getInputName(m_session, strName);
    m_strInputNames.push_back(strName.c_str());
    getInputName(m_session, strName,1);
    m_strInputNames.push_back(strName);
    
    getOutputName(m_session, strName);
    m_strOutputNames.push_back(strName);
    getOutputName(m_session, strName,1);
    m_strOutputNames.push_back(strName);

    for (auto& item : m_strInputNames)
        m_szInputNames.push_back(item.c_str());
    for (auto& item : m_strOutputNames)
        m_szOutputNames.push_back(item.c_str());
    vocab = new Vocab(vocab_path.c_str());
}

ModelImp::~ModelImp()
{
    delete fe;
    //delete p_helper;
    //delete encoder;
    //delete predictor;
    // 
    //delete decoder;
    if (m_session)
    {
        delete m_session;
        m_session = nullptr;
    }
    delete vocab;
}

void ModelImp::reset()
{
    fe->reset();
}

void ModelImp::apply_lfr(Tensor<float>*& din)
{
    int mm = din->size[2];
    int ll = ceil(mm / 6.0);
    Tensor<float>* tmp = new Tensor<float>(ll, 560);
    int i, j;
    int out_offset = 0;
    for (i = 0; i < ll; i++) {
        for (j = 0; j < 7; j++) {
            int idx = i * 6 + j - 3;
            if (idx < 0) {
                idx = 0;
            }
            if (idx >= mm) {
                idx = mm - 1;
            }
            memcpy(tmp->buff + out_offset, din->buff + idx * 80,
                sizeof(float) * 80);
            out_offset += 80;
        }
    }
    delete din;
    din = tmp;
}

void ModelImp::apply_cmvn(Tensor<float>* din)
{
    const float* var;
    const float* mean;
    float scale = 22.6274169979695;
    int m = din->size[2];
    int n = din->size[3];

    var = (const float*)paraformer_cmvn_var_hex;
    mean = (const float*)paraformer_cmvn_mean_hex;
    int i, j;
    for (i = 0; i < m; i++) {
        for (j = 0; j < n; j++) {
            int idx = i * n + j;
            din->buff[idx] = (din->buff[idx] + mean[j]) * var[j];
        }
    }
}

string ModelImp::greedy_search(float * in, int nLen )
{
    vector<int> hyps;
    int Tmax = nLen;
    int i;
    for (i = 0; i < Tmax; i++) {
        int max_idx;
        float max_val;
        findmax(in + i * 8404, 8404, max_val, max_idx);
        hyps.push_back(max_idx);
    }

    return vocab->vector2stringV2(hyps);
}

string ModelImp::forward(float* din, int len, int flag)
{

    Tensor<float>* in;
    fe->insert(din, len, flag);
    fe->fetch(in);
    apply_lfr(in);
    apply_cmvn(in);
    //encoder->forward(in);
    //Tensor<float> enc_out(in);
    //predictor->forward(in);
    //decoder->forward(in, &enc_out);

    //int64_t speech_len = in->size[2];
    //Ort::Value inputTensor = Ort::Value::CreateTensor<float>(m_memoryInfo, in->buff, in->buff_size, input_shape_.data(), input_shape_.size());
    Ort::RunOptions run_option;

    std::array<int64_t, 3> input_shape_{ in->size[0],in->size[2],in->size[3] };
    Ort::Value onnx_feats = Ort::Value::CreateTensor<float>(m_memoryInfo,
        in->buff,
        in->buff_size,
        input_shape_.data(),
        input_shape_.size());

    std::vector<int32_t> feats_len{ in->size[2] };
    std::vector<int64_t> feats_len_dim{ 1 };
    Ort::Value onnx_feats_len = Ort::Value::CreateTensor(
        m_memoryInfo,
        feats_len.data(),
        feats_len.size() * sizeof(int32_t),
        feats_len_dim.data(),
        feats_len_dim.size(), ONNX_TENSOR_ELEMENT_DATA_TYPE_INT32);
    std::vector<Ort::Value> input_onnx;
    input_onnx.emplace_back(std::move(onnx_feats));
    input_onnx.emplace_back(std::move(onnx_feats_len));

    //auto output = m_session_encoder->Run(run_option,
    //    m_strEncInputName.data(),
    //    input_onnx.data(),
    //    m_strEncInputName.size(),
    //    m_strEncOutputName.data(),
    //    m_strEncOutputName.size()
    //);


    auto outputTensor = m_session->Run(run_option, m_szInputNames.data(), input_onnx.data(), m_szInputNames.size(),  m_szOutputNames.data(), m_szOutputNames.size());

    //assert(outputTensor.size() == 1 && outputTensor[0].IsTensor());
    std::vector<int64_t> outputShape = outputTensor[0].GetTensorTypeAndShapeInfo().GetShape();


    int64_t outputCount = std::accumulate(outputShape.begin(), outputShape.end(), 1, std::multiplies<int64_t>());
    float* floatData = outputTensor[0].GetTensorMutableData<float>();
    auto encoder_out_lens = outputTensor[1].GetTensorMutableData<int64_t>();
    //float* floatSize = outputTensor[1].GetTensorMutableData<float>();
    //std::vector<float> out_data(floatArray, floatArray + outputCount);

    string result = greedy_search(floatData, *encoder_out_lens);
    if(in)
        delete in;

    return result;
}

string ModelImp::forward_chunk(float* din, int len, int flag)
{

    printf("Not Imp!!!!!!\n");
    return "Hello";
}

string ModelImp::rescoring()
{
    printf("Not Imp!!!!!!\n");
    return "Hello";
}