"docs/archive_en_US/Tuner/NetworkmorphismTuner.md" did not exist on "a71cbe85dca1445f4c62991d9ac7cc4b21c4673e"
  1. 18 Jul, 2022 1 commit
  2. 11 Jul, 2022 2 commits
  3. 08 Jul, 2022 2 commits
  4. 05 Jul, 2022 1 commit
  5. 30 Jun, 2022 12 commits
  6. 29 Jun, 2022 1 commit
  7. 25 Jun, 2022 1 commit
  8. 24 Jun, 2022 2 commits
    • Ted Themistokleous's avatar
      Adding in check_stamped.py to tools/ (#1255) · 8c35fa94
      Ted Themistokleous authored
      Used to determine what files contain a license and are stamped. If not we exit and return an error code that can be later ingested by another script, as well as a list of the outstanding files in questions.
      
      Currently baked in the list of files we should support or not support with licenses in them a well as some stuff to quickly ignore
      8c35fa94
    • Umang Yadav's avatar
      Add compute_method for the experimental custom op (#1194) · edc7be5c
      Umang Yadav authored
      Adds compute_method for the experimental custom ops.
      Adds a test for the same using HIP APIs.
      Depends on #1183
      Solves #1101
      edc7be5c
  9. 22 Jun, 2022 1 commit
  10. 17 Jun, 2022 2 commits
    • Ted Themistokleous's avatar
      Update tf_parser to have add_common_op() for parse_relu6 (#1241) · 421a5621
      Ted Themistokleous authored
      
      
      * [#935] Update tf_parser to have add_common_op() for parse_relu6
      
      Similar to that of the onnx_parser.cpp add a add_common_op template and functionality to support clip based operations. This is done so clip operations can be guarenteed to have the same dimensions.
      
      * fixup! [#935] Update tf_parser to have add_common_op() for parse_relu6
      
      * fixup! fixup! [#935] Update tf_parser to have add_common_op() for parse_relu6
      
      * fixup! fixup! fixup! [#935] Update tf_parser to have add_common_op() for parse_relu6
      
      * fixup! fixup! fixup! fixup! [#935] Update tf_parser to have add_common_op() for parse_relu6
      
      * Formatting
      
      * fixup! Formatting
      Co-authored-by: default avatarUmang Yadav <29876643+umangyadav@users.noreply.github.com>
      Co-authored-by: default avatarPaul Fultz II <pfultz2@yahoo.com>
      421a5621
    • kahmed10's avatar
      Create allocate op and replace_allocate pass (#1183) · add6fb3b
      kahmed10 authored
      
      
      * add allocate op header
      
      * formatting
      
      * add replace_allocate pass
      
      * formatting
      
      * move output param to remove_allocate pass
      
      * formatting
      
      * fix bugs in replace_allocate pass
      
      * formatting
      
      * fix verify if tests
      
      * formatting
      
      * move if op logic
      
      * formatting
      
      * cleanup lowering
      
      * cleanup lowering
      
      * formatting
      
      * fix tidy
      
      * formatting
      
      * fix tidy
      
      * add cpu allocate check
      
      * formatting
      
      * change cpu allocate in pass
      
      * formatting
      
      * add some tests for replace_allocate pass
      
      * formatting
      
      * pass by ref
      
      * fix run_pass
      
      * formatting
      
      * update variable name for module
      
      * update dce to use contains() and fix tidy
      
      * formatting
      
      * update cppcheck
      
      * add if test
      
      * formatting
      
      * add if test
      
      * rename var to mod_output_names
      
      * formatting
      
      * remove conditional
      
      * update allocate op and tests
      
      * formatting
      
      * update replace_allocate tests
      
      * update create_output_names() and conditional in replace_allocate
      
      * formatting
      
      * remove extra variable in replace_allocate
      
      * update tools script for allocation_model
      Co-authored-by: default avatarUmang Yadav <29876643+umangyadav@users.noreply.github.com>
      Co-authored-by: default avatarChris Austen <causten@users.noreply.github.com>
      Co-authored-by: default avatarPaul Fultz II <pfultz2@yahoo.com>
      add6fb3b
  11. 16 Jun, 2022 1 commit
  12. 07 Jun, 2022 1 commit
  13. 02 Jun, 2022 1 commit
  14. 26 May, 2022 1 commit
  15. 24 May, 2022 2 commits
  16. 11 May, 2022 1 commit
  17. 10 May, 2022 1 commit
  18. 06 May, 2022 1 commit
  19. 03 May, 2022 1 commit
  20. 29 Apr, 2022 1 commit
  21. 26 Apr, 2022 1 commit
  22. 23 Apr, 2022 1 commit
    • Charlie Lin's avatar
      ReverseSequence op (#1177) · 31906785
      Charlie Lin authored
      Implements the ReverseSequence ONNX operator as a parser.
      
      This parser can only handle a constant sequence_lens input. This is the same as what is handled for TensorRT as far as I can tell.
      We could handle a variable sequence_lens input; that would require ref and GPU implementations of the operator.
      The ONNX backend tests are disabled because this does not handle variable sequence_lens.
      31906785
  23. 19 Apr, 2022 1 commit
    • Charlie Lin's avatar
      Refactor Pooling and implement ONNX LpPool and GlobalLpPool (#1152) · 764273e4
      Charlie Lin authored
      Refactored the reference implementation of pooling to something like what was done for roialign. Moved the reference implementation of pooling from targets/ref/lowering.cpp to pooling.hpp.
      Removed cpu_pooling, instead using reference pooling in pooling.hpp
      Added reference implementation of Lp Norm pooling and the global version
      Added tests for the Lp Norm Pooling
      764273e4
  24. 17 Apr, 2022 1 commit
    • Paul Fultz II's avatar
      Reduce with runtime compilation (#1150) · f9a5b81e
      Paul Fultz II authored
      There is significant improvement on larger tensors with half almost 50% faster:
      
      lens: [1024, 384, 768]
      gpu::code_object[code_object=13832,symbol_name=kernel,global=39321600,local=256,]: 1.16685ms
      gpu::reduce_sum[axes={2}]: 1.73126ms
      Also for non-trivial layouts this can sometimes be over 2x faster:
      
      lens: [64, 1024, 768, 4]
      gpu::code_object[code_object=13832,symbol_name=kernel,global=39321600,local=256,]: 1.1706ms
      gpu::reduce_sum[axes={1}]: 2.63375ms
      Of course if the stride becomes larger this speed improvement diminishes due to poor memory access patterns. A lane_reduce instead of a block_reduce is needed for such type of kernels. I plan to address that in a future PR.
      
      Finally, this also includes a MIGRAPHX_GPU_DUMP_ASM env variable which will print out the assembly when the kernel compiles.
      f9a5b81e