Commit fe493c28 authored by Alan Turner's avatar Alan Turner
Browse files

Merge remote-tracking branch 'origin/develop' into ck-gsg

parents ba0b3794 cce35871
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/fuse_reduce.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/program.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/register_op.hpp>
#include <iterator>
#include <map>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct fused_reduce
{
std::vector<std::int64_t> axes{};
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.axes, "axes"));
}
shape compute_shape(const std::vector<shape>& inputs, std::vector<module_ref> mods) const
{
if(mods.size() != 1)
MIGRAPHX_THROW("should have one submodule.");
auto* sm = mods.front();
if(sm->get_output_shapes().size() != 1)
MIGRAPHX_THROW("Only one output supported");
auto names = sm->get_parameter_names();
check_shapes{inputs, *this}.has(names.size()).same_ndims();
std::sort(names.begin(), names.end());
auto shapes = sm->get_parameter_shapes();
// Check dimension matches for each input
if(not equal(names, inputs, [&](const auto& name, const auto& input) {
return shapes.at(name).lens() == input.lens();
}))
MIGRAPHX_THROW("Dimenstion does not match the submodule.");
const auto& s = inputs.at(0);
auto lens = s.lens();
if(lens != sm->get_output_shapes().front().lens())
{
for(const auto& axis : axes)
{
lens[axis] = 1;
}
}
return shape::from_permutation(
sm->get_output_shapes().front().type(), lens, find_permutation(inputs));
}
std::string name() const { return "fused_reduce"; }
};
MIGRAPHX_REGISTER_OP(fused_reduce);
static std::unordered_map<instruction_ref, instruction_ref>
get_ins_param_map(const std::vector<instruction_ref>& inputs, const_module_ref sm)
{
std::unordered_map<instruction_ref, instruction_ref> result;
auto names = sm->get_parameter_names();
std::sort(names.begin(), names.end());
assert(names.size() == inputs.size());
std::transform(names.begin(),
names.end(),
inputs.begin(),
std::inserter(result, result.end()),
[&](const auto& name, auto input) {
return std::make_pair(input, sm->get_parameter(name));
});
return result;
}
static void insert_params(module_ref sm,
instruction_ref ins,
std::unordered_map<instruction_ref, instruction_ref>& map_ins)
{
auto n = sm->get_parameter_shapes().size();
for(auto input : ins->inputs())
{
if(contains(map_ins, input))
continue;
auto s = shape{input->get_shape().type(), input->get_shape().lens()};
map_ins[input] = sm->add_parameter("x" + std::to_string(n++), s);
}
}
static auto insert_ins_in_submodule(module_ref sm,
instruction_ref ins,
std::unordered_map<instruction_ref, instruction_ref>& map_ins)
{
insert_params(sm, ins, map_ins);
return sm->add_instructions({ins}, map_ins);
}
static auto insert_ins_in_submodule(module_ref sm, instruction_ref ins)
{
std::unordered_map<instruction_ref, instruction_ref> map_ins;
return insert_ins_in_submodule(sm, ins, map_ins);
}
static auto
insert_module_in_submodule(module_ref sm,
instruction_ref ins,
std::unordered_map<instruction_ref, instruction_ref>& map_ins)
{
insert_params(sm, ins, map_ins);
auto* m = ins->module_inputs().front();
auto param_map = get_ins_param_map(ins->inputs(), m);
for(auto&& [input, param] : param_map)
{
map_ins[param] = map_ins.at(input);
}
return sm->add_instructions(m, map_ins);
}
static std::vector<instruction_ref>
find_inputs(module_ref sm,
const module& parent,
const std::unordered_map<instruction_ref, instruction_ref>& map_ins)
{
std::vector<instruction_ref> result;
std::map<std::string, instruction_ref> names;
for(auto&& [input, param] : map_ins)
{
if(not sm->has_instruction(param))
continue;
if(param->name() != "@param")
continue;
if(not parent.has_instruction(input))
continue;
auto v = param->get_operator().to_value();
auto name = v.at("parameter").to<std::string>();
names[name] = input;
}
std::transform(names.begin(), names.end(), std::back_inserter(result), [](const auto& p) {
return p.second;
});
assert(result.size() == sm->get_parameter_shapes().size());
return result;
}
static void create_reduce_modules(module_pass_manager& mpm)
{
std::size_t n = 0;
for(auto ins : iterator_for(mpm.get_module()))
{
if(not ins->get_operator().attributes().get("reduce", false))
continue;
if(ins->inputs().size() != 1)
continue;
auto* rm =
mpm.create_module(mpm.get_module().name() + ":" + ins->name() + std::to_string(n++));
rm->set_bypass();
rm->add_return(insert_ins_in_submodule(rm, ins));
auto v = ins->get_operator().to_value();
mpm.get_module().replace_instruction(
ins, make_op("fused_reduce", {{"axes", v["axes"]}}), ins->inputs(), {rm});
}
}
template <class... Ms>
static auto match_broadcast(Ms... ms)
{
return match::skip(match::name("contiguous"))(
match::name("multibroadcast")(match::arg(0)(ms...), match::used_once()).bind("broadcast"));
}
template <class... Ms>
static auto any_input(Ms... ms)
{
return match::any_of[match::inputs()](match::any(ms...).bind("input"));
}
static auto match_broadcastable_input(const std::string& op, const std::string& name)
{
auto match_op = match::name(op)(match::used_once()).bind(name);
auto match_op_input = any_input(match_op, match::used_once());
auto broadcast_match_op_input = any_input(match_broadcast(match_op), match::used_once());
return match::any_of(match_op_input, broadcast_match_op_input);
}
namespace {
struct find_pointwise_reduce
{
auto matcher() const
{
return match::name("fused_reduce")(match_broadcastable_input("pointwise", "pointwise"));
}
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto reduce = r.result;
auto input = r.instructions["pointwise"];
const auto* pm = input->module_inputs().front();
const auto* old_rm = reduce->module_inputs().front();
auto* rm = mpm.create_module(pm->name() + ":" + old_rm->name());
rm->set_bypass();
std::unordered_map<instruction_ref, instruction_ref> map_ins;
// Insert pointwise
auto rins = insert_ins_in_submodule(rm, input, map_ins).front();
map_ins[input] = rins;
if(contains(r.instructions, "broadcast"))
{
auto broadcast = r.instructions["broadcast"];
map_ins[broadcast] = insert_ins_in_submodule(rm, broadcast, map_ins).front();
}
// Insert fused_reduce
rm->add_return(insert_module_in_submodule(rm, reduce, map_ins));
auto new_inputs = find_inputs(rm, mpm.get_module(), map_ins);
mpm.get_module().replace_instruction(reduce, reduce->get_operator(), new_inputs, {rm});
}
};
struct find_reduce_pointwise
{
auto matcher() const
{
return match::name("pointwise")(match_broadcastable_input("fused_reduce", "reduce"));
}
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto pw = r.result;
auto reduce = r.instructions["reduce"];
auto input = r.instructions["input"];
const auto* pm = pw->module_inputs().front();
const auto* old_rm = reduce->module_inputs().front();
auto* rm = mpm.create_module(old_rm->name() + ":" + pm->name());
rm->set_bypass();
std::unordered_map<instruction_ref, instruction_ref> map_ins;
// Copy module instructions
insert_module_in_submodule(rm, reduce, map_ins);
if(contains(r.instructions, "broadcast"))
{
auto broadcast = r.instructions["broadcast"];
map_ins[broadcast->inputs().front()] = rm->get_returns().front();
auto bout = insert_ins_in_submodule(rm, broadcast, map_ins);
map_ins[input] = bout.front();
}
else
{
map_ins[input] = rm->get_returns().front();
}
auto out = insert_ins_in_submodule(rm, pw, map_ins);
rm->replace_return(out);
auto new_inputs = find_inputs(rm, mpm.get_module(), map_ins);
mpm.get_module().replace_instruction(pw, reduce->get_operator(), new_inputs, {rm});
}
};
struct find_reduce_reduce
{
auto matcher() const
{
return match::name("fused_reduce")(match_broadcastable_input("fused_reduce", "reduce"));
}
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto reduce1 = r.result;
auto reduce2 = r.instructions["reduce"];
auto input = r.instructions["input"];
if(reduce1->get_operator() != reduce2->get_operator())
return;
const auto* rm1 = reduce1->module_inputs().front();
const auto* rm2 = reduce2->module_inputs().front();
auto* rm = mpm.create_module(rm1->name() + ":" + rm2->name());
rm->set_bypass();
std::unordered_map<instruction_ref, instruction_ref> map_ins;
// Copy reduce1 instructions
insert_module_in_submodule(rm, reduce2, map_ins);
if(contains(r.instructions, "broadcast"))
{
auto broadcast = r.instructions["broadcast"];
map_ins[broadcast->inputs().front()] = rm->get_returns().front();
auto bout = insert_ins_in_submodule(rm, broadcast, map_ins);
map_ins[input] = bout.front();
}
else
{
map_ins[input] = rm->get_returns().front();
}
auto out = insert_module_in_submodule(rm, reduce1, map_ins);
rm->replace_return(out);
auto new_inputs = find_inputs(rm, mpm.get_module(), map_ins);
mpm.get_module().replace_instruction(reduce1, reduce1->get_operator(), new_inputs, {rm});
}
};
} // namespace
void fuse_reduce::apply(module_pass_manager& mpm) const
{
create_reduce_modules(mpm);
mpm.run_pass(dead_code_elimination{});
for(int i = 0; i < 4; i++)
{
match::find_matches(
mpm, find_reduce_pointwise{}, find_pointwise_reduce{}, find_reduce_reduce{});
mpm.run_pass(dead_code_elimination{});
}
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -27,6 +27,8 @@
#include <migraphx/program.hpp>
#include <migraphx/config.hpp>
#include <migraphx/register_op.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/ranges.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -36,7 +38,27 @@ struct check_context
{
struct op : auto_register_op<op>
{
std::string name() const { return "check_context::" + get_type_name<T>(); }
static std::string compute_op_name()
{
const auto& op_type_name = get_type_name<T>();
const auto& split_name = split_string(op_type_name, ':');
std::vector<std::string> name_without_version = {"check_context"};
// op_type_name would contain internal namespace name with version_x_y_z
// remove version and construct op_name such as check_context::migraphx::gpu::context
std::copy_if(
split_name.begin(),
split_name.end(),
std::back_inserter(name_without_version),
[&](const auto& i) { return not i.empty() and not contains(i, "version"); });
return join_strings(name_without_version, "::");
}
std::string name() const
{
static auto op_name = compute_op_name();
return op_name;
}
shape compute_shape(const std::vector<shape>&) const { return {}; }
argument compute(context& ctx, const shape&, const std::vector<argument>&) const
{
......
......@@ -41,6 +41,11 @@ std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, sha
shape common_shape(const std::vector<shape>& shapes);
std::vector<instruction_ref>
insert_common_args(module& m, instruction_ref ins, std::vector<instruction_ref> inputs);
std::vector<instruction_ref> add_common_args(module& m, std::vector<instruction_ref> inputs);
instruction_ref insert_common_op(module& m,
instruction_ref ins,
const operation& op,
......
......@@ -32,9 +32,17 @@ inline namespace MIGRAPHX_INLINE_NS {
struct compile_options
{
bool offload_copy = false;
/**
* Have MIGX allocate memory for parameters and add instructions
* to copy parameters and output to/from an offload device like a GPU.
*/
bool offload_copy = false;
bool fast_math = true;
bool exhaustive_tune = false;
/// Use the split_single_dyn_dim pass
bool split_single_dyn_dim = false;
tracer trace{};
};
......
......@@ -77,6 +77,7 @@ struct cpp_generator
function& set_types(const module& m);
function& set_types(const module& m, const std::function<std::string(shape)>& parse);
function& set_generic_types(const module& m);
function& add_generic_param(const std::string& pname);
};
cpp_generator();
......@@ -105,6 +106,10 @@ struct cpp_generator
std::string create_function(const function& f);
static std::vector<std::string>
to_args(const std::vector<instruction_ref>& inputs,
const std::unordered_map<instruction_ref, std::string>& names);
private:
std::unique_ptr<cpp_generator_impl> impl;
};
......
......@@ -37,6 +37,12 @@ struct dynamic_loader_impl;
struct dynamic_loader
{
template <class T>
static fs::path path(T* address)
{
return path(reinterpret_cast<void*>(address));
}
static fs::path path(void* address);
dynamic_loader() = default;
dynamic_loader(const fs::path& p);
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_MIGRAPHX_FUSE_REDUCE_HPP
#define MIGRAPHX_GUARD_MIGRAPHX_FUSE_REDUCE_HPP
#include <migraphx/config.hpp>
#include <string>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct module_pass_manager;
struct fuse_reduce
{
std::string name() const { return "fuse_reduce"; }
void apply(module_pass_manager& mpm) const;
};
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif // MIGRAPHX_GUARD_MIGRAPHX_FUSE_POINTWISE_HPP
......@@ -347,6 +347,7 @@ match::matcher_result find_match(module& modl, M&& m)
}
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_TRACE_MATCHES)
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_VALIDATE_MATCHES)
/// Find matches for an instruction in the module
template <class Mod, class... Ms>
......@@ -356,7 +357,11 @@ void find_matches(Mod& mod, instruction_ref ins, Ms&&... ms)
const
#endif
int trace = value_of(MIGRAPHX_TRACE_MATCHES{});
bool match = false;
#if !defined(__GNUC__) || defined(__clang__) || __GNUC__ > 5
const
#endif
bool validate = enabled(MIGRAPHX_VALIDATE_MATCHES{});
bool match = false;
each_args(
[&](auto&& m) {
if(match)
......@@ -371,7 +376,20 @@ void find_matches(Mod& mod, instruction_ref ins, Ms&&... ms)
std::cout << "Matched by " << get_type_name(m) << std::endl;
get_module(mod).debug_print(ins);
}
// If its already invalid dont validate it again
bool invalidated = validate and get_module(mod).validate() != get_module(mod).end();
m.apply(mod, r);
if(validate and not invalidated)
{
auto invalid = get_module(mod).validate();
if(invalid != get_module(mod).end())
{
std::cout << "Invalid program from match: " << get_type_name(m) << std::endl;
std::cout << "Invalid instructions: " << std::endl;
get_module(mod).debug_print(invalid->inputs());
get_module(mod).debug_print(invalid);
}
}
match = true;
},
ms...);
......@@ -520,6 +538,8 @@ MIGRAPHX_PRED_MATCHER(not_standard_shape, instruction_ref ins)
{
return not ins->get_shape().standard();
}
MIGRAPHX_PRED_MATCHER(dynamic_shape, instruction_ref ins) { return ins->get_shape().dynamic(); }
MIGRAPHX_PRED_MATCHER(static_shape, instruction_ref ins) { return not ins->get_shape().dynamic(); }
MIGRAPHX_PRED_MATCHER(broadcast_shape, instruction_ref ins)
{
return ins->get_shape().broadcasted();
......
......@@ -178,6 +178,8 @@ struct module
bool has_instruction(instruction_ref ins) const;
std::vector<instruction_ref> get_returns() const;
std::size_t size() const;
instruction_ref begin() const;
instruction_ref end() const;
......
......@@ -26,10 +26,12 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <functional>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
void to_msgpack(const value& v, std::function<void(const char*, std::size_t)> writer);
std::vector<char> to_msgpack(const value& v);
value from_msgpack(const std::vector<char>& buffer);
value from_msgpack(const char* buffer, std::size_t size);
......
......@@ -37,7 +37,7 @@ struct onnx_options
std::size_t default_dim_value = 0;
/// Default dynamic dimension size (if both default_dim_value and default_dyn_dim_value set
/// parser throws)
shape::dynamic_dimension default_dyn_dim_value = {1, 1, 0};
shape::dynamic_dimension default_dyn_dim_value = {1, 1};
/// Explicitly specify the dims of an input
std::unordered_map<std::string, std::vector<std::size_t>> map_input_dims = {};
/// Explicitly specify dynamic dims of an input (if both map_input_dims and map_dyn_input_dims
......
......@@ -62,7 +62,7 @@ struct argmax
if(s0.dynamic())
{
auto dyn_dims = s0.dyn_dims();
dyn_dims[axis] = {1, 1, 0};
dyn_dims[axis] = {1, 1};
return {shape::int64_type, dyn_dims};
}
else
......
......@@ -134,7 +134,7 @@ struct concat
}
auto new_dims = inputs[0].dyn_dims();
new_dims[axis] = migraphx::shape::dynamic_dimension{new_min, new_max, 0};
new_dims[axis] = migraphx::shape::dynamic_dimension{new_min, new_max};
return {inputs[0].type(), new_dims};
}
else
......
......@@ -48,7 +48,7 @@ struct contiguous
{
check_shapes{inputs, *this, true}.has(1);
auto s0 = inputs.front();
if(s0.dynamic() or s0.standard())
if(s0.dynamic())
{
return s0;
}
......
......@@ -38,6 +38,10 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
/**
* Convolution operator. Does not support optimal dimensions for spatial dimensions. Returns empty
* optimals.
*/
struct convolution
{
std::vector<std::size_t> padding = {0, 0};
......@@ -148,7 +152,7 @@ struct convolution
else
{
auto l = input_shape.lens().at(0);
output_dyn_dims.push_back({l, l, 0});
output_dyn_dims.push_back({l, l});
}
};
......@@ -165,25 +169,30 @@ struct convolution
if(x_shape.dynamic())
{
auto x = x_shape.dyn_dims()[i + 2];
output_dyn_dims.push_back(shape::dynamic_dimension{
ceil_div(x.min, s), ceil_div(x.max, s), ceil_div(x.opt, s)});
std::set<std::size_t> optimals{};
std::transform(x.optimals.begin(),
x.optimals.end(),
std::inserter(optimals, optimals.begin()),
[&](auto o) { return ceil_div(o, s); });
output_dyn_dims.push_back(
shape::dynamic_dimension{ceil_div(x.min, s), ceil_div(x.max, s), optimals});
}
else
{
auto od = ceil_div(x_shape.lens()[i + 2], s);
output_dyn_dims.push_back(shape::dynamic_dimension{od, od, 0});
output_dyn_dims.push_back(shape::dynamic_dimension{od, od});
}
}
}
else
{
// Does not compute for optimals
auto min_spatial_dims = calc_conv_lens(x_shape.min_lens(), w_shape.max_lens());
auto max_spatial_dims = calc_conv_lens(x_shape.max_lens(), w_shape.min_lens());
auto opt_spatial_dims = calc_conv_lens(x_shape.opt_lens(), w_shape.opt_lens());
for(size_t i = 0; i < num_spatial_dims; ++i)
{
output_dyn_dims.push_back(shape::dynamic_dimension{
min_spatial_dims[i], max_spatial_dims[i], opt_spatial_dims[i]});
output_dyn_dims.push_back(
shape::dynamic_dimension{min_spatial_dims[i], max_spatial_dims[i], {}});
}
}
return shape{x_shape.type(), output_dyn_dims};
......
......@@ -40,7 +40,11 @@ struct dequantizelinear
std::string name() const { return "dequantizelinear"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.same_dims();
check_shapes{inputs, *this}.same_dims().has(2, 3);
if(inputs.size() == 3 and inputs[0].type() != inputs[2].type())
{
MIGRAPHX_THROW("DEQUANTIZELINEAR: Zero point and input should be the same type.");
}
return {inputs[1].type(), inputs[0].lens(), inputs[0].strides()};
}
......
......@@ -29,6 +29,7 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -59,27 +60,22 @@ struct flatten
auto s = inputs[0];
if(s.dynamic())
{
// Doesn't handle optimals
auto min_lens = s.min_lens();
auto max_lens = s.max_lens();
auto opt_lens = s.opt_lens();
// If any of the opt values is 0, output opt will be 0
shape::dynamic_dimension x = {
std::accumulate(
min_lens.begin(), min_lens.begin() + axis, std::size_t{1}, std::multiplies<>{}),
std::accumulate(
max_lens.begin(), max_lens.begin() + axis, std::size_t{1}, std::multiplies<>{}),
std::accumulate(opt_lens.begin(),
opt_lens.begin() + axis,
std::size_t{1},
std::multiplies<>{})};
{}};
shape::dynamic_dimension y = {
std::accumulate(
min_lens.begin() + axis, min_lens.end(), std::size_t{1}, std::multiplies<>{}),
std::accumulate(
max_lens.begin() + axis, max_lens.end(), std::size_t{1}, std::multiplies<>{}),
std::accumulate(
opt_lens.begin() + axis, opt_lens.end(), std::size_t{1}, std::multiplies<>{}),
};
{}};
return {s.type(), {x, y}};
}
else
......
......@@ -121,7 +121,7 @@ struct gathernd
// A rank 0 output is a scalar
if(output_ndim == 0)
return shape(data_shape.type(), {shape::dynamic_dimension({1, 1, 0})});
return shape(data_shape.type(), {shape::dynamic_dimension({1, 1})});
// Part of the output shape comes from indices tensor, part from data tensor
std::vector<shape::dynamic_dimension> output_dims(output_ndim);
......
......@@ -119,8 +119,8 @@ struct nonmaxsuppression
fixed_shape_error_check();
}
std::vector<shape::dynamic_dimension> out_lens = {};
out_lens.push_back({0, max_num_boxes, 0});
out_lens.push_back({3, 3, 0});
out_lens.push_back({0, max_num_boxes});
out_lens.push_back({3, 3});
return {shape::int64_type, out_lens};
}
else
......
......@@ -89,25 +89,17 @@ struct pooling
std::vector<std::size_t> output_lens{};
for(size_t i = 0; i < kdims; ++i)
{
if(input_lens[i + 2] == 0)
{
// handle opt = 0
output_lens.push_back(0);
}
else
{
std::size_t padding_factor = 2 * padding[i];
if(padding.size() == 2 * kdims)
padding_factor = padding[i] + padding[i + kdims];
assert(input_lens[i + 2] + padding_factor >= lengths[i]);
std::size_t dim_size = input_lens[i + 2] + padding_factor - lengths[i];
std::size_t len =
(ceil_mode)
? dim_size / stride[i] + static_cast<std::size_t>((dim_size % stride[i] !=
0)) // ceil uint divide
: dim_size / stride[i]; // floor divide
output_lens.push_back(len + 1);
}
std::size_t padding_factor = 2 * padding[i];
if(padding.size() == 2 * kdims)
padding_factor = padding[i] + padding[i + kdims];
assert(input_lens[i + 2] + padding_factor >= lengths[i]);
std::size_t dim_size = input_lens[i + 2] + padding_factor - lengths[i];
std::size_t len =
(ceil_mode)
? dim_size / stride[i] +
static_cast<std::size_t>((dim_size % stride[i] != 0)) // ceil uint divide
: dim_size / stride[i]; // floor divide
output_lens.push_back(len + 1);
}
return output_lens;
}
......@@ -134,19 +126,19 @@ struct pooling
{
for(size_t i = 0; i < kdims; ++i)
{
output_dyn_dims.push_back(shape::dynamic_dimension{1, 1, 1});
output_dyn_dims.push_back(shape::dynamic_dimension{1, 1});
}
return {input.type(), output_dyn_dims};
}
else
{
// does not compute for optimals
auto min_spatial_dims = calc_spatial_dim_out(input.min_lens(), kdims);
auto max_spatial_dims = calc_spatial_dim_out(input.max_lens(), kdims);
auto opt_spatial_dims = calc_spatial_dim_out(input.opt_lens(), kdims);
for(size_t i = 0; i < kdims; ++i)
{
output_dyn_dims.push_back(shape::dynamic_dimension{
min_spatial_dims[i], max_spatial_dims[i], opt_spatial_dims[i]});
output_dyn_dims.push_back(
shape::dynamic_dimension{min_spatial_dims[i], max_spatial_dims[i], {}});
}
return {input.type(), output_dyn_dims};
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment