Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
f8761f3f
Commit
f8761f3f
authored
Nov 06, 2023
by
Umang Yadav
Browse files
Merge remote-tracking branch 'origin/blas_tuning' into fp8_rocblas
parents
6fb61ded
1ea4a08a
Changes
30
Hide whitespace changes
Inline
Side-by-side
Showing
10 changed files
with
353 additions
and
84 deletions
+353
-84
test/onnx/split_test_uneven_num_outputs.onnx
test/onnx/split_test_uneven_num_outputs.onnx
+24
-0
test/onnx/verify_onnx.cpp
test/onnx/verify_onnx.cpp
+71
-0
test/op_shape_test.cpp
test/op_shape_test.cpp
+33
-3
test/py/CMakeLists.txt
test/py/CMakeLists.txt
+2
-2
test/py/onnx_backend_test.py
test/py/onnx_backend_test.py
+0
-4
test/py/requirements-onnx.txt
test/py/requirements-onnx.txt
+1
-1
test/py/requirements.txt
test/py/requirements.txt
+1
-1
test/ref/multinomial.cpp
test/ref/multinomial.cpp
+221
-12
tools/docker/ubuntu_2204.dockerfile
tools/docker/ubuntu_2204.dockerfile
+0
-5
tools/download_models.sh
tools/download_models.sh
+0
-56
No files found.
test/onnx/split_test_uneven_num_outputs.onnx
0 → 100644
View file @
f8761f3f
split_test_uneven_num_outputs:
.
xy1y2y3y4"Split*
num_outputssplit_test_uneven_num_outputsZ
x
b
y1
b
y2
b
y3
b
y4
B
\ No newline at end of file
test/onnx/verify_onnx.cpp
View file @
f8761f3f
...
...
@@ -1434,6 +1434,77 @@ TEST_CASE(mod_test_fmod_different_types)
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
result_vector
,
gold
));
}
TEST_CASE
(
multinomial_dyn_test
)
{
migraphx
::
onnx_options
options
;
options
.
default_dyn_dim_value
=
{
1
,
4
};
auto
p
=
migraphx
::
parse_onnx
(
"multinomial_dyn_test.onnx"
,
options
);
const
size_t
batch_size
(
2
);
const
size_t
categories
(
5
);
const
size_t
sample_size
(
100000
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
// Distribution function (2 distributions of 5 categories each)
std
::
vector
<
int
>
dist
{
15
,
25
,
15
,
25
,
20
,
20
,
20
,
10
,
25
,
25
};
EXPECT
(
dist
.
size
()
==
categories
*
batch_size
);
std
::
vector
<
float
>
data
(
categories
*
batch_size
);
std
::
transform
(
dist
.
begin
(),
dist
.
end
(),
data
.
begin
(),
[
&
](
auto
d
)
{
return
log
(
d
);
});
// Shape of the probability distribution, which also defines the number of categories
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
batch_size
,
categories
}};
migraphx
::
parameter_map
pp
;
pp
[
"input"
]
=
migraphx
::
argument
(
s
,
data
.
data
());
auto
result
=
p
.
eval
(
pp
).
back
();
std
::
vector
<
int32_t
>
result_vec
(
batch_size
*
sample_size
);
result
.
visit
([
&
](
auto
output
)
{
result_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
// Make a categorical histogram of output
// for first result in batch
std
::
vector
<
int
>
res_dist
(
categories
,
0
);
size_t
r
=
0
;
for
(
r
=
0
;
r
<
result_vec
.
size
()
/
2
;
r
++
)
res_dist
[
result_vec
[
r
]]
++
;
// normalizing factors for original and measured distributions
auto
dist_sum
=
std
::
accumulate
(
dist
.
begin
(),
dist
.
begin
()
+
5
,
0
);
auto
res_dist_sum
=
std
::
accumulate
(
res_dist
.
begin
(),
res_dist
.
end
(),
0
);
// Values approximate the distribution in dist
std
::
vector
<
float
>
norm
(
5
);
std
::
vector
<
float
>
res_norm
(
5
);
std
::
transform
(
dist
.
begin
(),
dist
.
begin
()
+
5
,
norm
.
begin
(),
[
&
](
auto
n
)
{
return
static_cast
<
double
>
(
n
)
/
dist_sum
;
});
std
::
transform
(
res_dist
.
begin
(),
res_dist
.
end
(),
res_norm
.
begin
(),
[
&
](
auto
n
)
{
return
static_cast
<
double
>
(
n
)
/
res_dist_sum
;
});
EXPECT
(
migraphx
::
verify
::
verify_range_with_tolerance
(
norm
,
migraphx
::
verify
::
expected
{
res_norm
},
migraphx
::
verify
::
tolerance
{
0.01
}));
// Make a categorical histogram of output
// for second result in batch
std
::
fill
(
res_dist
.
begin
(),
res_dist
.
end
(),
0
);
for
(;
r
<
result_vec
.
size
();
r
++
)
res_dist
[
result_vec
[
r
]]
++
;
dist_sum
=
std
::
accumulate
(
dist
.
begin
()
+
5
,
dist
.
end
(),
0
);
res_dist_sum
=
std
::
accumulate
(
res_dist
.
begin
(),
res_dist
.
end
(),
0
);
std
::
transform
(
dist
.
begin
()
+
5
,
dist
.
end
(),
norm
.
begin
(),
[
&
](
auto
n
)
{
return
static_cast
<
double
>
(
n
)
/
dist_sum
;
});
std
::
transform
(
res_dist
.
begin
(),
res_dist
.
end
(),
res_norm
.
begin
(),
[
&
](
auto
n
)
{
return
static_cast
<
double
>
(
n
)
/
res_dist_sum
;
});
EXPECT
(
migraphx
::
verify
::
verify_range_with_tolerance
(
res_norm
,
migraphx
::
verify
::
expected
{
norm
},
migraphx
::
verify
::
tolerance
{
0.01
}));
}
TEST_CASE
(
nonzero_test
)
{
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"nonzero_dynamic_test.onnx"
);
...
...
test/op_shape_test.cpp
View file @
f8761f3f
...
...
@@ -1957,12 +1957,42 @@ TEST_CASE(multibroadcast_3in_dyn_dyn)
expect_shape
(
expected_shape
,
migraphx
::
make_op
(
"multibroadcast"
),
c_shape
,
a_shape
,
b_shape
);
}
TEST_CASE
(
multinomial
)
TEST_CASE
(
multinomial
_bool_type
)
{
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
2
,
5
}};
migraphx
::
shape
s1
{
migraphx
::
shape
::
float_type
,
{
1
,
2
}};
migraphx
::
shape
s2
{
migraphx
::
shape
::
float_type
,
{
3
,
4
}};
int
dtype
=
0
;
throws_shape
(
migraphx
::
make_op
(
"multinomial"
,
{{
"dtype"
,
dtype
}}),
s
,
s
);
throws_shape
(
migraphx
::
make_op
(
"multinomial"
,
{{
"dtype"
,
dtype
}}),
s1
,
s2
);
}
TEST_CASE
(
multinomial
)
{
migraphx
::
shape
s1
{
migraphx
::
shape
::
float_type
,
{
1
,
2
}};
migraphx
::
shape
s2
{
migraphx
::
shape
::
float_type
,
{
3
,
4
}};
migraphx
::
shape
s3
{
migraphx
::
shape
::
float_type
,
{
1
,
4
}};
int
dtype
=
2
;
expect_shape
(
s3
,
migraphx
::
make_op
(
"multinomial"
,
{{
"dtype"
,
dtype
}}),
s1
,
s2
);
}
TEST_CASE
(
multinomial_0size_input
)
{
migraphx
::
shape
s1
{
migraphx
::
shape
::
float_type
,
{
1
,
2
}};
migraphx
::
shape
s2
{
migraphx
::
shape
::
float_type
,
{}};
int
dtype
=
2
;
throws_shape
(
migraphx
::
make_op
(
"multinomial"
,
{{
"dtype"
,
dtype
}}),
s1
,
s2
);
}
TEST_CASE
(
multinomial_dyn
)
{
migraphx
::
shape
s1
{
migraphx
::
shape
::
int32_type
,
{{
2
,
3
},
{
5
,
6
}}};
migraphx
::
shape
s2
{
migraphx
::
shape
::
int32_type
,
{{
7
,
8
},
{
9
,
10
}}};
migraphx
::
shape
s3
{
migraphx
::
shape
::
int32_type
,
{{
2
,
3
},
{
9
,
10
}}};
expect_shape
(
s3
,
migraphx
::
make_op
(
"multinomial"
,
{{
"dtype"
,
migraphx
::
shape
::
int32_type
}}),
s1
,
s2
);
}
TEST_CASE
(
nms_shape
)
...
...
test/py/CMakeLists.txt
View file @
f8761f3f
...
...
@@ -41,7 +41,7 @@ function(add_py_venv_fixture FIXTURE_NAME VIRTUAL_ENV_DIR REQUIREMENTS_FILE)
set
(
PYTHON_EXECUTABLE
${
PYTHON_
${
PYTHON_VERSION
}
_EXECUTABLE
}
)
if
(
NOT TEST py_
${
PYTHON_VERSION
}
_
${
FIXTURE_NAME
}
_initialize_env
)
if
(
NOT
(
${
FIXTURE_NAME
}
STREQUAL
"onnx"
AND
${
PYTHON_VERSION
}
STREQUAL
${
PYTHON_VERSION_TO_DISABLE_ONNX
}
))
if
(
NOT
(
${
PYTHON_VERSION
}
STREQUAL
${
PYTHON_VERSION_TO_DISABLE_ONNX
}
))
add_test
(
NAME py_
${
PYTHON_VERSION
}
_
${
FIXTURE_NAME
}
_initialize_env COMMAND
${
PYTHON_EXECUTABLE
}
-m venv
${
VIRTUAL_ENV_DIR
}
/
${
PYTHON_VERSION
}
--clear
)
set_tests_properties
(
py_
${
PYTHON_VERSION
}
_
${
FIXTURE_NAME
}
_initialize_env PROPERTIES FIXTURES_SETUP
${
FIXTURE_NAME
}
_
${
PYTHON_VERSION
}
_INIT_VENV
)
set
(
PYTHON_EXECUTABLE
${
VIRTUAL_ENV_DIR
}
/
${
PYTHON_VERSION
}
/bin/python
)
...
...
@@ -67,7 +67,7 @@ function(add_py_test NAME SCRIPT FIXTURE_NAME VENV_DIR)
else
()
set
(
PYTHON_EXECUTABLE
${
VENV_DIR
}
/
${
PYTHON_VERSION
}
/bin/python
)
endif
()
if
(
NOT
(
${
FIXTURE_NAME
}
STREQUAL
"onnx"
AND
${
PYTHON_VERSION
}
STREQUAL
${
PYTHON_VERSION_TO_DISABLE_ONNX
}
)
)
if
(
NOT
${
PYTHON_VERSION
}
STREQUAL
${
PYTHON_VERSION_TO_DISABLE_ONNX
}
)
add_test
(
NAME test_py_
${
PYTHON_VERSION
}
_
${
NAME
}
COMMAND
${
ENV_COMMAND
}
${
PYTHON_EXECUTABLE
}
${
CMAKE_CURRENT_SOURCE_DIR
}
/
${
SCRIPT
}
${
ARGN
}
)
...
...
test/py/onnx_backend_test.py
View file @
f8761f3f
...
...
@@ -835,10 +835,6 @@ def disabled_tests_onnx_1_13_0(backend_test):
backend_test
.
exclude
(
r
'test_scatter_elements_with_reduction_max_cpu'
)
backend_test
.
exclude
(
r
'test_scatter_elements_with_reduction_min_cpu'
)
# The following tests fail due to the CastLike operator being unsupported
backend_test
.
exclude
(
r
'test_split_1d_uneven_split_opset18_cpu'
)
backend_test
.
exclude
(
r
'test_split_2d_uneven_split_opset18_cpu'
)
def
disabled_tests_onnx_1_14_0
(
backend_test
):
# fails
...
...
test/py/requirements-onnx.txt
View file @
f8761f3f
...
...
@@ -26,4 +26,4 @@ onnx==1.14.1
protobuf==3.20.2
numpy==1.21.6
packaging==23.0
pytest==6.0.1
\ No newline at end of file
pytest==6.0.1
test/py/requirements.txt
View file @
f8761f3f
...
...
@@ -22,4 +22,4 @@
# THE SOFTWARE.
#####################################################################################
numpy==1.19.5
\ No newline at end of file
numpy==1.21.6
test/ref/multinomial.cpp
View file @
f8761f3f
...
...
@@ -24,9 +24,10 @@
#include <migraphx/instruction.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/
program
.hpp>
#include <migraphx/
onnx
.hpp>
#include <migraphx/register_target.hpp>
#include <migraphx/verify.hpp>
#include <numeric>
#include <random>
#include <test.hpp>
...
...
@@ -48,27 +49,37 @@ TEST_CASE(multinomial_test)
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
1
,
5
}};
std
::
vector
<
int
>
dist
{
15
,
25
,
15
,
25
,
20
};
std
::
vector
<
float
>
data
(
5
);
std
::
transform
(
dist
.
begin
(),
dist
.
end
(),
data
.
begin
(),
[
&
](
auto
d
)
{
return
std
::
log
(
d
);
});
auto
input
=
mm
->
add_literal
(
migraphx
::
literal
(
s
,
data
));
std
::
vector
<
float
>
sum
(
5
);
// convert to float
std
::
transform
(
dist
.
begin
(),
dist
.
end
(),
data
.
begin
(),
[
&
](
auto
d
)
{
return
d
;
});
// take cumulative sum
std
::
partial_sum
(
data
.
begin
(),
data
.
end
(),
sum
.
begin
(),
std
::
plus
<
float
>
());
// scale probabilities arbitrarily
float
odd_scale
=
10000.
;
std
::
transform
(
sum
.
begin
(),
sum
.
end
(),
data
.
begin
(),
[
&
](
auto
d
)
{
return
d
*
odd_scale
;
});
auto
maxes
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"reduce_max"
,
{{
"axes"
,
{
1
}}}),
input
);
auto
mb_maxes
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"multibroadcast"
,
{{
"out_lens"
,
{
1
,
5
}}}),
maxes
);
auto
cdf
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"sub"
),
input
,
mb_maxes
);
cdf
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"exp"
),
cdf
);
cdf
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"prefix_scan_sum"
,
{{
"axis"
,
1
},
{
"exclusive"
,
false
}}),
cdf
);
auto
input
=
mm
->
add_literal
(
migraphx
::
literal
(
s
,
data
));
mm
->
add_instruction
(
migraphx
::
make_op
(
"multinomial"
),
cdf
,
rs_lit
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"multinomial"
),
input
,
rs_lit
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
auto
result
=
p
.
eval
({}).
back
();
// result_vec contains an index, or category label, for each random input value
std
::
vector
<
int32_t
>
result_vec
(
sample_size
);
result
.
visit
([
&
](
auto
output
)
{
result_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
// res_dist is a count, or histogram, of the number of samples in each category. This is the
// sampled distribution.
std
::
vector
<
int
>
res_dist
(
5
,
0
);
for
(
const
auto
&
r
:
result_vec
)
res_dist
[
r
]
++
;
auto
dist_sum
=
std
::
accumulate
(
dist
.
begin
(),
dist
.
end
(),
0
);
// To check the result, normalize the original probability distribution dist
// and the sampling result res_dist; they should be close
// Total the unnormalized probabilities
auto
dist_sum
=
std
::
accumulate
(
dist
.
begin
(),
dist
.
end
(),
0
);
// Total the number of values returned
auto
res_dist_sum
=
std
::
accumulate
(
res_dist
.
begin
(),
res_dist
.
end
(),
0
);
std
::
vector
<
float
>
norm
(
5
);
std
::
vector
<
float
>
res_norm
(
5
);
...
...
@@ -78,6 +89,204 @@ TEST_CASE(multinomial_test)
std
::
transform
(
res_dist
.
begin
(),
res_dist
.
end
(),
res_norm
.
begin
(),
[
&
](
auto
n
)
{
return
static_cast
<
double
>
(
n
)
/
res_dist_sum
;
});
EXPECT
(
migraphx
::
verify
::
verify_range_with_tolerance
(
res_norm
,
migraphx
::
verify
::
expected
{
norm
},
migraphx
::
verify
::
tolerance
{
0.01
}));
}
TEST_CASE
(
multinomial_dyn_test
)
{
// Invokes random_uniform and multinomial ops together, to verify the interface
// Dynamic Batch dimension input of 2 means there are 2 different probability
// distribution functions contained in Input_2
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
size_t
sample_size
=
100000
;
size_t
batch_size
=
2
;
// Shape of the random data
migraphx
::
shape
rs
{
migraphx
::
shape
::
float_type
,
{{
1
,
2
},
{
2
,
sample_size
+
1
}}};
auto
input
=
mm
->
add_parameter
(
"Input_1"
,
rs
);
// Runtime randomization seed
// To seed the random_uniform, we can provide a value by literal or input,
// or ask the system to auto-seed with random_seed op.
migraphx
::
shape
seed_shape
{
migraphx
::
shape
::
uint32_type
,
{
migraphx
::
shape
::
dynamic_dimension
{
0
,
1
}}};
auto
seed_input
=
mm
->
add_parameter
(
"Seed"
,
seed_shape
);
// Shape of the probability distribution, which also defines the number of categories
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{{
2
,
2
},
{
5
,
6
}}};
// Unnormalized distributions for batch size 2:
// 15, 25, 15, 15, 20
// 20, 20, 10, 25, 25
std
::
vector
<
int
>
dist
{
15
,
25
,
15
,
25
,
20
,
20
,
20
,
10
,
25
,
25
};
// Hard-coded non-normalized, accumulated distribution follows:
std
::
vector
<
float
>
data
{
.15
f
,
.40
f
,
.55
f
,
.80
f
,
1.0
f
,
20.
f
,
40.
f
,
50.
f
,
75.
f
,
100.
f
};
auto
input2
=
mm
->
add_parameter
(
"Input_2"
,
s
);
auto
randoms
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"random_uniform"
),
seed_input
,
input
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"multinomial"
),
input2
,
randoms
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
// Create a dummy input in the shape we want for the random data
std
::
vector
<
float
>
dummy
(
sample_size
,
0
);
migraphx
::
shape
input_fixed_shape1
{
migraphx
::
shape
::
float_type
,
{
batch_size
,
sample_size
}};
migraphx
::
shape
input_fixed_shape2
{
migraphx
::
shape
::
float_type
,
{
batch_size
,
5
}};
migraphx
::
parameter_map
params0
;
params0
[
"Input_1"
]
=
migraphx
::
argument
(
input_fixed_shape1
,
dummy
.
data
());
migraphx
::
shape
seed_fixed_shape
{
migraphx
::
shape
::
uint32_type
,
{
1
}};
std
::
vector
<
uint32_t
>
seed_data
=
{
4
};
params0
[
"Seed"
]
=
migraphx
::
argument
(
seed_fixed_shape
,
seed_data
.
data
());
params0
[
"Input_2"
]
=
migraphx
::
argument
(
input_fixed_shape2
,
data
.
data
());
auto
result
=
p
.
eval
(
params0
).
back
();
std
::
vector
<
float
>
result_vec
(
input_fixed_shape2
.
elements
());
result
.
visit
([
&
](
auto
output
)
{
result_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
// Make a categorical histogram of output
std
::
vector
<
int
>
res_dist
(
5
,
0
);
size_t
r
=
0
;
for
(
r
=
0
;
r
<
result_vec
.
size
()
/
2
;
r
++
)
res_dist
[
result_vec
[
r
]]
++
;
// histogram for second set of batch
std
::
vector
<
int
>
res_dist2
(
5
,
0
);
for
(;
r
<
result_vec
.
size
();
r
++
)
res_dist2
[
result_vec
[
r
]]
++
;
// Rescale or normalize both the input probability distribution and the output
// histogram, and compare. Should be close but not identical.
auto
dist_sum
=
std
::
accumulate
(
dist
.
begin
(),
dist
.
begin
()
+
5
,
0
);
auto
res_dist_sum
=
std
::
accumulate
(
res_dist
.
begin
(),
res_dist
.
end
(),
0
);
std
::
vector
<
float
>
norm
(
5
);
std
::
vector
<
float
>
res_norm
(
5
);
std
::
transform
(
dist
.
begin
(),
dist
.
begin
()
+
5
,
norm
.
begin
(),
[
&
](
auto
n
)
{
return
static_cast
<
double
>
(
n
)
/
dist_sum
;
});
std
::
transform
(
res_dist
.
begin
(),
res_dist
.
end
(),
res_norm
.
begin
(),
[
&
](
auto
n
)
{
return
static_cast
<
double
>
(
n
)
/
res_dist_sum
;
});
EXPECT
(
migraphx
::
verify
::
verify_range_with_tolerance
(
res_norm
,
migraphx
::
verify
::
expected
{
norm
},
migraphx
::
verify
::
tolerance
{
0.01
}));
// Do the same rescaling for the 2nd in batch, which has a different probability distribution
dist_sum
=
std
::
accumulate
(
dist
.
begin
()
+
5
,
dist
.
end
(),
0
);
res_dist_sum
=
std
::
accumulate
(
res_dist2
.
begin
(),
res_dist2
.
end
(),
0
);
std
::
transform
(
dist
.
begin
()
+
5
,
dist
.
end
(),
norm
.
begin
(),
[
&
](
auto
n
)
{
return
static_cast
<
double
>
(
n
)
/
dist_sum
;
});
std
::
transform
(
res_dist2
.
begin
(),
res_dist2
.
end
(),
res_norm
.
begin
(),
[
&
](
auto
n
)
{
return
static_cast
<
double
>
(
n
)
/
res_dist_sum
;
});
EXPECT
(
migraphx
::
verify
::
verify_range_with_tolerance
(
res_norm
,
migraphx
::
verify
::
expected
{
norm
},
migraphx
::
verify
::
tolerance
{
0.01
}));
}
TEST_CASE
(
multinomial_float_dyn_test
)
{
// int data type for random_uniform op and float data type for multinomial.
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
size_t
sample_size
=
100000
;
size_t
batch_size
=
2
;
// Shape of the random data
migraphx
::
shape
rs
{
migraphx
::
shape
::
int32_type
,
{{
1
,
2
},
{
2
,
sample_size
+
1
}}};
auto
input
=
mm
->
add_parameter
(
"Input_1"
,
rs
);
// Runtime randomization seed
// To seed the random_uniform, we can provide a value by literal or input,
// or ask the system to auto-seed with random_seed op.
migraphx
::
shape
seed_shape
{
migraphx
::
shape
::
uint32_type
,
{
migraphx
::
shape
::
dynamic_dimension
{
0
,
1
}}};
auto
seed_input
=
mm
->
add_parameter
(
"Seed"
,
seed_shape
);
// Shape of the probability distribution, which also defines the number of categories
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{{
2
,
2
},
{
5
,
6
}}};
// Unnormalized distributions for batch size 2:
// 15, 25, 15, 15, 20
// 20, 20, 10, 25, 25
std
::
vector
<
int
>
dist
{
15
,
25
,
15
,
25
,
20
,
20
,
20
,
10
,
25
,
25
};
// Hard-coded normalized, accumulated distribution follows:
std
::
vector
<
float
>
data
{
.15
f
,
.40
f
,
.55
f
,
.80
f
,
1.0
f
,
.20
f
,
.40
f
,
.50
f
,
.75
f
,
1.0
f
};
auto
input2
=
mm
->
add_parameter
(
"Input_2"
,
s
);
auto
randoms
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"random_uniform"
),
seed_input
,
input
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"multinomial"
,
{{
"dtype"
,
migraphx
::
shape
::
float_type
}}),
input2
,
randoms
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
// Create a dummy input in the shape we want for the random data
std
::
vector
<
float
>
dummy
(
sample_size
,
0
);
migraphx
::
shape
input_fixed_shape1
{
migraphx
::
shape
::
float_type
,
{
batch_size
,
sample_size
}};
migraphx
::
shape
input_fixed_shape2
{
migraphx
::
shape
::
float_type
,
{
batch_size
,
5
}};
migraphx
::
parameter_map
params0
;
params0
[
"Input_1"
]
=
migraphx
::
argument
(
input_fixed_shape1
,
dummy
.
data
());
migraphx
::
shape
seed_fixed_shape
{
migraphx
::
shape
::
uint32_type
,
{
1
}};
std
::
vector
<
uint32_t
>
seed_data
=
{
4
};
params0
[
"Seed"
]
=
migraphx
::
argument
(
seed_fixed_shape
,
seed_data
.
data
());
params0
[
"Input_2"
]
=
migraphx
::
argument
(
input_fixed_shape2
,
data
.
data
());
auto
result
=
p
.
eval
(
params0
).
back
();
std
::
vector
<
float
>
result_vec
(
input_fixed_shape2
.
elements
());
result
.
visit
([
&
](
auto
output
)
{
result_vec
.
assign
(
output
.
begin
(),
output
.
end
());
});
// Make a categorical histogram of output
std
::
vector
<
int
>
res_dist
(
5
,
0
);
size_t
r
=
0
;
for
(
r
=
0
;
r
<
result_vec
.
size
()
/
2
;
r
++
)
res_dist
[
result_vec
[
r
]]
++
;
// histogram for second set of batch
std
::
vector
<
int
>
res_dist2
(
5
,
0
);
for
(;
r
<
result_vec
.
size
();
r
++
)
res_dist2
[
result_vec
[
r
]]
++
;
// Rescale or normalize both the input probability distribution and the output
// histogram, and compare. Should be close but not identical.
auto
dist_sum
=
std
::
accumulate
(
dist
.
begin
(),
dist
.
begin
()
+
5
,
0
);
auto
res_dist_sum
=
std
::
accumulate
(
res_dist
.
begin
(),
res_dist
.
end
(),
0
);
std
::
vector
<
float
>
norm
(
5
);
std
::
vector
<
float
>
res_norm
(
5
);
std
::
transform
(
dist
.
begin
(),
dist
.
begin
()
+
5
,
norm
.
begin
(),
[
&
](
auto
n
)
{
return
static_cast
<
double
>
(
n
)
/
dist_sum
;
});
std
::
transform
(
res_dist
.
begin
(),
res_dist
.
end
(),
res_norm
.
begin
(),
[
&
](
auto
n
)
{
return
static_cast
<
double
>
(
n
)
/
res_dist_sum
;
});
EXPECT
(
migraphx
::
verify
::
verify_range_with_tolerance
(
res_norm
,
migraphx
::
verify
::
expected
{
norm
},
migraphx
::
verify
::
tolerance
{
0.01
}));
// Do the same rescaling for the 2nd in batch, which has a different probability distribution
dist_sum
=
std
::
accumulate
(
dist
.
begin
()
+
5
,
dist
.
end
(),
0
);
res_dist_sum
=
std
::
accumulate
(
res_dist2
.
begin
(),
res_dist2
.
end
(),
0
);
std
::
transform
(
dist
.
begin
()
+
5
,
dist
.
end
(),
norm
.
begin
(),
[
&
](
auto
n
)
{
return
static_cast
<
double
>
(
n
)
/
dist_sum
;
});
std
::
transform
(
res_dist2
.
begin
(),
res_dist2
.
end
(),
res_norm
.
begin
(),
[
&
](
auto
n
)
{
return
static_cast
<
double
>
(
n
)
/
res_dist_sum
;
});
EXPECT
(
migraphx
::
verify
::
verify_range_with_tolerance
(
res_norm
,
migraphx
::
verify
::
expected
{
norm
},
migraphx
::
verify
::
tolerance
{
0.01
}));
}
tools/docker/ubuntu_2204.dockerfile
View file @
f8761f3f
...
...
@@ -90,11 +90,6 @@ RUN pip3 install yapf==0.28.0
ADD
docs/.sphinx/requirements.txt /doc-requirements.txt
RUN
pip3
install
-r
/doc-requirements.txt
# Download real models to run onnx unit tests
ENV
ONNX_HOME=/.onnx
COPY
./tools/download_models.sh /
RUN
/download_models.sh
&&
rm
/download_models.sh
# Install latest ccache version
RUN
cget
-p
$PREFIX
install
facebook/zstd@v1.4.5
-X
subdir
-DCMAKE_DIR
=
build/cmake
RUN
cget
-p
$PREFIX
install
ccache@v4.1
-DENABLE_TESTING
=
OFF
...
...
tools/download_models.sh
deleted
100755 → 0
View file @
6fb61ded
#!/bin/bash
#####################################################################################
# The MIT License (MIT)
#
# Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
set
-e
if
[
-z
"
$ONNX_HOME
"
]
then
# The onnx library uses ONNX_HOME, by default if it doesn't exist
# the path of " ~/.onnx " is used
ONNX_HOME
=
$HOME
/.onnx
fi
model_dir
=
$ONNX_HOME
/models
tmp_dir
=
$ONNX_HOME
/tmp/
mkdir
-p
$model_dir
mkdir
-p
$tmp_dir
models
=
"bvlc_alexnet
\
densenet121
\
inception_v2
\
shufflenet
\
vgg19
\
zfnet512"
for
name
in
$models
do
curl https://download.onnxruntime.ai/onnx/models/
$name
.tar.gz
--output
$tmp_dir
/
$name
.tar.gz
tar
-xzvf
$tmp_dir
/
$name
.tar.gz
--directory
$model_dir
&&
rm
$tmp_dir
/
$name
.tar.gz
done
# CI jobs can run as a different user then the docker image builder.
# Allow read/write access to the models
chmod
777
$model_dir
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment