Commit f7079e51 authored by Paul's avatar Paul
Browse files

Merge

parents 79eac1b8 f6e22d56
...@@ -62,7 +62,7 @@ struct argmax ...@@ -62,7 +62,7 @@ struct argmax
if(s0.dynamic()) if(s0.dynamic())
{ {
auto dyn_dims = s0.dyn_dims(); auto dyn_dims = s0.dyn_dims();
dyn_dims[axis] = {1, 1, 0}; dyn_dims[axis] = {1, 1};
return {shape::int64_type, dyn_dims}; return {shape::int64_type, dyn_dims};
} }
else else
......
...@@ -134,7 +134,7 @@ struct concat ...@@ -134,7 +134,7 @@ struct concat
} }
auto new_dims = inputs[0].dyn_dims(); auto new_dims = inputs[0].dyn_dims();
new_dims[axis] = migraphx::shape::dynamic_dimension{new_min, new_max, 0}; new_dims[axis] = migraphx::shape::dynamic_dimension{new_min, new_max};
return {inputs[0].type(), new_dims}; return {inputs[0].type(), new_dims};
} }
else else
......
...@@ -48,7 +48,7 @@ struct contiguous ...@@ -48,7 +48,7 @@ struct contiguous
{ {
check_shapes{inputs, *this, true}.has(1); check_shapes{inputs, *this, true}.has(1);
auto s0 = inputs.front(); auto s0 = inputs.front();
if(s0.dynamic() or s0.standard()) if(s0.dynamic())
{ {
return s0; return s0;
} }
......
...@@ -24,9 +24,12 @@ ...@@ -24,9 +24,12 @@
#ifndef MIGRAPHX_GUARD_OPERATORS_CONVOLUTION_HPP #ifndef MIGRAPHX_GUARD_OPERATORS_CONVOLUTION_HPP
#define MIGRAPHX_GUARD_OPERATORS_CONVOLUTION_HPP #define MIGRAPHX_GUARD_OPERATORS_CONVOLUTION_HPP
#include <migraphx/argument.hpp>
#include <migraphx/op/common.hpp> #include <migraphx/op/common.hpp>
#include <migraphx/check_shapes.hpp> #include <migraphx/check_shapes.hpp>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <migraphx/convolution.hpp>
#include <migraphx/pad_calc.hpp>
#include <migraphx/value.hpp> #include <migraphx/value.hpp>
#include <cmath> #include <cmath>
#include <utility> #include <utility>
...@@ -35,6 +38,10 @@ namespace migraphx { ...@@ -35,6 +38,10 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
namespace op { namespace op {
/**
* Convolution operator. Does not support optimal dimensions for spatial dimensions. Returns empty
* optimals.
*/
struct convolution struct convolution
{ {
std::vector<std::size_t> padding = {0, 0}; std::vector<std::size_t> padding = {0, 0};
...@@ -145,7 +152,7 @@ struct convolution ...@@ -145,7 +152,7 @@ struct convolution
else else
{ {
auto l = input_shape.lens().at(0); auto l = input_shape.lens().at(0);
output_dyn_dims.push_back({l, l, 0}); output_dyn_dims.push_back({l, l});
} }
}; };
...@@ -162,25 +169,30 @@ struct convolution ...@@ -162,25 +169,30 @@ struct convolution
if(x_shape.dynamic()) if(x_shape.dynamic())
{ {
auto x = x_shape.dyn_dims()[i + 2]; auto x = x_shape.dyn_dims()[i + 2];
output_dyn_dims.push_back(shape::dynamic_dimension{ std::set<std::size_t> optimals{};
ceil_div(x.min, s), ceil_div(x.max, s), ceil_div(x.opt, s)}); std::transform(x.optimals.begin(),
x.optimals.end(),
std::inserter(optimals, optimals.begin()),
[&](auto o) { return ceil_div(o, s); });
output_dyn_dims.push_back(
shape::dynamic_dimension{ceil_div(x.min, s), ceil_div(x.max, s), optimals});
} }
else else
{ {
auto od = ceil_div(x_shape.lens()[i + 2], s); auto od = ceil_div(x_shape.lens()[i + 2], s);
output_dyn_dims.push_back(shape::dynamic_dimension{od, od, 0}); output_dyn_dims.push_back(shape::dynamic_dimension{od, od});
} }
} }
} }
else else
{ {
// Does not compute for optimals
auto min_spatial_dims = calc_conv_lens(x_shape.min_lens(), w_shape.max_lens()); auto min_spatial_dims = calc_conv_lens(x_shape.min_lens(), w_shape.max_lens());
auto max_spatial_dims = calc_conv_lens(x_shape.max_lens(), w_shape.min_lens()); auto max_spatial_dims = calc_conv_lens(x_shape.max_lens(), w_shape.min_lens());
auto opt_spatial_dims = calc_conv_lens(x_shape.opt_lens(), w_shape.opt_lens());
for(size_t i = 0; i < num_spatial_dims; ++i) for(size_t i = 0; i < num_spatial_dims; ++i)
{ {
output_dyn_dims.push_back(shape::dynamic_dimension{ output_dyn_dims.push_back(
min_spatial_dims[i], max_spatial_dims[i], opt_spatial_dims[i]}); shape::dynamic_dimension{min_spatial_dims[i], max_spatial_dims[i], {}});
} }
} }
return shape{x_shape.type(), output_dyn_dims}; return shape{x_shape.type(), output_dyn_dims};
...@@ -201,6 +213,37 @@ struct convolution ...@@ -201,6 +213,37 @@ struct convolution
check_attribute_size(); check_attribute_size();
return stride.size(); return stride.size();
} }
argument compute(shape output_shape, std::vector<argument> args) const
{
std::vector<std::size_t> new_padding;
if(padding_mode != op::padding_mode_t::default_)
{
auto input_lens = args[0].get_shape().lens();
auto weights_lens = args[1].get_shape().lens();
new_padding =
padding_mode == op::same_upper
? calc_dyn_auto_pad(input_lens, weights_lens, stride, dilation, true)
: calc_dyn_auto_pad(input_lens, weights_lens, stride, dilation, false);
output_shape = compute_padded_shape(
args[0].get_shape(), args[1].get_shape(), new_padding, stride, dilation);
}
else
{
new_padding = padding;
if(output_shape.dynamic())
{
output_shape =
normalize_compute_shape({args.at(0).get_shape(), args.at(1).get_shape()});
}
}
argument result{output_shape};
visit_all(result, args[0], args[1])([&](auto output, auto input, auto weights) {
migraphx::convolution(output, input, weights, new_padding, stride, group);
});
return result;
}
}; };
} // namespace op } // namespace op
......
...@@ -40,7 +40,11 @@ struct dequantizelinear ...@@ -40,7 +40,11 @@ struct dequantizelinear
std::string name() const { return "dequantizelinear"; } std::string name() const { return "dequantizelinear"; }
shape compute_shape(std::vector<shape> inputs) const shape compute_shape(std::vector<shape> inputs) const
{ {
check_shapes{inputs, *this}.same_dims(); check_shapes{inputs, *this}.same_dims().has(2, 3);
if(inputs.size() == 3 and inputs[0].type() != inputs[2].type())
{
MIGRAPHX_THROW("DEQUANTIZELINEAR: Zero point and input should be the same type.");
}
return {inputs[1].type(), inputs[0].lens(), inputs[0].strides()}; return {inputs[1].type(), inputs[0].lens(), inputs[0].strides()};
} }
......
...@@ -29,6 +29,7 @@ ...@@ -29,6 +29,7 @@
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <migraphx/value.hpp> #include <migraphx/value.hpp>
#include <migraphx/op/normalize_attribute.hpp> #include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -59,27 +60,22 @@ struct flatten ...@@ -59,27 +60,22 @@ struct flatten
auto s = inputs[0]; auto s = inputs[0];
if(s.dynamic()) if(s.dynamic())
{ {
// Doesn't handle optimals
auto min_lens = s.min_lens(); auto min_lens = s.min_lens();
auto max_lens = s.max_lens(); auto max_lens = s.max_lens();
auto opt_lens = s.opt_lens();
// If any of the opt values is 0, output opt will be 0 // If any of the opt values is 0, output opt will be 0
shape::dynamic_dimension x = { shape::dynamic_dimension x = {
std::accumulate( std::accumulate(
min_lens.begin(), min_lens.begin() + axis, std::size_t{1}, std::multiplies<>{}), min_lens.begin(), min_lens.begin() + axis, std::size_t{1}, std::multiplies<>{}),
std::accumulate( std::accumulate(
max_lens.begin(), max_lens.begin() + axis, std::size_t{1}, std::multiplies<>{}), max_lens.begin(), max_lens.begin() + axis, std::size_t{1}, std::multiplies<>{}),
std::accumulate(opt_lens.begin(), {}};
opt_lens.begin() + axis,
std::size_t{1},
std::multiplies<>{})};
shape::dynamic_dimension y = { shape::dynamic_dimension y = {
std::accumulate( std::accumulate(
min_lens.begin() + axis, min_lens.end(), std::size_t{1}, std::multiplies<>{}), min_lens.begin() + axis, min_lens.end(), std::size_t{1}, std::multiplies<>{}),
std::accumulate( std::accumulate(
max_lens.begin() + axis, max_lens.end(), std::size_t{1}, std::multiplies<>{}), max_lens.begin() + axis, max_lens.end(), std::size_t{1}, std::multiplies<>{}),
std::accumulate( {}};
opt_lens.begin() + axis, opt_lens.end(), std::size_t{1}, std::multiplies<>{}),
};
return {s.type(), {x, y}}; return {s.type(), {x, y}};
} }
else else
......
...@@ -121,7 +121,7 @@ struct gathernd ...@@ -121,7 +121,7 @@ struct gathernd
// A rank 0 output is a scalar // A rank 0 output is a scalar
if(output_ndim == 0) if(output_ndim == 0)
return shape(data_shape.type(), {shape::dynamic_dimension({1, 1, 0})}); return shape(data_shape.type(), {shape::dynamic_dimension({1, 1})});
// Part of the output shape comes from indices tensor, part from data tensor // Part of the output shape comes from indices tensor, part from data tensor
std::vector<shape::dynamic_dimension> output_dims(output_ndim); std::vector<shape::dynamic_dimension> output_dims(output_ndim);
......
...@@ -119,8 +119,8 @@ struct nonmaxsuppression ...@@ -119,8 +119,8 @@ struct nonmaxsuppression
fixed_shape_error_check(); fixed_shape_error_check();
} }
std::vector<shape::dynamic_dimension> out_lens = {}; std::vector<shape::dynamic_dimension> out_lens = {};
out_lens.push_back({0, max_num_boxes, 0}); out_lens.push_back({0, max_num_boxes});
out_lens.push_back({3, 3, 0}); out_lens.push_back({3, 3});
return {shape::int64_type, out_lens}; return {shape::int64_type, out_lens};
} }
else else
......
...@@ -89,25 +89,17 @@ struct pooling ...@@ -89,25 +89,17 @@ struct pooling
std::vector<std::size_t> output_lens{}; std::vector<std::size_t> output_lens{};
for(size_t i = 0; i < kdims; ++i) for(size_t i = 0; i < kdims; ++i)
{ {
if(input_lens[i + 2] == 0) std::size_t padding_factor = 2 * padding[i];
{ if(padding.size() == 2 * kdims)
// handle opt = 0 padding_factor = padding[i] + padding[i + kdims];
output_lens.push_back(0); assert(input_lens[i + 2] + padding_factor >= lengths[i]);
} std::size_t dim_size = input_lens[i + 2] + padding_factor - lengths[i];
else std::size_t len =
{ (ceil_mode)
std::size_t padding_factor = 2 * padding[i]; ? dim_size / stride[i] +
if(padding.size() == 2 * kdims) static_cast<std::size_t>((dim_size % stride[i] != 0)) // ceil uint divide
padding_factor = padding[i] + padding[i + kdims]; : dim_size / stride[i]; // floor divide
assert(input_lens[i + 2] + padding_factor >= lengths[i]); output_lens.push_back(len + 1);
std::size_t dim_size = input_lens[i + 2] + padding_factor - lengths[i];
std::size_t len =
(ceil_mode)
? dim_size / stride[i] + static_cast<std::size_t>((dim_size % stride[i] !=
0)) // ceil uint divide
: dim_size / stride[i]; // floor divide
output_lens.push_back(len + 1);
}
} }
return output_lens; return output_lens;
} }
...@@ -134,19 +126,19 @@ struct pooling ...@@ -134,19 +126,19 @@ struct pooling
{ {
for(size_t i = 0; i < kdims; ++i) for(size_t i = 0; i < kdims; ++i)
{ {
output_dyn_dims.push_back(shape::dynamic_dimension{1, 1, 1}); output_dyn_dims.push_back(shape::dynamic_dimension{1, 1});
} }
return {input.type(), output_dyn_dims}; return {input.type(), output_dyn_dims};
} }
else else
{ {
// does not compute for optimals
auto min_spatial_dims = calc_spatial_dim_out(input.min_lens(), kdims); auto min_spatial_dims = calc_spatial_dim_out(input.min_lens(), kdims);
auto max_spatial_dims = calc_spatial_dim_out(input.max_lens(), kdims); auto max_spatial_dims = calc_spatial_dim_out(input.max_lens(), kdims);
auto opt_spatial_dims = calc_spatial_dim_out(input.opt_lens(), kdims);
for(size_t i = 0; i < kdims; ++i) for(size_t i = 0; i < kdims; ++i)
{ {
output_dyn_dims.push_back(shape::dynamic_dimension{ output_dyn_dims.push_back(
min_spatial_dims[i], max_spatial_dims[i], opt_spatial_dims[i]}); shape::dynamic_dimension{min_spatial_dims[i], max_spatial_dims[i], {}});
} }
return {input.type(), output_dyn_dims}; return {input.type(), output_dyn_dims};
} }
......
...@@ -25,8 +25,10 @@ ...@@ -25,8 +25,10 @@
#define MIGRAPHX_GUARD_OPERATORS_QUANT_CONVOLUTION_HPP #define MIGRAPHX_GUARD_OPERATORS_QUANT_CONVOLUTION_HPP
#include <migraphx/op/common.hpp> #include <migraphx/op/common.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/check_shapes.hpp> #include <migraphx/check_shapes.hpp>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <migraphx/convolution.hpp>
#include <migraphx/value.hpp> #include <migraphx/value.hpp>
#include <cmath> #include <cmath>
#include <utility> #include <utility>
...@@ -114,6 +116,17 @@ struct quant_convolution ...@@ -114,6 +116,17 @@ struct quant_convolution
check_attribute_size(); check_attribute_size();
return stride.size(); return stride.size();
} }
argument compute(shape output_shape, std::vector<argument> args) const
{
argument result{output_shape};
result.visit([&](auto output) {
visit_all(args[0], args[1])([&](auto input, auto weights) {
migraphx::convolution(output, input, weights, padding, stride, group);
});
});
return result;
}
}; };
} // namespace op } // namespace op
......
...@@ -40,7 +40,11 @@ struct quantizelinear ...@@ -40,7 +40,11 @@ struct quantizelinear
std::string name() const { return "quantizelinear"; } std::string name() const { return "quantizelinear"; }
shape compute_shape(std::vector<shape> inputs) const shape compute_shape(std::vector<shape> inputs) const
{ {
check_shapes{inputs, *this}.same_dims(); check_shapes{inputs, *this}.same_dims().has(2, 3);
if(inputs[0].type() != inputs[1].type())
{
MIGRAPHX_THROW("QUANTIZELINEAR: Scales and input must be the same type");
}
if(inputs.size() == 3) if(inputs.size() == 3)
{ {
return {inputs[2].type(), inputs[0].lens(), inputs[0].strides()}; return {inputs[2].type(), inputs[0].lens(), inputs[0].strides()};
...@@ -61,17 +65,15 @@ struct quantizelinear ...@@ -61,17 +65,15 @@ struct quantizelinear
argument result{output_shape}; argument result{output_shape};
visit_all(result, y_zero_point)([&](auto output, auto zero_pts) { visit_all(result, y_zero_point)([&](auto output, auto zero_pts) {
x.visit([&](auto input) { visit_all(x, y_scale)([&](auto input, auto scales) {
y_scale.visit([&](auto scales) { using quant_type = typename decltype(output)::value_type;
using quant_type = typename decltype(output)::value_type; auto min_value = std::numeric_limits<quant_type>::min();
auto min_value = std::numeric_limits<quant_type>::min(); auto max_value = std::numeric_limits<quant_type>::max();
auto max_value = std::numeric_limits<quant_type>::max(); par_for(output_shape.elements(), [&](auto i) {
par_for(output_shape.elements(), [&](auto i) { int64_t quantized = static_cast<int64_t>(std::round(input[i] / scales[i])) +
int64_t quantized = static_cast<int64_t>(std::round(input[i] / scales[i])) + static_cast<int64_t>(zero_pts[i]);
static_cast<int64_t>(zero_pts[i]); output[i] = std::max(static_cast<int64_t>(min_value),
output[i] = std::max(static_cast<int64_t>(min_value), std::min(static_cast<int64_t>(max_value), quantized));
std::min(static_cast<int64_t>(max_value), quantized));
});
}); });
}); });
}); });
......
...@@ -91,7 +91,7 @@ struct reduce_op : op_name<Derived> ...@@ -91,7 +91,7 @@ struct reduce_op : op_name<Derived>
{ {
value normalize; value normalize;
normalize["axes"] = value::array{normalize_attribute::include_min}; normalize["axes"] = value::array{normalize_attribute::include_min};
return {{"normalize_axes", normalize}}; return {{"normalize_axes", normalize}, {"reduce", true}};
} }
std::vector<int64_t> tune_axes(std::size_t n_dim) const std::vector<int64_t> tune_axes(std::size_t n_dim) const
...@@ -123,9 +123,7 @@ struct reduce_op : op_name<Derived> ...@@ -123,9 +123,7 @@ struct reduce_op : op_name<Derived>
auto tuned_axes = tune_axes(output_dyn_dims.size()); auto tuned_axes = tune_axes(output_dyn_dims.size());
for(const auto& axis : tuned_axes) for(const auto& axis : tuned_axes)
{ {
// At the time of writing, there's no functional difference between output_dyn_dims[axis] = {1, 1};
// optimum of 0 (no opt) or 1.
output_dyn_dims[axis] = {1, 1, 0};
} }
return shape{s.type(), output_dyn_dims}; return shape{s.type(), output_dyn_dims};
......
...@@ -111,16 +111,15 @@ struct slice ...@@ -111,16 +111,15 @@ struct slice
// For a static shape, old_lens will be adjusted to a new size // For a static shape, old_lens will be adjusted to a new size
// for those axes that are sliced. // for those axes that are sliced.
// For dynamic shape, the adjusted old_lens become the new max values, // For dynamic shape, the adjusted old_lens become the new max values,
// while updating the old mins and opts if possible. // while updating the old mins and optimals if possible.
std::vector<std::size_t> new_mins; std::vector<std::size_t> new_mins;
std::vector<std::size_t> new_opts;
std::vector<std::size_t> old_lens; std::vector<std::size_t> old_lens;
std::vector<std::size_t> old_strides; std::vector<std::size_t> old_strides;
// Doesn't handle optimals
if(input_shape.dynamic()) if(input_shape.dynamic())
{ {
old_lens = input_shape.max_lens(); old_lens = input_shape.max_lens();
new_mins = input_shape.min_lens(); new_mins = input_shape.min_lens();
new_opts = input_shape.opt_lens();
} }
else else
{ {
...@@ -146,17 +145,11 @@ struct slice ...@@ -146,17 +145,11 @@ struct slice
std::size_t sliced_min_length = ends[i] - starts[i]; std::size_t sliced_min_length = ends[i] - starts[i];
// if the slice size is smaller than maxes but larger than mins // if the slice size is smaller than maxes but larger than mins
new_mins[axis] = std::min(sliced_min_length, new_mins[axis]); new_mins[axis] = std::min(sliced_min_length, new_mins[axis]);
auto sliced_opt_length = ends[i] - starts[i];
if(new_opts[axis] != 0)
new_opts[axis] = sliced_opt_length;
if(new_opts[axis] < new_mins[axis] or new_opts[axis] > new_lens[axis])
new_opts[axis] = 0;
} }
} }
if(input_shape.dynamic()) if(input_shape.dynamic())
{ {
return shape{t, new_mins, new_lens, new_opts}; return shape{t, new_mins, new_lens, {}};
} }
else else
{ {
......
...@@ -81,7 +81,7 @@ struct unsqueeze ...@@ -81,7 +81,7 @@ struct unsqueeze
{ {
if(std::find(axes.begin(), axes.end(), i) != axes.end()) if(std::find(axes.begin(), axes.end(), i) != axes.end())
{ {
dyn_dims.push_back({1, 1, 0}); dyn_dims.push_back({1, 1});
} }
else else
{ {
......
...@@ -39,6 +39,7 @@ struct module_pass_manager ...@@ -39,6 +39,7 @@ struct module_pass_manager
virtual module& get_module() = 0; virtual module& get_module() = 0;
virtual module* create_module(const std::string& name) = 0; virtual module* create_module(const std::string& name) = 0;
virtual module* get_common_parent() = 0; virtual module* get_common_parent() = 0;
virtual module* get_root_module() = 0;
virtual void run_pass(const pass& p) = 0; virtual void run_pass(const pass& p) = 0;
protected: protected:
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_PROMOTE_LITERALS_HPP
#define MIGRAPHX_GUARD_RTGLIB_PROMOTE_LITERALS_HPP
#include <string>
#include <migraphx/pass_manager.hpp>
#include <migraphx/config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
/**
* Replace literals in submodules with literals in the root module.
* Intended to allow for reuse of the literals between submodules.
*/
struct promote_literals
{
std::string name() const { return "promote_literals"; }
void apply(module_pass_manager&) const;
};
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
...@@ -188,7 +188,8 @@ auto from_value_impl(rank<3>, const value& v, T& x) ...@@ -188,7 +188,8 @@ auto from_value_impl(rank<3>, const value& v, T& x)
} }
template <class T> template <class T>
auto from_value_impl(rank<4>, const value& v, T& x) -> decltype(x.insert(*x.begin()), void()) auto from_value_impl(rank<4>, const value& v, T& x)
-> decltype(x.insert(*x.begin()), std::declval<typename T::mapped_type>(), void())
{ {
x.clear(); x.clear();
for(auto&& e : v) for(auto&& e : v)
......
...@@ -29,10 +29,12 @@ ...@@ -29,10 +29,12 @@
#include <ostream> #include <ostream>
#include <numeric> #include <numeric>
#include <memory> #include <memory>
#include <set>
#include <migraphx/functional.hpp> #include <migraphx/functional.hpp>
#include <migraphx/errors.hpp> #include <migraphx/errors.hpp>
#include <migraphx/half.hpp> #include <migraphx/half.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
namespace migraphx { namespace migraphx {
...@@ -87,12 +89,12 @@ struct shape ...@@ -87,12 +89,12 @@ struct shape
{ {
std::size_t min = 0; std::size_t min = 0;
std::size_t max = 0; std::size_t max = 0;
std::size_t opt = 0; std::set<std::size_t> optimals{};
template <class Self, class F> template <class Self, class F>
static auto reflect(Self& self, F f) static auto reflect(Self& self, F f)
{ {
return pack(f(self.min, "min"), f(self.max, "max"), f(self.opt, "opt")); return pack(f(self.min, "min"), f(self.max, "max"), f(self.optimals, "optimals"));
} }
bool is_fixed() const; bool is_fixed() const;
...@@ -132,11 +134,12 @@ struct shape ...@@ -132,11 +134,12 @@ struct shape
shape(type_t t, std::vector<dynamic_dimension> dims); shape(type_t t, std::vector<dynamic_dimension> dims);
// Construct a dynamic shape from three sets of lengths (of the same rank) // Construct a dynamic shape from vectors of mins, maxes, and optimals.
// optimals_list is a vector of optimals that corresponds to each min and max.
shape(type_t t, shape(type_t t,
std::vector<std::size_t> mins, std::vector<std::size_t> mins,
std::vector<std::size_t> maxes, std::vector<std::size_t> maxes,
std::vector<std::size_t> opts); std::vector<std::set<std::size_t>> optimals_list);
template <class Range> template <class Range>
shape(type_t t, const Range& l) : shape(t, std::vector<std::size_t>(l.begin(), l.end())) shape(type_t t, const Range& l) : shape(t, std::vector<std::size_t>(l.begin(), l.end()))
...@@ -186,21 +189,21 @@ struct shape ...@@ -186,21 +189,21 @@ struct shape
/*! /*!
* Minimum lengths for dynamic shape. * Minimum lengths for dynamic shape.
* lens() for fixed shape. * lens() for static shape.
*/ */
std::vector<std::size_t> min_lens() const; std::vector<std::size_t> min_lens() const;
/*! /*!
* Maximum lengths for dynamic shape. * Maximum lengths for dynamic shape.
* lens() for fixed shape. * lens() for static shape.
*/ */
std::vector<std::size_t> max_lens() const; std::vector<std::size_t> max_lens() const;
/*! /*!
* Optimum lengths for dynamic shape. * Optimum lengths for dynamic shape.
* lens() for fixed shape. * Empty for static shape.
*/ */
std::vector<std::size_t> opt_lens() const; std::vector<std::set<std::size_t>> opt_lens() const;
/// Map multiple indices to space index /// Map multiple indices to space index
std::size_t index(std::initializer_list<std::size_t> l) const; std::size_t index(std::initializer_list<std::size_t> l) const;
...@@ -253,9 +256,12 @@ struct shape ...@@ -253,9 +256,12 @@ struct shape
shape with_type(type_t t) const; shape with_type(type_t t) const;
// convert the shape to an equivalent dynamic shape // convert the shape to an equivalent dynamic shape with empty optimals
shape to_dynamic() const; shape to_dynamic() const;
// convert the shape to a static one setting any non-fixed dynamic_dimensions to x
shape to_static(std::size_t x) const;
friend bool operator==(const shape& x, const shape& y); friend bool operator==(const shape& x, const shape& y);
friend bool operator!=(const shape& x, const shape& y); friend bool operator!=(const shape& x, const shape& y);
friend std::ostream& operator<<(std::ostream& os, const shape& x); friend std::ostream& operator<<(std::ostream& os, const shape& x);
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_SPLIT_SINGLE_DYN_DIM_HPP
#define MIGRAPHX_GUARD_RTGLIB_SPLIT_SINGLE_DYN_DIM_HPP
#include <string>
#include <migraphx/pass_manager.hpp>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/config.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
/**
* Split dynamic dimension over submodules if exactly one dimension in the parameter list is
* dynamic.
*/
struct split_single_dyn_dim
{
std::string name() const { return "split_single_dyn_dim"; }
void apply(module_pass_manager&) const;
};
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
...@@ -595,6 +595,14 @@ std::vector<shape> module::get_output_shapes() const ...@@ -595,6 +595,14 @@ std::vector<shape> module::get_output_shapes() const
} }
} }
std::vector<instruction_ref> module::get_returns() const
{
auto last = std::prev(this->end());
if(last->name() == "@return")
return last->inputs();
return {last};
}
instruction_ref module::validate() const instruction_ref module::validate() const
{ {
return std::find_if( return std::find_if(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment