Unverified Commit f0370072 authored by Ted Themistokleous's avatar Ted Themistokleous Committed by GitHub
Browse files

Merge branch 'develop' into enable_navi_32_ci

parents 01c2f5fd b0798343
...@@ -80,6 +80,10 @@ ADD rbuild.ini /rbuild.ini ...@@ -80,6 +80,10 @@ ADD rbuild.ini /rbuild.ini
# Temporarily install a new cmake until switching to ubuntu 22.04 # Temporarily install a new cmake until switching to ubuntu 22.04
RUN pip3 install cmake==3.22.1 RUN pip3 install cmake==3.22.1
# Location where onnx unit tests models are cached
ENV ONNX_HOME=/.onnx
RUN mkdir -p $ONNX_HOME/models && chmod 777 $ONNX_HOME/models
COPY ./tools/install_prereqs.sh / COPY ./tools/install_prereqs.sh /
RUN /install_prereqs.sh /usr/local / && rm /install_prereqs.sh RUN /install_prereqs.sh /usr/local / && rm /install_prereqs.sh
RUN test -f /usr/local/hash || exit 1 RUN test -f /usr/local/hash || exit 1
...@@ -91,11 +95,6 @@ RUN pip3 install yapf==0.28.0 ...@@ -91,11 +95,6 @@ RUN pip3 install yapf==0.28.0
ADD docs/.sphinx/requirements.txt /doc-requirements.txt ADD docs/.sphinx/requirements.txt /doc-requirements.txt
RUN pip3 install -r /doc-requirements.txt RUN pip3 install -r /doc-requirements.txt
# Download real models to run onnx unit tests
ENV ONNX_HOME=/.onnx
COPY ./tools/download_models.sh /
RUN /download_models.sh && rm /download_models.sh
# Install latest ccache version # Install latest ccache version
RUN cget -p $PREFIX install facebook/zstd@v1.4.5 -X subdir -DCMAKE_DIR=build/cmake RUN cget -p $PREFIX install facebook/zstd@v1.4.5 -X subdir -DCMAKE_DIR=build/cmake
RUN cget -p $PREFIX install ccache@v4.1 -DENABLE_TESTING=OFF RUN cget -p $PREFIX install ccache@v4.1 -DENABLE_TESTING=OFF
......
...@@ -603,8 +603,7 @@ struct version : command<version> ...@@ -603,8 +603,7 @@ struct version : command<version>
void run() const void run() const
{ {
std::cout << "MIGraphX Version: " << MIGRAPHX_VERSION_MAJOR << "." << MIGRAPHX_VERSION_MINOR std::cout << "MIGraphX Version: " << MIGRAPHX_VERSION_MAJOR << "." << MIGRAPHX_VERSION_MINOR
<< "." << MIGRAPHX_VERSION_PATCH << "." << "." << MIGRAPHX_VERSION_PATCH << "." MIGRAPHX_VERSION_TWEAK << std::endl;
<< MIGRAPHX_STRINGIZE(MIGRAPHX_VERSION_TWEAK) << std::endl;
} }
}; };
...@@ -762,8 +761,8 @@ struct main_command ...@@ -762,8 +761,8 @@ struct main_command
{ {
std::string version_str = "MIGraphX Version: " + std::to_string(MIGRAPHX_VERSION_MAJOR) + std::string version_str = "MIGraphX Version: " + std::to_string(MIGRAPHX_VERSION_MAJOR) +
"." + std::to_string(MIGRAPHX_VERSION_MINOR) + "." + "." + std::to_string(MIGRAPHX_VERSION_MINOR) + "." +
std::to_string(MIGRAPHX_VERSION_PATCH) + "." + std::to_string(MIGRAPHX_VERSION_PATCH) +
MIGRAPHX_STRINGIZE(MIGRAPHX_VERSION_TWEAK); "." MIGRAPHX_VERSION_TWEAK;
ap(wrong_commands, {}, ap.metavar("<command>"), ap.append()); ap(wrong_commands, {}, ap.metavar("<command>"), ap.append());
ap(nullptr, {"-h", "--help"}, ap.help("Show help"), ap.show_help(get_command_help())); ap(nullptr, {"-h", "--help"}, ap.help("Show help"), ap.show_help(get_command_help()));
ap(nullptr, ap(nullptr,
......
/* /*
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
...@@ -21,11 +21,52 @@ ...@@ -21,11 +21,52 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
/**
* * Multinomial or categorical distribution. Performs a sampling of random input
* and returns a count of
* each category, or bucket. This does not require the standard multinomial
* distribution but instead takes a probability distribution, i.e. cumulative
* distribution function (CDF) as its first input.
*
* Inputs: args[0] - a tensor of probabilities for each category. Values are
* cumulative density function
* totals as provided by operation prefix_scan_sum. Values are
* cumulative probabilities (i.e. start with any set of numbers > 0
* and then apply prefix_scan_sum). Values do not need to be
* normalized to sum to 1; this is done in runtime computation.
*
* This input has Rank 2. Dimension 0 is batch #, so that there can be
* a different CDF for each iteration in the batch. The size of dimension
* 1 is the number of categories.
*
* args[1] - a tensor of random numbers. The last dimension is the sample
* size, i.e. the number of
* random samples in each iteration of the batch. Nominally
* has two dimensions where the first dimension is batch size, but
* any reshaping such that the total
* number of elements is (batch_size * sample_size) is legal.
*
* Values as created by a std::mt19937 like this:
*
* size_t sample_size = 100000;
* float seed = 0.0f;
* std::mt19937 gen(seed);
* std::uniform_real_distribution<> dis(0.0, 1.0);
* std::vector<float> rand_samples(sample_size);
* std::generate(rand_samples.begin(), rand_samples.end(), [&]() { return
* dis(gen); });
*
* Output: A 2D vector of category each input. Dimensions are (Input 1[first], Input
2[last]).
*
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_MULTINOMIAL_HPP #ifndef MIGRAPHX_GUARD_OPERATORS_MULTINOMIAL_HPP
#define MIGRAPHX_GUARD_OPERATORS_MULTINOMIAL_HPP #define MIGRAPHX_GUARD_OPERATORS_MULTINOMIAL_HPP
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp> #include <migraphx/argument.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/par_for.hpp> #include <migraphx/par_for.hpp>
#include <migraphx/reflect.hpp> #include <migraphx/reflect.hpp>
#include <random> #include <random>
...@@ -47,22 +88,35 @@ struct multinomial ...@@ -47,22 +88,35 @@ struct multinomial
std::string name() const { return "multinomial"; } std::string name() const { return "multinomial"; }
shape compute_shape(std::vector<shape> inputs) const shape compute_shape(std::vector<shape> inputs) const
{ {
check_shapes{inputs, *this}.has(2).only_dims(2); check_shapes{inputs, *this, true}.has(2).only_dims(2);
size_t sample_size = inputs.back().lens().back();
if(not contains({shape::int32_type, shape::int64_type}, dtype)) if(inputs.back().ndim() < 1)
MIGRAPHX_THROW( MIGRAPHX_THROW("Multinomial: Second input shape (sample) has no dimensions");
"Multinomial: Invalid output type. Valid types are int32_type and int64_type."); if(dtype == shape::bool_type)
MIGRAPHX_THROW("Multinomial: boolean output type invalid.");
return {dtype, {inputs.front().lens().front(), sample_size}}; // Output takes one dimension from each of the two input shapes. If they are both fixed,
// return a static shape
if((not inputs.front().dynamic()) or (inputs.front().dyn_dims().front().is_fixed()))
{
if((not inputs.back().dynamic()) or (inputs.back().dyn_dims().back().is_fixed()))
{
size_t batch = {inputs.front().max_lens().front()};
size_t sample_size{inputs.back().max_lens().back()};
return {dtype, {batch, sample_size}};
}
}
return {dtype,
{inputs.front().to_dynamic().dyn_dims().front(),
inputs.back().to_dynamic().dyn_dims().back()}};
} }
argument compute(const shape& output_shape, std::vector<argument> args) const argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{ {
argument result{output_shape}; argument result{dyn_out.computed_shape};
size_t batch_size = output_shape.lens().front(); size_t batch_size = dyn_out.computed_shape.lens().front();
size_t class_size = args[0].get_shape().lens().back(); size_t class_size = args[0].get_shape().lens().back();
size_t sample_size = output_shape.lens().back(); size_t sample_size = dyn_out.computed_shape.lens().back();
visit_all(args[0], args[1])([&](auto cdf, auto dist) { visit_all(args[0], args[1])([&](auto cdf, auto dist) {
result.visit([&](auto output) { result.visit([&](auto output) {
...@@ -70,13 +124,16 @@ struct multinomial ...@@ -70,13 +124,16 @@ struct multinomial
auto idx = args[1].get_shape().multi(i); auto idx = args[1].get_shape().multi(i);
auto cdf_begin = cdf.begin() + (idx[0] * class_size); auto cdf_begin = cdf.begin() + (idx[0] * class_size);
auto cdf_end = cdf_begin + class_size; auto cdf_end = cdf_begin + class_size;
// std::upper_bound returns an iterator to the bucket the value belongs in,
// when normalized by the probability distribution dist
auto sample_iter = auto sample_iter =
std::upper_bound(cdf_begin, cdf_end, dist[i] * *(std::prev(cdf_end))); std::upper_bound(cdf_begin, cdf_end, dist[i] * *(std::prev(cdf_end)));
// convert iterator to an integer index
output[i] = std::distance(cdf_begin, sample_iter); output[i] = std::distance(cdf_begin, sample_iter);
}); });
}); });
}); });
return result; return result;
} }
}; };
......
...@@ -22,6 +22,12 @@ ...@@ -22,6 +22,12 @@
* THE SOFTWARE. * THE SOFTWARE.
*/ */
/**
* Parent struct for prefix scan ops. A prefix scan is a mathematical entity useful
* in parallelizing various computations. Given a list of numbers, a prefix scan
* op returns an equal size list of running totals of the values. Other operations
* besides addition can be supported by child ops.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_SCAN_OP_HPP #ifndef MIGRAPHX_GUARD_OPERATORS_SCAN_OP_HPP
#define MIGRAPHX_GUARD_OPERATORS_SCAN_OP_HPP #define MIGRAPHX_GUARD_OPERATORS_SCAN_OP_HPP
......
...@@ -65,11 +65,10 @@ struct random_uniform ...@@ -65,11 +65,10 @@ struct random_uniform
return inputs.at(1); return inputs.at(1);
} }
argument compute(const shape&, std::vector<argument> args) const argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{ {
// Output goes into the passed buffer, not the shape output. // Output goes into the passed buffer, not the shape output.
auto result = args[1]; argument result{dyn_out.computed_shape};
uint64_t local_seed = args[0].at<uint64_t>(0); uint64_t local_seed = args[0].at<uint64_t>(0);
std::mt19937 gen(local_seed); std::mt19937 gen(local_seed);
......
/* /*
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
......
/* /*
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
...@@ -41,6 +41,9 @@ struct parse_multinomial : op_parser<parse_multinomial> ...@@ -41,6 +41,9 @@ struct parse_multinomial : op_parser<parse_multinomial>
const onnx_parser::node_info& info, const onnx_parser::node_info& info,
std::vector<instruction_ref> args) const std::vector<instruction_ref> args) const
{ {
if(args.empty())
MIGRAPHX_THROW("PARSE_MULTINOMIAL: no arguments given");
int dtype = 6; int dtype = 6;
if(contains(info.attributes, "dtype")) if(contains(info.attributes, "dtype"))
dtype = info.attributes.at("dtype").i(); dtype = info.attributes.at("dtype").i();
...@@ -49,35 +52,90 @@ struct parse_multinomial : op_parser<parse_multinomial> ...@@ -49,35 +52,90 @@ struct parse_multinomial : op_parser<parse_multinomial>
size_t sample_size = 1; size_t sample_size = 1;
if(contains(info.attributes, "sample_size")) if(contains(info.attributes, "sample_size"))
sample_size = info.attributes.at("sample_size").i(); sample_size = info.attributes.at("sample_size").i();
else
MIGRAPHX_THROW("PARSE_MULTINOMIAL: sample_size not given");
// Use logarithmic math to scale probabilities while avoiding division by very
// small numbers. Scaling by the maximum makes very tiny ranges more
// tractable; any constant factor gives equivalent distr. since the Multinomial op.
// normalizes at runtime.
// Subtract the per-batch maximum log-probability, making the per-batch max 0 // Subtract the per-batch maximum log-probability, making the per-batch max 0
auto maxes = auto maxes =
info.add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), args[0]); info.add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), args[0]);
auto mb_maxes = info.add_instruction( auto cdf = info.add_common_op("sub", args[0], maxes);
migraphx::make_op("multibroadcast", {{"out_lens", args[0]->get_shape().lens()}}),
maxes);
auto cdf = info.add_instruction(migraphx::make_op("sub"), args[0], mb_maxes);
// Take the element-wise exponent to get probabilities in the range (0, 1] // Take the element-wise exponent to get probabilities in the range (0, 1]
cdf = info.add_instruction(migraphx::make_op("exp"), cdf); cdf = info.add_instruction(migraphx::make_op("exp"), cdf);
// Compute the cumulative density function // Compute the cumulative distribution function
cdf = info.add_instruction( cdf = info.add_instruction(
migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf); migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf);
// Pre-compute random distribution instruction_ref seed_input;
std::mt19937 gen(std::chrono::high_resolution_clock::now().time_since_epoch().count());
if(contains(info.attributes, "seed")) if(contains(info.attributes, "seed"))
gen.seed(info.attributes.at("seed").f()); {
float seed = info.attributes.at("seed").f();
migraphx::shape s{migraphx::shape::float_type, {1}};
std::vector<float> data = {seed};
seed_input = info.add_literal(migraphx::literal(s, data));
}
else
{
seed_input = info.add_instruction(migraphx::make_op("random_seed"));
}
instruction_ref randoms;
shape s0 = args[0]->get_shape();
if(s0.dynamic())
{
// Dynamic batch_size will be taken from args[0]. The input argument to this should
// have a second dimension of sample_size.
std::vector<shape::dynamic_dimension> dyn_dim_set;
dyn_dim_set.emplace_back(s0.dyn_dims().front());
dyn_dim_set.emplace_back(shape::dynamic_dimension{sample_size, sample_size});
// read the input dimensions
auto dim_of =
info.add_instruction(migraphx::make_op("dimensions_of", {{"end", 2}}), args[0]);
// The next two operations insert the value sample_size into the second array position
// make an argument of (1, 0)
shape s(shape::int64_type, {2});
std::vector<int64_t> data1{1, 0};
auto l1 = info.add_literal(s, data1);
auto batch_arg = info.add_instruction(migraphx::make_op("mul"), dim_of, l1);
std::vector<int64_t> data2(2, 0);
// make an argument of (0, sample_size)
data2[1] = sample_size;
auto l2 = info.add_literal(s, data2);
auto alloc_shape = info.add_instruction(migraphx::make_op("add"), batch_arg, l2);
// alloc_shape should contain the input-based shape dimensions as its values at runtime,
// and its own shape is {2}
// compile_shape is the shape used when compiling the Allocate op, and may be dynamic
migraphx::shape compile_shape =
migraphx::shape(s0.type(), {s0.dyn_dims().front(), {sample_size, sample_size}});
std::uniform_real_distribution<> dis(0.0, 1.0); // Allocate on-device storage for the random values
size_t batch_size = args[0]->get_shape().lens().front(); auto alloc = info.add_instruction(
migraphx::shape dist_shape{migraphx::shape::float_type, {batch_size, sample_size}}; migraphx::make_op("allocate", {{"shape", to_value(compile_shape)}}), alloc_shape);
randoms = info.add_instruction(migraphx::make_op("random_uniform"), seed_input, alloc);
}
else
{
// use literal. The array populated by random_uniform may have any shape, as long its
// number of elements is batch_size * sample_size .
size_t batch_size = s0.lens().front();
auto rand_dummy = info.add_literal(
migraphx::literal{migraphx::shape::float_type, {batch_size * sample_size}});
std::vector<float> random_dist(batch_size * sample_size); randoms =
std::generate(random_dist.begin(), random_dist.end(), [&]() { return dis(gen); }); info.add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy);
auto dist_lit = info.add_literal(migraphx::literal{dist_shape, random_dist}); }
return info.add_instruction( return info.add_instruction(
migraphx::make_op("multinomial", {{"dtype", output_type}}), cdf, dist_lit); migraphx::make_op("multinomial", {{"dtype", output_type}}), cdf, randoms);
} }
}; };
......
...@@ -68,13 +68,34 @@ struct parse_split : op_parser<parse_split> ...@@ -68,13 +68,34 @@ struct parse_split : op_parser<parse_split>
// no split attribute, input is equally divided // no split attribute, input is equally divided
else else
{ {
if((lens[tuned_axis] % info.num_outputs) != 0) std::size_t num_outputs = info.num_outputs;
// the num_outputs attribute seems to be redundant since we already have
// node_info::num_outputs, but we can still perform an error check
if(contains(info.attributes, "num_outputs"))
{ {
MIGRAPHX_THROW("PARSE_SPLIT: input cannot be equally divided into " + num_outputs =
std::to_string(info.num_outputs) + " splits!"); parser.parse_value(info.attributes.at("num_outputs")).at<std::size_t>();
if(num_outputs != info.num_outputs)
{
MIGRAPHX_THROW("PARSE_SPLIT: num_outputs attribute " +
std::to_string(num_outputs) +
" doesn't match actual number of outputs " +
std::to_string(info.num_outputs) + "!");
}
}
if(lens[tuned_axis] % num_outputs == 0)
{
std::size_t chunk_size = lens[tuned_axis] / num_outputs;
vec_splits.resize(num_outputs, chunk_size);
}
else
{
std::size_t chunk_size = lens[tuned_axis] / num_outputs + 1;
std::size_t last_chunk_size = lens[tuned_axis] - chunk_size * (num_outputs - 1);
vec_splits.resize(num_outputs - 1, chunk_size);
vec_splits.push_back(last_chunk_size);
} }
auto dl = lens[tuned_axis] / info.num_outputs;
vec_splits.resize(info.num_outputs, dl);
} }
if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) != if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
......
...@@ -231,16 +231,16 @@ else() ...@@ -231,16 +231,16 @@ else()
string(REGEX REPLACE " /[^ ]+\\.(a|so) " " " HIP_COMPILER_FLAGS "${HIP_COMPILER_FLAGS}") string(REGEX REPLACE " /[^ ]+\\.(a|so) " " " HIP_COMPILER_FLAGS "${HIP_COMPILER_FLAGS}")
endforeach() endforeach()
message(STATUS "Hip compiler flags: ${HIP_COMPILER_FLAGS}") message(STATUS "Hip compiler flags: \"${HIP_COMPILER_FLAGS}\"")
target_compile_definitions(migraphx_gpu PRIVATE target_compile_definitions(migraphx_gpu PRIVATE
"-DMIGRAPHX_HIP_COMPILER=${CMAKE_CXX_COMPILER}" -DMIGRAPHX_HIP_COMPILER="${CMAKE_CXX_COMPILER}"
"-DMIGRAPHX_HIP_COMPILER_FLAGS=${HIP_COMPILER_FLAGS}" -DMIGRAPHX_HIP_COMPILER_FLAGS="${HIP_COMPILER_FLAGS}"
) )
if(DEFINED CMAKE_CXX_COMPILER_LAUNCHER) if(DEFINED CMAKE_CXX_COMPILER_LAUNCHER)
execute_process(COMMAND which ${CMAKE_CXX_COMPILER_LAUNCHER} OUTPUT_VARIABLE MIGRAPHX_HIP_COMPILER_LAUNCHER) execute_process(COMMAND which ${CMAKE_CXX_COMPILER_LAUNCHER} OUTPUT_VARIABLE MIGRAPHX_HIP_COMPILER_LAUNCHER)
string(STRIP "${MIGRAPHX_HIP_COMPILER_LAUNCHER}" MIGRAPHX_HIP_COMPILER_LAUNCHER) string(STRIP "${MIGRAPHX_HIP_COMPILER_LAUNCHER}" MIGRAPHX_HIP_COMPILER_LAUNCHER)
target_compile_definitions(migraphx_gpu PRIVATE "-DMIGRAPHX_HIP_COMPILER_LAUNCHER=${MIGRAPHX_HIP_COMPILER_LAUNCHER}") target_compile_definitions(migraphx_gpu PRIVATE -DMIGRAPHX_HIP_COMPILER_LAUNCHER="${MIGRAPHX_HIP_COMPILER_LAUNCHER}")
endif() endif()
endif() endif()
......
...@@ -284,16 +284,20 @@ std::vector<std::vector<char>> compile_hip_src_with_hiprtc(std::vector<hiprtc_sr ...@@ -284,16 +284,20 @@ std::vector<std::vector<char>> compile_hip_src_with_hiprtc(std::vector<hiprtc_sr
bool is_hip_clang_compiler() bool is_hip_clang_compiler()
{ {
static const auto result = ends_with(MIGRAPHX_STRINGIZE(MIGRAPHX_HIP_COMPILER), "clang++"); static const auto result = fs::path{MIGRAPHX_HIP_COMPILER}.stem() == "clang++";
return result; return result;
} }
#ifdef MIGRAPHX_HIP_COMPILER_LAUNCHER
bool has_compiler_launcher() bool has_compiler_launcher()
{ {
static const auto result = fs::exists(MIGRAPHX_STRINGIZE(MIGRAPHX_HIP_COMPILER_LAUNCHER)); static const auto result = fs::exists(MIGRAPHX_HIP_COMPILER_LAUNCHER);
return result; return result;
} }
#endif
src_compiler assemble(src_compiler compiler) src_compiler assemble(src_compiler compiler)
{ {
compiler.out_ext = ".S"; compiler.out_ext = ".S";
...@@ -306,8 +310,7 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std ...@@ -306,8 +310,7 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
{ {
assert(not srcs.empty()); assert(not srcs.empty());
if(not is_hip_clang_compiler()) if(not is_hip_clang_compiler())
MIGRAPHX_THROW("Unknown hip compiler: " + MIGRAPHX_THROW("Unknown hip compiler: " MIGRAPHX_HIP_COMPILER);
std::string(MIGRAPHX_STRINGIZE(MIGRAPHX_HIP_COMPILER)));
if(params.find("-std=") == std::string::npos) if(params.find("-std=") == std::string::npos)
params += " --std=c++17"; params += " --std=c++17";
...@@ -323,14 +326,14 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std ...@@ -323,14 +326,14 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
params += " -DMIGRAPHX_DEBUG"; params += " -DMIGRAPHX_DEBUG";
params += " -Wno-unused-command-line-argument -Wno-cuda-compat "; params += " -Wno-unused-command-line-argument -Wno-cuda-compat ";
params += MIGRAPHX_STRINGIZE(MIGRAPHX_HIP_COMPILER_FLAGS); params += MIGRAPHX_HIP_COMPILER_FLAGS;
src_compiler compiler; src_compiler compiler;
compiler.flags = params; compiler.flags = params;
compiler.compiler = MIGRAPHX_STRINGIZE(MIGRAPHX_HIP_COMPILER); compiler.compiler = MIGRAPHX_HIP_COMPILER;
#ifdef MIGRAPHX_HIP_COMPILER_LAUNCHER #ifdef MIGRAPHX_HIP_COMPILER_LAUNCHER
if(has_compiler_launcher()) if(has_compiler_launcher())
compiler.launcher = MIGRAPHX_STRINGIZE(MIGRAPHX_HIP_COMPILER_LAUNCHER); compiler.launcher = MIGRAPHX_HIP_COMPILER_LAUNCHER;
#endif #endif
if(enabled(MIGRAPHX_GPU_DUMP_SRC{})) if(enabled(MIGRAPHX_GPU_DUMP_SRC{}))
{ {
...@@ -354,7 +357,7 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std ...@@ -354,7 +357,7 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
bool hip_has_flags(const std::vector<std::string>& flags) bool hip_has_flags(const std::vector<std::string>& flags)
{ {
src_compiler compiler; src_compiler compiler;
compiler.compiler = MIGRAPHX_STRINGIZE(MIGRAPHX_HIP_COMPILER); compiler.compiler = MIGRAPHX_HIP_COMPILER;
compiler.flags = compiler.flags =
join_strings(flags, " ") + " -x hip -c --offload-arch=gfx900 --cuda-device-only"; join_strings(flags, " ") + " -x hip -c --offload-arch=gfx900 --cuda-device-only";
......
...@@ -25,5 +25,5 @@ ...@@ -25,5 +25,5 @@
#define MIGRAPHX_VERSION_MAJOR @PROJECT_VERSION_MAJOR@ #define MIGRAPHX_VERSION_MAJOR @PROJECT_VERSION_MAJOR@
#define MIGRAPHX_VERSION_MINOR @PROJECT_VERSION_MINOR@ #define MIGRAPHX_VERSION_MINOR @PROJECT_VERSION_MINOR@
#define MIGRAPHX_VERSION_PATCH @PROJECT_VERSION_PATCH@ #define MIGRAPHX_VERSION_PATCH @PROJECT_VERSION_PATCH@
#define MIGRAPHX_VERSION_TWEAK @PROJECT_VERSION_TWEAK@ #define MIGRAPHX_VERSION_TWEAK "@PROJECT_VERSION_TWEAK@"
// clang-format on // clang-format on
...@@ -30,6 +30,9 @@ function(add_api_test TEST_NAME TEST_SRC TEST_DIR) ...@@ -30,6 +30,9 @@ function(add_api_test TEST_NAME TEST_SRC TEST_DIR)
add_test(NAME ${NAME} COMMAND $<TARGET_FILE:${NAME}> WORKING_DIRECTORY ${TEST_DIR}) add_test(NAME ${NAME} COMMAND $<TARGET_FILE:${NAME}> WORKING_DIRECTORY ${TEST_DIR})
add_dependencies(tests ${NAME}) add_dependencies(tests ${NAME})
add_dependencies(check ${NAME}) add_dependencies(check ${NAME})
if(WIN32)
target_compile_definitions(${NAME} PRIVATE _CRT_SECURE_NO_WARNINGS)
endif()
endfunction() endfunction()
# Workaround: C file dont work with clang-tidy right now, need a fix in rocm-cmake # Workaround: C file dont work with clang-tidy right now, need a fix in rocm-cmake
...@@ -41,6 +44,9 @@ function(add_c_api_test TEST_NAME TEST_SRC TEST_DIR) ...@@ -41,6 +44,9 @@ function(add_c_api_test TEST_NAME TEST_SRC TEST_DIR)
add_test(NAME ${NAME} COMMAND $<TARGET_FILE:${NAME}> WORKING_DIRECTORY ${TEST_DIR}) add_test(NAME ${NAME} COMMAND $<TARGET_FILE:${NAME}> WORKING_DIRECTORY ${TEST_DIR})
add_dependencies(tests ${NAME}) add_dependencies(tests ${NAME})
add_dependencies(check ${NAME}) add_dependencies(check ${NAME})
if(WIN32)
target_compile_definitions(${NAME} PRIVATE _CRT_SECURE_NO_WARNINGS)
endif()
endfunction() endfunction()
add_api_test(array_base test_array_base.cpp ${TEST_ONNX_DIR}) add_api_test(array_base test_array_base.cpp ${TEST_ONNX_DIR})
...@@ -57,10 +63,6 @@ add_api_test(custom_op test_custom_op.cpp ${TEST_ONNX_DIR}) ...@@ -57,10 +63,6 @@ add_api_test(custom_op test_custom_op.cpp ${TEST_ONNX_DIR})
add_api_test(tf_parser test_tf_parser.cpp ${TEST_TF_DIR}) add_api_test(tf_parser test_tf_parser.cpp ${TEST_TF_DIR})
# GPU-based tests # GPU-based tests
if(MIGRAPHX_ENABLE_GPU) if(MIGRAPHX_ENABLE_GPU)
list(APPEND CMAKE_PREFIX_PATH /opt/rocm)
find_package(hip)
add_api_test(gpu test_gpu.cpp ${TEST_ONNX_DIR}) add_api_test(gpu test_gpu.cpp ${TEST_ONNX_DIR})
target_link_libraries(test_api_gpu)
add_api_test(custom_op_gpu test_custom_op_gpu.cpp ${TEST_ONNX_DIR}) add_api_test(custom_op_gpu test_custom_op_gpu.cpp ${TEST_ONNX_DIR})
target_link_libraries(test_api_custom_op_gpu)
endif() endif()
...@@ -4883,9 +4883,9 @@ def mod_test_fmod_different_dtypes(): ...@@ -4883,9 +4883,9 @@ def mod_test_fmod_different_dtypes():
@onnx_test() @onnx_test()
def multinomial_test(): def multinomial_test():
sample_size = 10 sample_size = 13
seed = 0.0 seed = 0.
input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10]) input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [3, 10])
output = helper.make_tensor_value_info("output", TensorProto.INT32, output = helper.make_tensor_value_info("output", TensorProto.INT32,
[1, 10]) [1, 10])
...@@ -4898,6 +4898,44 @@ def multinomial_test(): ...@@ -4898,6 +4898,44 @@ def multinomial_test():
return ([node], [input], [output]) return ([node], [input], [output])
@onnx_test()
def multinomial_dyn_test():
sample_size = 100000
seed = 1.3
categories = 5
input = helper.make_tensor_value_info("input", TensorProto.FLOAT,
[None, categories])
output = helper.make_tensor_value_info("output", TensorProto.FLOAT,
[None, categories])
node = onnx.helper.make_node(
'Multinomial',
inputs=['input'],
sample_size=sample_size,
dtype=1, # shape::float_type
seed=seed,
outputs=['output'])
return ([node], [input], [output])
@onnx_test()
def multinomial_autoseed_dyn_test():
# If seed attribute is not given, device should auto generate one at runtime
sample_size = 12
input = helper.make_tensor_value_info("input", TensorProto.FLOAT,
[None, 10])
output = helper.make_tensor_value_info("output", TensorProto.INT32,
[None, 10])
node = onnx.helper.make_node('Multinomial',
inputs=['input'],
sample_size=sample_size,
outputs=['output'])
return ([node], [input], [output])
@onnx_test() @onnx_test()
def multinomial_generated_seed_test(): def multinomial_generated_seed_test():
sample_size = 10 sample_size = 10
...@@ -8042,6 +8080,42 @@ def split_test_no_attribute(): ...@@ -8042,6 +8080,42 @@ def split_test_no_attribute():
return ([const_node, node], [x], [y1, y2, y3, y4]) return ([const_node, node], [x], [y1, y2, y3, y4])
@onnx_test()
def split_test_uneven():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [12, 15])
y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [3, 15])
y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [3, 15])
y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [3, 15])
y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [3, 15])
y5 = helper.make_tensor_value_info('y5', TensorProto.FLOAT, [0, 15])
node = onnx.helper.make_node(
'Split',
inputs=['x'],
outputs=['y1', 'y2', 'y3', 'y4', 'y5'],
)
return ([node], [x], [y1, y2, y3, y4, y5])
@onnx_test()
def split_test_uneven_num_outputs():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [11, 15])
y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [3, 15])
y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [3, 15])
y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [3, 15])
y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [2, 15])
node = onnx.helper.make_node(
'Split',
inputs=['x'],
outputs=['y1', 'y2', 'y3', 'y4'],
num_outputs=4,
)
return ([node], [x], [y1, y2, y3, y4])
@onnx_test() @onnx_test()
def split_test_no_attribute_invalid_split(): def split_test_no_attribute_invalid_split():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [300, 15]) x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [300, 15])
...@@ -8101,6 +8175,24 @@ def split_test_no_attribute_invalid_input_split(): ...@@ -8101,6 +8175,24 @@ def split_test_no_attribute_invalid_input_split():
return ([node], [x], [y1, y2, y3]) return ([node], [x], [y1, y2, y3])
@onnx_test()
def split_test_invalid_num_outputs():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [11, 15])
y1 = helper.make_tensor_value_info('y1', TensorProto.FLOAT, [3, 15])
y2 = helper.make_tensor_value_info('y2', TensorProto.FLOAT, [3, 15])
y3 = helper.make_tensor_value_info('y3', TensorProto.FLOAT, [3, 15])
y4 = helper.make_tensor_value_info('y4', TensorProto.FLOAT, [2, 15])
node = onnx.helper.make_node(
'Split',
inputs=['x'],
outputs=['y1', 'y2', 'y3', 'y4'],
num_outputs=5,
)
return ([node], [x], [y1, y2, y3, y4])
@onnx_test() @onnx_test()
def sqrt_test(): def sqrt_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15]) x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
......
...@@ -4679,32 +4679,140 @@ TEST_CASE(multinomial_test) ...@@ -4679,32 +4679,140 @@ TEST_CASE(multinomial_test)
{ {
migraphx::program p; migraphx::program p;
auto* mm = p.get_main_module(); auto* mm = p.get_main_module();
size_t sample_size = 10; size_t sample_size = 13;
float seed = 0.0f; size_t batch_size = 3;
size_t categories = 10;
float seed = 0;
auto input = mm->add_parameter("input", migraphx::shape{migraphx::shape::float_type, {1, 10}}); auto input = mm->add_parameter(
auto maxes = mm->add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), input); "input", migraphx::shape{migraphx::shape::float_type, {batch_size, categories}});
auto mb_maxes = auto maxes = mm->add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), input);
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 10}}}), maxes); auto mb_maxes = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {batch_size, 10}}}), maxes);
auto cdf = mm->add_instruction(migraphx::make_op("sub"), input, mb_maxes); auto cdf = mm->add_instruction(migraphx::make_op("sub"), input, mb_maxes);
cdf = mm->add_instruction(migraphx::make_op("exp"), cdf); cdf = mm->add_instruction(migraphx::make_op("exp"), cdf);
cdf = mm->add_instruction( cdf = mm->add_instruction(
migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf); migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf);
std::mt19937 gen(seed); migraphx::shape s{migraphx::shape::float_type, {1}};
std::uniform_real_distribution<> dis(0.0, 1.0); std::vector<float> seed_data = {seed};
std::vector<float> rand_samples(sample_size); auto seed_input = mm->add_literal(migraphx::literal(s, seed_data));
std::generate(rand_samples.begin(), rand_samples.end(), [&]() { return dis(gen); }); auto rand_dummy =
migraphx::shape rs{migraphx::shape::float_type, {1, sample_size}}; mm->add_literal(migraphx::literal{migraphx::shape::float_type, {batch_size * sample_size}});
auto rs_lit = mm->add_literal(migraphx::literal{rs, rand_samples});
mm->add_instruction(migraphx::make_op("multinomial"), cdf, rs_lit);
auto randoms = mm->add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy);
mm->add_instruction(migraphx::make_op("multinomial"), cdf, randoms);
auto prog = optimize_onnx("multinomial_test.onnx"); auto prog = optimize_onnx("multinomial_test.onnx");
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(multinomial_dyn_test)
{
// compile-time random seed
migraphx::program p;
auto* mm = p.get_main_module();
size_t sample_size = 100000;
size_t categories = 5;
float seed = 1.3f;
auto input = mm->add_parameter(
"input",
migraphx::shape{migraphx::shape::float_type, {{1, categories}, {categories, categories}}});
auto maxes = mm->add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), input);
auto cdf = add_common_op(*mm, migraphx::make_op("sub"), {input, maxes});
cdf = mm->add_instruction(migraphx::make_op("exp"), cdf);
cdf = mm->add_instruction(
migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf);
migraphx::shape s{migraphx::shape::float_type, {1}};
std::vector<float> seed_data = {seed};
auto seed_input = mm->add_literal(migraphx::literal(s, seed_data));
// dynamic input only: must calculate alloc_shape as (batch_size, sample_size)
// read the runtime input dimensions
auto dim_of = mm->add_instruction(migraphx::make_op("dimensions_of", {{"end", 2}}), input);
// make an argument of (1, 0)
migraphx::shape lit_shape(migraphx::shape::int64_type, {2});
std::vector<int64_t> data1{1, 0};
auto l1 = mm->add_literal(lit_shape, data1);
auto batch_arg = mm->add_instruction(migraphx::make_op("mul"), dim_of, l1);
std::vector<int64_t> data2(2, 0);
// make an argument of (0, sample_size)
data2[1] = sample_size;
auto l2 = mm->add_literal(lit_shape, data2);
auto alloc_shape = mm->add_instruction(migraphx::make_op("add"), batch_arg, l2);
migraphx::shape compile_shape =
migraphx::shape(migraphx::shape::float_type,
{input->get_shape().dyn_dims().front(), {sample_size, sample_size}});
auto alloc = mm->add_instruction(
migraphx::make_op("allocate", {{"shape", to_value(compile_shape)}}), alloc_shape);
auto randoms = mm->add_instruction(migraphx::make_op("random_uniform"), seed_input, alloc);
auto ret = mm->add_instruction(
migraphx::make_op("multinomial", {{"dtype", migraphx::shape::float_type}}), cdf, randoms);
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, categories};
options.print_program_on_error = true;
auto prog = migraphx::parse_onnx("multinomial_dyn_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(multinomial_autoseed_dyn_test)
{
// runtime random seed
migraphx::program p;
auto* mm = p.get_main_module();
size_t sample_size = 12;
size_t categories = 10;
auto input = mm->add_parameter(
"input", migraphx::shape{migraphx::shape::float_type, {{1, 10}, {10, 10}}});
auto maxes = mm->add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), input);
auto cdf = add_common_op(*mm, migraphx::make_op("sub"), {input, maxes});
cdf = mm->add_instruction(migraphx::make_op("exp"), cdf);
cdf = mm->add_instruction(
migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf);
auto seed_input = mm->add_instruction(migraphx::make_op("random_seed"));
// dynamic input only: must calculate alloc_shape as (batch_size, sample_size)
// read the runtime input dimensions
auto dim_of = mm->add_instruction(migraphx::make_op("dimensions_of", {{"end", 2}}), input);
// make an argument of (1, 0)
migraphx::shape lit_shape(migraphx::shape::int64_type, {2});
std::vector<int64_t> data1{1, 0};
auto l1 = mm->add_literal(lit_shape, data1);
auto batch_arg = mm->add_instruction(migraphx::make_op("mul"), dim_of, l1);
std::vector<int64_t> data2(2, 0);
// make an argument of (0, sample_size)
data2[1] = sample_size;
auto l2 = mm->add_literal(lit_shape, data2);
auto alloc_shape = mm->add_instruction(migraphx::make_op("add"), batch_arg, l2);
migraphx::shape compile_shape =
migraphx::shape(migraphx::shape::float_type,
{input->get_shape().dyn_dims().front(), {sample_size, sample_size}});
auto alloc = mm->add_instruction(
migraphx::make_op("allocate", {{"shape", to_value(compile_shape)}}), alloc_shape);
auto randoms = mm->add_instruction(migraphx::make_op("random_uniform"), seed_input, alloc);
auto ret = mm->add_instruction(migraphx::make_op("multinomial"), cdf, randoms);
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {1, categories};
options.print_program_on_error = true;
auto prog = migraphx::parse_onnx("multinomial_autoseed_dyn_test.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(multinomial_dtype_error_test) TEST_CASE(multinomial_dtype_error_test)
{ {
EXPECT(test::throws([&] { migraphx::parse_onnx("multinomial_dtype_error_test.onnx"); })); EXPECT(test::throws([&] { migraphx::parse_onnx("multinomial_dtype_error_test.onnx"); }));
...@@ -4712,10 +4820,11 @@ TEST_CASE(multinomial_dtype_error_test) ...@@ -4712,10 +4820,11 @@ TEST_CASE(multinomial_dtype_error_test)
TEST_CASE(multinomial_generated_seed_test) TEST_CASE(multinomial_generated_seed_test)
{ {
// multinomial op. no longer generates its own randoms
auto p1 = optimize_onnx("multinomial_generated_seed_test.onnx"); auto p1 = optimize_onnx("multinomial_generated_seed_test.onnx");
auto p2 = optimize_onnx("multinomial_generated_seed_test.onnx"); auto p2 = optimize_onnx("multinomial_generated_seed_test.onnx");
EXPECT(p1 != p2); EXPECT(p1 == p2);
} }
TEST_CASE(multinomial_int64_test) TEST_CASE(multinomial_int64_test)
...@@ -4723,27 +4832,27 @@ TEST_CASE(multinomial_int64_test) ...@@ -4723,27 +4832,27 @@ TEST_CASE(multinomial_int64_test)
migraphx::program p; migraphx::program p;
auto* mm = p.get_main_module(); auto* mm = p.get_main_module();
size_t sample_size = 10; size_t sample_size = 10;
float seed = 1.0f; float seed = 1.0;
uint32_t batch_size = 1;
migraphx::shape::type_t dtype = migraphx::shape::type_t::int64_type; migraphx::shape::type_t dtype = migraphx::shape::type_t::int64_type;
auto input = mm->add_parameter("input", migraphx::shape{migraphx::shape::float_type, {1, 10}}); auto input = mm->add_parameter("input", migraphx::shape{migraphx::shape::float_type, {1, 10}});
auto maxes = mm->add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), input); auto maxes = mm->add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), input);
auto mb_maxes =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 10}}}), maxes); auto cdf = add_common_op(*mm, migraphx::make_op("sub"), {input, maxes});
auto cdf = mm->add_instruction(migraphx::make_op("sub"), input, mb_maxes);
cdf = mm->add_instruction(migraphx::make_op("exp"), cdf); cdf = mm->add_instruction(migraphx::make_op("exp"), cdf);
cdf = mm->add_instruction( cdf = mm->add_instruction(
migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf); migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf);
std::mt19937 gen(seed); migraphx::shape s{migraphx::shape::float_type, {1}};
std::uniform_real_distribution<> dis(0.0, 1.0); std::vector<float> data = {seed};
std::vector<float> rand_samples(sample_size); auto seed_input = mm->add_literal(migraphx::literal(s, data));
std::generate(rand_samples.begin(), rand_samples.end(), [&]() { return dis(gen); });
migraphx::shape rs{migraphx::shape::float_type, {1, sample_size}};
auto rs_lit = mm->add_literal(migraphx::literal{rs, rand_samples});
mm->add_instruction(migraphx::make_op("multinomial", {{"dtype", dtype}}), cdf, rs_lit);
// static size
auto rand_dummy =
mm->add_literal(migraphx::literal{migraphx::shape::float_type, {batch_size * sample_size}});
auto randoms = mm->add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy);
mm->add_instruction(migraphx::make_op("multinomial", {{"dtype", dtype}}), cdf, randoms);
auto prog = optimize_onnx("multinomial_int64_test.onnx"); auto prog = optimize_onnx("multinomial_int64_test.onnx");
EXPECT(p == prog); EXPECT(p == prog);
...@@ -7671,6 +7780,46 @@ TEST_CASE(split_test_default) ...@@ -7671,6 +7780,46 @@ TEST_CASE(split_test_default)
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(split_test_uneven)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {12, 15}});
auto r1 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {3}}}), input);
auto r2 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {3}}, {"ends", {6}}}), input);
auto r3 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {6}}, {"ends", {9}}}), input);
auto r4 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {9}}, {"ends", {12}}}), input);
auto r5 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {12}}, {"ends", {12}}}), input);
mm->add_return({r1, r2, r3, r4, r5});
auto prog = migraphx::parse_onnx("split_test_uneven.onnx");
EXPECT(p == prog);
}
TEST_CASE(split_test_uneven_num_outputs)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {11, 15}});
auto r1 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {3}}}), input);
auto r2 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {3}}, {"ends", {6}}}), input);
auto r3 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {6}}, {"ends", {9}}}), input);
auto r4 = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {0}}, {"starts", {9}}, {"ends", {11}}}), input);
mm->add_return({r1, r2, r3, r4});
auto prog = migraphx::parse_onnx("split_test_uneven_num_outputs.onnx");
EXPECT(p == prog);
}
TEST_CASE(split_test_no_attribute_invalid_split) TEST_CASE(split_test_no_attribute_invalid_split)
{ {
EXPECT( EXPECT(
...@@ -7688,6 +7837,11 @@ TEST_CASE(split_test_no_attribute_invalid_input_split) ...@@ -7688,6 +7837,11 @@ TEST_CASE(split_test_no_attribute_invalid_input_split)
[&] { migraphx::parse_onnx("split_test_no_attribute_invalid_input_split.onnx"); })); [&] { migraphx::parse_onnx("split_test_no_attribute_invalid_input_split.onnx"); }));
} }
TEST_CASE(split_test_invalid_num_outputs)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("split_test_invalid_num_outputs.onnx"); }));
}
TEST_CASE(sqrt_test) TEST_CASE(sqrt_test)
{ {
migraphx::program p; migraphx::program p;
......
 split_test_invalid_num_outputs:
.
xy1y2y3y4"Split*
num_outputssplit_test_invalid_num_outputsZ
x


b
y1


b
y2


b
y3


b
y4


B
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment