Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
eafd55de
Unverified
Commit
eafd55de
authored
Dec 01, 2023
by
Umang Yadav
Committed by
GitHub
Dec 01, 2023
Browse files
FP8 GPU implementation (#2455)
parent
785ff7d7
Changes
60
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1099 additions
and
51 deletions
+1099
-51
src/include/migraphx/bit_cast.hpp
src/include/migraphx/bit_cast.hpp
+7
-1
src/targets/cpu/dnnl.cpp
src/targets/cpu/dnnl.cpp
+1
-0
src/targets/cpu/lowering.cpp
src/targets/cpu/lowering.cpp
+12
-1
src/targets/gpu/compile_gen.cpp
src/targets/gpu/compile_gen.cpp
+10
-0
src/targets/gpu/kernels/include/migraphx/kernels/bit_cast.hpp
...targets/gpu/kernels/include/migraphx/kernels/bit_cast.hpp
+37
-0
src/targets/gpu/kernels/include/migraphx/kernels/float8.hpp
src/targets/gpu/kernels/include/migraphx/kernels/float8.hpp
+568
-0
src/targets/gpu/kernels/include/migraphx/kernels/float8_impl.hpp
...gets/gpu/kernels/include/migraphx/kernels/float8_impl.hpp
+331
-0
src/targets/gpu/kernels/include/migraphx/kernels/layernorm.hpp
...argets/gpu/kernels/include/migraphx/kernels/layernorm.hpp
+12
-9
src/targets/gpu/kernels/include/migraphx/kernels/math.hpp
src/targets/gpu/kernels/include/migraphx/kernels/math.hpp
+40
-3
src/targets/gpu/kernels/include/migraphx/kernels/pad.hpp
src/targets/gpu/kernels/include/migraphx/kernels/pad.hpp
+3
-2
src/targets/gpu/kernels/include/migraphx/kernels/reduce.hpp
src/targets/gpu/kernels/include/migraphx/kernels/reduce.hpp
+6
-7
src/targets/gpu/kernels/include/migraphx/kernels/roialign.hpp
...targets/gpu/kernels/include/migraphx/kernels/roialign.hpp
+18
-15
src/targets/gpu/kernels/include/migraphx/kernels/softmax.hpp
src/targets/gpu/kernels/include/migraphx/kernels/softmax.hpp
+1
-1
src/targets/gpu/kernels/include/migraphx/kernels/tensor_view.hpp
...gets/gpu/kernels/include/migraphx/kernels/tensor_view.hpp
+1
-0
src/targets/gpu/kernels/include/migraphx/kernels/type_traits.hpp
...gets/gpu/kernels/include/migraphx/kernels/type_traits.hpp
+1
-1
src/targets/gpu/kernels/include/migraphx/kernels/vec.hpp
src/targets/gpu/kernels/include/migraphx/kernels/vec.hpp
+1
-1
src/targets/gpu/target.cpp
src/targets/gpu/target.cpp
+1
-0
test/gpu/jit.cpp
test/gpu/jit.cpp
+8
-8
test/simplify_algebra_test.cpp
test/simplify_algebra_test.cpp
+34
-0
test/verify/test_abs.cpp
test/verify/test_abs.cpp
+7
-2
No files found.
src/include/migraphx/bit_cast.hpp
View file @
eafd55de
...
@@ -21,10 +21,13 @@
...
@@ -21,10 +21,13 @@
* ************************************************************************ */
* ************************************************************************ */
#ifndef MIGRAPHX_GUARD_RTGLIB_BITCAST_HPP
#ifndef MIGRAPHX_GUARD_RTGLIB_BITCAST_HPP
#define MIGRAPHX_GUARD_RTGLIB_BITCAST_HPP
#define MIGRAPHX_GUARD_RTGLIB_BITCAST_HPP
#include <type_traits>
#if defined(__GNUC__) && !defined(__clang__)
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif
#endif
#include <migraphx/requires.hpp>
#include <migraphx/config.hpp>
#include <migraphx/config.hpp>
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
...
@@ -32,7 +35,10 @@
...
@@ -32,7 +35,10 @@
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
template
<
typename
To
,
typename
From
>
template
<
typename
To
,
typename
From
,
MIGRAPHX_REQUIRES
(
std
::
is_trivially_copyable
<
To
>{}
and
std
::
is_trivially_copyable
<
From
>
{})
>
inline
constexpr
To
bit_cast
(
From
fr
)
noexcept
inline
constexpr
To
bit_cast
(
From
fr
)
noexcept
{
{
static_assert
(
sizeof
(
To
)
==
sizeof
(
From
));
static_assert
(
sizeof
(
To
)
==
sizeof
(
From
));
...
...
src/targets/cpu/dnnl.cpp
View file @
eafd55de
...
@@ -68,6 +68,7 @@ dnnl::memory::data_type to_dnnl_memory_data_type(shape::type_t t)
...
@@ -68,6 +68,7 @@ dnnl::memory::data_type to_dnnl_memory_data_type(shape::type_t t)
case
st
::
int32_type
:
return
dt
::
s32
;
case
st
::
int32_type
:
return
dt
::
s32
;
case
st
::
int8_type
:
return
dt
::
s8
;
case
st
::
int8_type
:
return
dt
::
s8
;
case
st
::
uint8_type
:
return
dt
::
u8
;
case
st
::
uint8_type
:
return
dt
::
u8
;
case
st
::
fp8e4m3fnuz_type
:
MIGRAPHX_THROW
(
"fp8e4m3fnuz unsupported in DNNL"
);
default:
MIGRAPHX_THROW
(
"Unsupported data type"
);
default:
MIGRAPHX_THROW
(
"Unsupported data type"
);
}
}
}
}
...
...
src/targets/cpu/lowering.cpp
View file @
eafd55de
...
@@ -340,7 +340,6 @@ struct cpu_apply
...
@@ -340,7 +340,6 @@ struct cpu_apply
{
"reduce_min"
,
"reduction_min"
},
{
"reduce_min"
,
"reduction_min"
},
{
"reduce_sum"
,
"reduction_sum"
},
{
"reduce_sum"
,
"reduction_sum"
},
});
});
extend_op
(
"concat"
,
"dnnl::concat"
);
extend_op
(
"concat"
,
"dnnl::concat"
);
extend_op
(
"contiguous"
,
"dnnl::reorder"
);
extend_op
(
"contiguous"
,
"dnnl::reorder"
);
extend_op
(
"convolution"
,
"dnnl::convolution"
);
extend_op
(
"convolution"
,
"dnnl::convolution"
);
...
@@ -376,6 +375,12 @@ struct cpu_apply
...
@@ -376,6 +375,12 @@ struct cpu_apply
// Apply these operators first so the inputs can be const folded
// Apply these operators first so the inputs can be const folded
for
(
auto
it
:
iterator_for
(
*
modl
))
for
(
auto
it
:
iterator_for
(
*
modl
))
{
{
// skip lowering if input has fp8 as one of the inputs since oneDNN doesn't have fp8
// supported yet.
if
(
std
::
any_of
(
it
->
inputs
().
begin
(),
it
->
inputs
().
end
(),
[](
const
auto
&
i
)
{
return
i
->
get_shape
().
type
()
==
migraphx
::
shape
::
fp8e4m3fnuz_type
;
}))
continue
;
if
(
it
->
name
()
==
"pow"
)
if
(
it
->
name
()
==
"pow"
)
{
{
apply_pow
(
it
);
apply_pow
(
it
);
...
@@ -383,6 +388,12 @@ struct cpu_apply
...
@@ -383,6 +388,12 @@ struct cpu_apply
}
}
for
(
auto
it
:
iterator_for
(
*
modl
))
for
(
auto
it
:
iterator_for
(
*
modl
))
{
{
// skip lowering if input has fp8 as one of the inputs since oneDNN doesn't have fp8
// supported yet.
if
(
std
::
any_of
(
it
->
inputs
().
begin
(),
it
->
inputs
().
end
(),
[](
const
auto
&
i
)
{
return
i
->
get_shape
().
type
()
==
migraphx
::
shape
::
fp8e4m3fnuz_type
;
}))
continue
;
if
(
it
->
name
()
==
"pooling"
)
if
(
it
->
name
()
==
"pooling"
)
{
{
apply_pooling
(
it
);
apply_pooling
(
it
);
...
...
src/targets/gpu/compile_gen.cpp
View file @
eafd55de
...
@@ -54,6 +54,11 @@ vectorize vectorize::elements(std::size_t axis,
...
@@ -54,6 +54,11 @@ vectorize vectorize::elements(std::size_t axis,
const
std
::
vector
<
shape
>&
inputs
,
const
std
::
vector
<
shape
>&
inputs
,
const
std
::
vector
<
std
::
size_t
>&
sizes
)
const
std
::
vector
<
std
::
size_t
>&
sizes
)
{
{
// disable vectorization for fp8 types
if
(
std
::
any_of
(
inputs
.
begin
(),
inputs
.
end
(),
[
&
](
auto
ishape
)
{
return
ishape
.
type
()
==
migraphx
::
shape
::
fp8e4m3fnuz_type
;
}))
return
{
1
,
axis
};
if
(
std
::
all_of
(
if
(
std
::
all_of
(
inputs
.
begin
(),
inputs
.
end
(),
[
&
](
const
auto
&
s
)
{
return
s
.
lens
()[
axis
]
==
1
;
}))
inputs
.
begin
(),
inputs
.
end
(),
[
&
](
const
auto
&
s
)
{
return
s
.
lens
()[
axis
]
==
1
;
}))
return
{
1
,
axis
};
return
{
1
,
axis
};
...
@@ -86,6 +91,11 @@ vectorize vectorize::elements(std::size_t axis,
...
@@ -86,6 +91,11 @@ vectorize vectorize::elements(std::size_t axis,
vectorize
vectorize
::
elements
(
context
&
ctx
,
std
::
size_t
axis
,
const
std
::
vector
<
shape
>&
inputs
)
vectorize
vectorize
::
elements
(
context
&
ctx
,
std
::
size_t
axis
,
const
std
::
vector
<
shape
>&
inputs
)
{
{
// disable vectorization for fp8 types
if
(
std
::
any_of
(
inputs
.
begin
(),
inputs
.
end
(),
[
&
](
auto
ishape
)
{
return
ishape
.
type
()
==
migraphx
::
shape
::
fp8e4m3fnuz_type
;
}))
return
{
1
,
axis
};
if
(
inputs
.
empty
())
if
(
inputs
.
empty
())
return
{
1
,
axis
};
return
{
1
,
axis
};
std
::
size_t
n
=
std
::
max_element
(
inputs
.
begin
(),
std
::
size_t
n
=
std
::
max_element
(
inputs
.
begin
(),
...
...
src/targets/gpu/kernels/include/migraphx/kernels/bit_cast.hpp
0 → 100644
View file @
eafd55de
/* ************************************************************************
* Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#ifndef MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
#define MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
#include <migraphx/kernels/type_traits.hpp>
namespace
migraphx
{
template
<
typename
To
,
typename
From
,
MIGRAPHX_REQUIRES
(
is_trivially_copyable
<
To
>{}
and
is_trivially_copyable
<
From
>
{})
>
inline
constexpr
To
bit_cast
(
From
fr
)
noexcept
{
static_assert
(
sizeof
(
To
)
==
sizeof
(
From
));
return
__builtin_bit_cast
(
To
,
fr
);
}
}
// namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_BITCAST_HPP
src/targets/gpu/kernels/include/migraphx/kernels/float8.hpp
0 → 100644
View file @
eafd55de
This diff is collapsed.
Click to expand it.
src/targets/gpu/kernels/include/migraphx/kernels/float8_impl.hpp
0 → 100644
View file @
eafd55de
/* ************************************************************************
* Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#ifndef MIGRAPHX_GUARD_KERNELS_FP8_IMPL_HPP
#define MIGRAPHX_GUARD_KERNELS_FP8_IMPL_HPP
#include <migraphx/kernels/bit_cast.hpp>
#include <migraphx/kernels/type_traits.hpp>
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreserved-identifier"
#endif
namespace
migraphx
{
namespace
fp8
{
namespace
impl
{
// NOLINTBEGIN
template
<
int
Wm
,
int
We
,
typename
T
,
bool
NegativeZeroNan
,
bool
Clip
>
__device__
constexpr
uint8_t
cast_to_f8
(
T
f_x
,
bool
stoch
=
false
,
uint32_t
rng
=
0
)
{
constexpr
bool
is_float
=
true
;
// half is not supported for now
constexpr
bool
is_half
=
false
;
static_assert
(
Wm
+
We
==
7
,
"Wm+We==7"
);
static_assert
(
is_float
or
is_half
,
"Only float can be cast to f8"
);
const
uint32_t
mfmt
=
(
sizeof
(
T
)
==
4
)
?
23
:
10
;
typename
migraphx
::
conditional_t
<
sizeof
(
T
)
==
2
,
uint16_t
,
uint32_t
>
x
;
if
constexpr
(
sizeof
(
T
)
==
4
)
x
=
migraphx
::
bit_cast
<
uint32_t
>
(
f_x
);
else
x
=
migraphx
::
bit_cast
<
uint16_t
>
(
f_x
);
uint32_t
head
=
0
;
uint32_t
mantissa
=
0
;
int
exponent
=
0
;
uint32_t
bias
=
0
;
uint32_t
sign
=
0
;
if
constexpr
(
sizeof
(
T
)
==
4
)
{
head
=
x
&
0xFF800000
;
mantissa
=
x
&
0x7FFFFF
;
exponent
=
(
head
>>
23
)
&
0xFF
;
sign
=
head
>>
31
;
bias
=
127
;
}
else
{
head
=
x
&
0xFC00
;
mantissa
=
x
&
0x3FF
;
exponent
=
(
head
>>
10
)
&
0x1F
;
sign
=
head
>>
15
;
bias
=
15
;
}
uint32_t
signed_inf
=
(
sign
<<
7
)
+
(((
1
<<
We
)
-
1
)
<<
Wm
);
uint32_t
signed_all_ones
=
(
sign
<<
7
)
+
((((
1
<<
We
)
-
1
)
<<
Wm
)
+
((
1
<<
Wm
)
-
1
));
// Calcualte maximum singed value FLT_MAX, FLT_MIN
uint32_t
signed_max
=
signed_all_ones
;
if
(
not
NegativeZeroNan
)
signed_max
=
(
Wm
==
2
)
?
(
signed_max
-
4
)
:
(
signed_max
-
1
);
// Deal with inf and NaNs
if
(
NegativeZeroNan
)
// For the FNUZ cases, it is simple just return NaNs
{
if
((
sizeof
(
T
)
==
4
and
((
x
&
0x7F800000
)
==
0x7F800000
))
or
(
sizeof
(
T
)
==
2
and
((
x
&
0x7C00
)
==
0x7C00
)))
return
0x80
;
}
else
{
// calculate most common NaN mantissa for FP8, which is all Ones in binary
uint32_t
nan_mantissa
=
1
;
for
(
auto
i
=
1
;
i
<
Wm
;
++
i
)
{
nan_mantissa
|=
(
nan_mantissa
<<
1
);
}
if
((
sizeof
(
T
)
==
4
and
((
x
&
0x7F800000
)
==
0x7F800000
))
or
(
sizeof
(
T
)
==
2
and
((
x
&
0x7C00
)
==
0x7C00
)))
{
// infinity
if
(
mantissa
==
0
)
{
if
(
sign
==
0
)
return
(
Wm
==
2
)
?
0x7B
:
0x7E
;
else
return
(
Wm
==
2
)
?
0xFB
:
0xFE
;
}
else
// NaNs
return
signed_inf
+
nan_mantissa
;
}
}
// handle positive zero
if
(
x
==
0
)
return
0
;
// handle negative zero
else
if
((
sizeof
(
T
)
==
4
and
x
==
0x80000000
)
or
(
sizeof
(
T
)
==
2
and
x
==
0x8000
))
{
return
NegativeZeroNan
?
0
:
0x80
;
// For FNUZ types neg zero is just positive zero
}
/* First need to check if it is normal or denorm as there is a difference of implict 1
Then need to adjust the exponent to align with the F8 exponent, in the meanwhile, shift
The mantissa. Then for stochastic rounding, add rng to mantissa and truncate. And for
RNE, no need to add rng. Then probably need to check whether there is carry and adjust
exponent and mantissa again*/
// For IEEE bias mode, the bias is 2^(k-1) -1 where k is the width of exponent bits
const
int
f8_bias
=
(
1
<<
(
We
-
1u
))
-
1
+
(
NegativeZeroNan
?
1
:
0
);
const
int
f8_denormal_act_exponent
=
1
-
f8_bias
;
// actual exponent of f8 denormal
/* act_exponent is the actual exponent of fp32/fp16 (after subtracting bias)
f8_exponent is the converted f8 exponent with bias encoding
exponent_diff is the diff between fp32/fp16 exponent and f8 exponent,
the difference needs to be adjusted and mantissa shifted*/
int
act_exponent
=
0
;
int
f8_exponent
=
0
;
int
exponent_diff
=
0
;
if
(
exponent
==
0
and
mantissa
!=
0
)
{
// fp32/fp16 is in denormal.
/* fp32 denormal is below 2^-127 so it is usually not a concern here, we mostly concern fp16
here. In this case, f8 is usually in denormal. But there could be exceptions. fp16 denormal
has exponent bias 15 while bf8 with FNUZ has exponent bias 16. It means that there are some
numbers in fp16 denormal but they are bf8 (FNUZ) normals - smallest bf8 (FNUZ) normal is
2^-15. fp16 numbers where exponent==0 (actual exponent -14) and highest bit of mantissa is 1
are bf8 (FNUZ) normal. In this case, the fp16 mantissa should be shift left by 1 */
act_exponent
=
1
-
bias
;
exponent_diff
=
f8_denormal_act_exponent
-
act_exponent
;
// actual exponent is exponent-bias+1 as it is denormal
}
else
{
// fp32/fp16 is normal with implicit 1
act_exponent
=
exponent
-
bias
;
if
(
act_exponent
<=
f8_denormal_act_exponent
)
{
/* This is the case where fp32/fp16 is normal but it is in f8 denormal range.
For example fp8 FNUZ mode, denormal exponent is -7, but if the fp32/fp16
actual exponent is -7, it is actually larger due to the implict 1,
Therefore it needs to be adjust to -6 and mantissa shift right by 1.
So for fp32/fp16, exponent -8 is the cut point to convert to fp8 FNUZ */
exponent_diff
=
f8_denormal_act_exponent
-
act_exponent
;
}
else
{
// both fp32/fp16 and f8 are in normal range
exponent_diff
=
0
;
// exponent_diff=0 does not mean there is no difference for this case,
// act_exponent could be larger. Just that it does not need shift mantissa
}
mantissa
+=
(
1
<<
mfmt
);
// Add the implicit 1 into mantissa
}
// need to know whether the number is right in the middle of two adjacent fp8 numbers. use max
// value of 31 to avoid undefined behaviour
bool
midpoint
=
(
mantissa
&
((
1u
<<
(
mfmt
-
Wm
+
exponent_diff
))
-
1
))
==
(
1u
<<
(
mfmt
-
Wm
+
exponent_diff
-
1
));
/* This part is a bit tricky. The judgment of whether it is a tie needs to be done before we
shift right as shift right could rip off some residual part and make something not midpoint look
like midpoint. For example, the fp16 number 0x1002 (0 00100 0000000010), it is larger than
midpoint, but after shift right by 4 bits, it would look like midpoint.
*/
if
(
exponent_diff
>
0
)
mantissa
>>=
exponent_diff
;
else
if
(
exponent_diff
==
-
1
)
mantissa
<<=
-
exponent_diff
;
bool
implicit_one
=
mantissa
&
(
1
<<
mfmt
);
// if there is no implict 1, it means the f8 is denormal and need to adjust to denorm exponent
f8_exponent
=
(
act_exponent
+
exponent_diff
)
/*actual f8 exponent*/
+
f8_bias
-
(
implicit_one
?
0
:
1
);
// Now we have the exponent and mantissa adjusted
uint32_t
drop_mask
=
(
1
<<
(
mfmt
-
Wm
))
-
1
;
bool
odd
=
mantissa
&
(
1
<<
(
mfmt
-
Wm
));
// if the least significant bit that is not truncated is 1
/*
This part is doing rounding by adding mantissa part that is going to get dropped.
e.g. if the dropped part for less than 0.5 than it would round down.
if the dropped part is more than 0.5 then it would round up by rolling carry to LSB of retained
mantissa.
For the mid point when bit pattern is like this for Odd: `xy1:10000000` for Odd and
`xy0:10000000` for the Even. where `:` is delimiter for dropped v/s retained part.
For the odd case :
this will add xy1:10000000 + 000:10000000 which would roll over carry to LSB of retained
part making it RNE.
For the even case : this will add xy0:10000000 + 000:01111111 which would
round down and keep number Even
*/
mantissa
+=
(
stoch
?
rng
:
(
midpoint
?
(
odd
?
mantissa
:
mantissa
-
1
)
:
mantissa
))
&
drop_mask
;
// Now we deal with overflow
if
(
f8_exponent
==
0
and
((
1
<<
mfmt
)
&
mantissa
))
{
f8_exponent
=
1
;
// denormal overflow to become normal, promote exponent
}
else
if
((
1
<<
(
mfmt
+
1
))
&
mantissa
)
{
mantissa
>>=
1
;
f8_exponent
++
;
}
mantissa
>>=
(
mfmt
-
Wm
);
// above range: quantize to maximum possible float of the same sign
// for e5m2 case, max_exp is 14, since exp = 15 is reserved for Infs and Nans
const
int
max_exp
=
(
1
<<
We
)
-
((
NegativeZeroNan
or
Wm
==
3
)
?
1
:
2
);
if
(
f8_exponent
>
max_exp
)
{
if
(
Clip
)
return
signed_max
;
else
{
// https://onnx.ai/onnx/technical/float8.html#cast
if
(
NegativeZeroNan
)
return
0x80
;
else
return
(
Wm
==
2
)
?
signed_inf
:
signed_all_ones
;
}
}
if
(
f8_exponent
==
0
and
mantissa
==
0
)
return
NegativeZeroNan
?
0
:
(
sign
<<
7
);
mantissa
&=
(
1
<<
Wm
)
-
1
;
return
(
sign
<<
7
)
|
(
f8_exponent
<<
Wm
)
|
mantissa
;
}
// NOLINTEND
template
<
int
Wm
,
int
We
,
typename
T
,
bool
NegativeZeroNan
>
__device__
constexpr
T
cast_from_f8
(
uint8_t
x
)
{
// half is not supported for now
constexpr
bool
is_half
=
false
;
constexpr
bool
is_float
=
true
;
static_assert
(
is_float
or
is_half
,
"Only float are supported"
);
constexpr
int
weo
=
is_half
?
5
:
8
;
constexpr
int
wmo
=
is_half
?
10
:
(
is_float
?
23
:
7
);
// NOLINTNEXTLINE
T
f_inf
,
f_neg_inf
,
f_nan
,
f_neg0
;
if
constexpr
(
is_float
)
{
const
uint32_t
if_inf
=
0x7F800000
;
const
uint32_t
if_neg_inf
=
0xFF800000
;
const
uint32_t
if_nan
=
0x7F800001
;
const
uint32_t
if_neg0
=
0x80000000
;
f_inf
=
migraphx
::
bit_cast
<
float
>
(
if_inf
);
f_neg_inf
=
migraphx
::
bit_cast
<
float
>
(
if_neg_inf
);
f_nan
=
migraphx
::
bit_cast
<
float
>
(
if_nan
);
f_neg0
=
migraphx
::
bit_cast
<
float
>
(
if_neg0
);
}
if
(
x
==
0
)
return
0
;
uint32_t
sign
=
x
>>
7
;
// NOLINT
uint32_t
mantissa
=
x
&
((
1
<<
Wm
)
-
1
);
// NOLINT
int
exponent
=
(
x
&
0x7F
)
>>
Wm
;
// NOLINT
if
(
NegativeZeroNan
)
{
if
(
x
==
0x80
)
return
f_nan
;
}
else
{
if
(
x
==
0x80
)
return
f_neg0
;
if
(
exponent
==
((
1
<<
We
)
-
1
)
and
Wm
==
2
)
// NOLINT
return
(
mantissa
==
0
)
?
(
sign
?
f_neg_inf
:
f_inf
)
:
f_nan
;
else
if
(
Wm
==
3
and
(
x
==
0x7F
or
x
==
0xFF
))
return
f_nan
;
}
typename
migraphx
::
conditional_t
<
sizeof
(
T
)
==
2
,
uint16_t
,
uint32_t
>
retval
;
const
int
exp_low_cutoff
=
(
1
<<
(
weo
-
1
))
-
(
1
<<
(
We
-
1
))
+
1
-
(
NegativeZeroNan
?
1
:
0
);
// NOLINT
// subnormal input
if
(
exponent
==
0
)
{
// guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
int
sh
=
1
+
__builtin_clz
(
mantissa
)
-
(
32
-
Wm
);
mantissa
<<=
sh
;
// NOLINT
exponent
+=
1
-
sh
;
mantissa
&=
((
1
<<
Wm
)
-
1
);
// NOLINT
}
exponent
+=
exp_low_cutoff
-
1
;
mantissa
<<=
wmo
-
Wm
;
// NOLINT
// subnormal output (occurs when T=half, We=5, negative_zero_nan=true)
if
(
exponent
<=
0
)
{
mantissa
|=
1
<<
wmo
;
// NOLINT
mantissa
>>=
1
-
exponent
;
// NOLINT
exponent
=
0
;
}
if
(
sizeof
(
T
)
==
2
)
retval
=
(
sign
<<
15
)
|
(
exponent
<<
10
)
|
mantissa
;
// NOLINT
else
retval
=
(
sign
<<
31
)
|
(
exponent
<<
23
)
|
mantissa
;
// NOLINT
return
migraphx
::
bit_cast
<
T
>
(
retval
);
}
}
// namespace impl
}
// namespace fp8
}
// namespace migraphx
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
#endif // MIGRAPHX_GUARD_KERNELS_FP8_IMPL_HPP
src/targets/gpu/kernels/include/migraphx/kernels/layernorm.hpp
View file @
eafd55de
...
@@ -52,14 +52,17 @@ __device__ void generic_binary_layernorm(
...
@@ -52,14 +52,17 @@ __device__ void generic_binary_layernorm(
block
::
template
run
<
reduce_output
>([
&
](
auto
,
auto
r
)
{
block
::
template
run
<
reduce_output
>([
&
](
auto
,
auto
r
)
{
auto
input
=
r
.
inner
([
&
](
auto
x1
,
auto
x2
)
{
return
op
(
x1
,
x2
);
})(
input1
,
input2
);
auto
input
=
r
.
inner
([
&
](
auto
x1
,
auto
x2
)
{
return
op
(
x1
,
x2
);
})(
input1
,
input2
);
using
value_type
=
typename
Input1
::
type
;
using
value_type
=
typename
Input1
::
type
;
using
vec_value_type
=
vec_type
<
value_type
>
;
constexpr
auto
relements
=
r
.
template
elements
<
Input1
>();
constexpr
auto
relements
=
r
.
template
elements
<
Input1
>();
constexpr
auto
relements_r
=
vec_
type
<
value_type
>
{
1.0
/
relements
};
constexpr
auto
relements_r
=
vec_value_type
{
1.0
/
relements
};
auto
relements_rsqrt
=
sqrt
(
relements_r
);
auto
relements_rsqrt
=
sqrt
(
relements_r
);
auto
means
=
r
.
reduce
(
op
::
sum
{},
make_array
<
vec_type
<
value_type
>>
(
0
,
0
),
[
&
](
auto
x
)
{
auto
means
=
r
.
reduce
(
op
::
sum
{},
make_array
<
vec_value_type
>
(
vec_value_type
{
0
},
vec_value_type
{
0
}),
[
&
](
auto
x
)
{
auto
x_out
=
x
*
relements_r
;
auto
x_out
=
x
*
relements_r
;
// dividing x by sqrt(relements) before squaring allows computing
higher values
// dividing x by sqrt(relements) before squaring allows computing
//
before overflow in low precision
// higher values
before overflow in low precision
auto
x2_sqrt
=
x
*
relements_rsqrt
;
auto
x2_sqrt
=
x
*
relements_rsqrt
;
return
make_array
(
x_out
,
x2_sqrt
*
x2_sqrt
);
return
make_array
(
x_out
,
x2_sqrt
*
x2_sqrt
);
})(
input
);
})(
input
);
...
@@ -67,7 +70,7 @@ __device__ void generic_binary_layernorm(
...
@@ -67,7 +70,7 @@ __device__ void generic_binary_layernorm(
auto
mean_x
=
means
[
0
];
auto
mean_x
=
means
[
0
];
auto
mean_x2
=
means
[
1
];
auto
mean_x2
=
means
[
1
];
auto
variance
=
mean_x2
-
(
mean_x
*
mean_x
);
auto
variance
=
mean_x2
-
(
mean_x
*
mean_x
);
value_type
eps_val
=
eps
;
//
implicit
conversion
for
eps
value_type
eps_val
=
implicit
_
conversion
(
eps
);
r
.
inner
([
&
](
auto
&
y
,
auto
x
,
auto
...
xs
)
{
r
.
inner
([
&
](
auto
&
y
,
auto
x
,
auto
...
xs
)
{
auto
m
=
x
-
mean_x
;
auto
m
=
x
-
mean_x
;
...
...
src/targets/gpu/kernels/include/migraphx/kernels/math.hpp
View file @
eafd55de
...
@@ -29,11 +29,15 @@
...
@@ -29,11 +29,15 @@
#include <migraphx/kernels/functional.hpp>
#include <migraphx/kernels/functional.hpp>
#include <migraphx/kernels/type_traits.hpp>
#include <migraphx/kernels/type_traits.hpp>
#include <migraphx/kernels/hip.hpp>
#include <migraphx/kernels/hip.hpp>
#include <migraphx/kernels/float8.hpp>
namespace
migraphx
{
namespace
migraphx
{
namespace
math
{
namespace
math
{
constexpr
float
as_float
(
migraphx
::
half
x
)
{
return
x
;
}
constexpr
float
as_float
(
migraphx
::
half
x
)
{
return
x
;
}
constexpr
float
as_float
(
migraphx
::
fp8
::
fp8e4m3fnuz
x
)
{
return
x
;
}
template
<
class
T
>
template
<
class
T
>
constexpr
T
as_float
(
T
x
)
constexpr
T
as_float
(
T
x
)
{
{
...
@@ -57,14 +61,14 @@ constexpr T as_float(T x)
...
@@ -57,14 +61,14 @@ constexpr T as_float(T x)
// NOLINTNEXTLINE
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_MATH_FOR(type, name, fname) \
#define MIGRAPHX_DEVICE_MATH_FOR(type, name, fname) \
template <class... Ts, MIGRAPHX_REQUIRES(not is_any_vec<Ts...>())> \
template <class... Ts, MIGRAPHX_REQUIRES(not is_any_vec<Ts...>())> \
auto __device__ name(type x, Ts... xs)->type
\
auto __device__ name(type x, Ts... xs)
->
type \
{ \
{ \
return fname(x, xs...); \
return fname(x, xs...); \
}
}
// NOLINTNEXTLINE
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_MATH_BINARY_FOR(type, name, fname) \
#define MIGRAPHX_DEVICE_MATH_BINARY_FOR(type, name, fname) \
inline auto __device__ name(type x, type y)->type { return fname(x, y); }
inline auto __device__ name(type x, type y)
->
type { return fname(x, y); }
// NOLINTNEXTLINE
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_MATH_HALF(name, fname) \
#define MIGRAPHX_DEVICE_MATH_HALF(name, fname) \
...
@@ -72,6 +76,12 @@ constexpr T as_float(T x)
...
@@ -72,6 +76,12 @@ constexpr T as_float(T x)
auto __device__ name(migraphx::half x, Ts... xs) \
auto __device__ name(migraphx::half x, Ts... xs) \
MIGRAPHX_RETURNS(fname(math::as_float(x), math::as_float(xs)...))
MIGRAPHX_RETURNS(fname(math::as_float(x), math::as_float(xs)...))
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_MATH_FP8(name, fname) \
template <class... Ts, MIGRAPHX_REQUIRES(not is_any_vec<Ts...>())> \
auto __device__ name(migraphx::fp8::fp8e4m3fnuz x, Ts... xs) MIGRAPHX_RETURNS( \
migraphx::fp8::fp8e4m3fnuz(fname(math::as_float(x), math::as_float(xs)...)))
// Template with two overloads for math functions, one for half2 type and one for more generic
// Template with two overloads for math functions, one for half2 type and one for more generic
// <half, N> vectorization where N is 4 or another even number.
// <half, N> vectorization where N is 4 or another even number.
...
@@ -162,6 +172,33 @@ MIGRAPHX_DEVICE_MATH_HALF(tan, ::tan)
...
@@ -162,6 +172,33 @@ MIGRAPHX_DEVICE_MATH_HALF(tan, ::tan)
MIGRAPHX_DEVICE_MATH_HALF
(
tanh
,
::
tanh
)
MIGRAPHX_DEVICE_MATH_HALF
(
tanh
,
::
tanh
)
MIGRAPHX_DEVICE_MATH_HALF
(
fmod
,
::
fmod
)
MIGRAPHX_DEVICE_MATH_HALF
(
fmod
,
::
fmod
)
// use float to compute fp8 overload
MIGRAPHX_DEVICE_MATH_FP8
(
abs
,
::
abs
)
MIGRAPHX_DEVICE_MATH_FP8
(
acos
,
::
acos
)
MIGRAPHX_DEVICE_MATH_FP8
(
acosh
,
::
acosh
)
MIGRAPHX_DEVICE_MATH_FP8
(
asin
,
::
asin
)
MIGRAPHX_DEVICE_MATH_FP8
(
asinh
,
::
asinh
)
MIGRAPHX_DEVICE_MATH_FP8
(
atan
,
::
atan
)
MIGRAPHX_DEVICE_MATH_FP8
(
atanh
,
::
atanh
)
MIGRAPHX_DEVICE_MATH_FP8
(
ceil
,
::
ceil
)
MIGRAPHX_DEVICE_MATH_FP8
(
cos
,
::
cos
)
MIGRAPHX_DEVICE_MATH_FP8
(
cosh
,
::
cosh
)
MIGRAPHX_DEVICE_MATH_FP8
(
erf
,
::
erf
)
MIGRAPHX_DEVICE_MATH_FP8
(
exp
,
::
exp
)
MIGRAPHX_DEVICE_MATH_FP8
(
floor
,
::
floor
)
MIGRAPHX_DEVICE_MATH_FP8
(
isnan
,
::
isnan
)
MIGRAPHX_DEVICE_MATH_FP8
(
log
,
::
log
)
MIGRAPHX_DEVICE_MATH_FP8
(
pow
,
::
pow
)
MIGRAPHX_DEVICE_MATH_FP8
(
remainder
,
::
remainder
)
MIGRAPHX_DEVICE_MATH_FP8
(
round
,
::
round
)
MIGRAPHX_DEVICE_MATH_FP8
(
rsqrt
,
::
rsqrt
)
MIGRAPHX_DEVICE_MATH_FP8
(
sin
,
::
sin
)
MIGRAPHX_DEVICE_MATH_FP8
(
sinh
,
::
sinh
)
MIGRAPHX_DEVICE_MATH_FP8
(
sqrt
,
::
sqrt
)
MIGRAPHX_DEVICE_MATH_FP8
(
tan
,
::
tan
)
MIGRAPHX_DEVICE_MATH_FP8
(
tanh
,
::
tanh
)
MIGRAPHX_DEVICE_MATH_FP8
(
fmod
,
::
fmod
)
// Map math functions to hip half2 functions
// Map math functions to hip half2 functions
// The half2 type is defined in include/hip/amd_detail/hip_fp16_gcc.h and is 2 16-bit floats
// The half2 type is defined in include/hip/amd_detail/hip_fp16_gcc.h and is 2 16-bit floats
// packed into a 32-bit number. See include/hip/amd_detail/hip_fp16_math_fwd.h for the HIP names
// packed into a 32-bit number. See include/hip/amd_detail/hip_fp16_math_fwd.h for the HIP names
...
@@ -253,7 +290,7 @@ MIGRAPHX_DEVICE_MATH_VEC(where)
...
@@ -253,7 +290,7 @@ MIGRAPHX_DEVICE_MATH_VEC(where)
template
<
class
T
,
class
U
>
template
<
class
T
,
class
U
>
constexpr
auto
convert
(
U
v
)
constexpr
auto
convert
(
U
v
)
{
{
return
vec_transform
(
v
)([](
auto
x
)
->
T
{
return
x
;
});
return
vec_transform
(
v
)([](
auto
x
)
->
T
{
return
static_cast
<
T
>
(
x
)
;
});
}
}
}
// namespace migraphx
}
// namespace migraphx
...
...
src/targets/gpu/kernels/include/migraphx/kernels/pad.hpp
View file @
eafd55de
...
@@ -28,6 +28,7 @@
...
@@ -28,6 +28,7 @@
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/algorithm.hpp>
#include <migraphx/kernels/algorithm.hpp>
#include <migraphx/kernels/ranges.hpp>
#include <migraphx/kernels/ranges.hpp>
#include <migraphx/kernels/vec.hpp>
namespace
migraphx
{
namespace
migraphx
{
...
@@ -53,9 +54,9 @@ __device__ void pad(const index& idx,
...
@@ -53,9 +54,9 @@ __device__ void pad(const index& idx,
if
(
any_of
(
range_multi
.
begin
(),
range_multi
.
end
(),
[
&
](
auto
j
)
{
if
(
any_of
(
range_multi
.
begin
(),
range_multi
.
end
(),
[
&
](
auto
j
)
{
return
multi
[
j
]
<
offsets
[
j
]
or
input_idx
[
j
]
>=
input_bounds
[
j
];
return
multi
[
j
]
<
offsets
[
j
]
or
input_idx
[
j
]
>=
input_bounds
[
j
];
}))
}))
output
[
multi
]
=
pad_val
;
output
[
multi
]
=
implicit_conversion
(
pad_val
)
;
else
else
output
[
multi
]
=
input
[
input_idx
];
output
[
multi
]
=
implicit_conversion
(
input
[
input_idx
]
)
;
});
});
}
}
...
...
src/targets/gpu/kernels/include/migraphx/kernels/reduce.hpp
View file @
eafd55de
...
@@ -106,7 +106,7 @@ __device__ auto block_reduce(index idx, Op op, T init, Index n, F f)
...
@@ -106,7 +106,7 @@ __device__ auto block_reduce(index idx, Op op, T init, Index n, F f)
#endif
#endif
using
type
=
decltype
(
index
::
invoke_loop
(
f
,
0
,
_c
<
0
>
));
using
type
=
decltype
(
index
::
invoke_loop
(
f
,
0
,
_c
<
0
>
));
__shared__
type
buffer
[
idx
.
max_nlocal
()
/
lanes_per_thread
];
__shared__
type
buffer
[
idx
.
max_nlocal
()
/
lanes_per_thread
];
type
x
=
init
;
type
x
=
type
(
init
)
;
idx
.
local_stride
(
n
,
[
&
](
auto
i
,
auto
d
)
{
x
=
op
(
x
,
index
::
invoke_loop
(
f
,
i
,
d
));
});
idx
.
local_stride
(
n
,
[
&
](
auto
i
,
auto
d
)
{
x
=
op
(
x
,
index
::
invoke_loop
(
f
,
i
,
d
));
});
dpp_reduce
(
x
,
op
);
dpp_reduce
(
x
,
op
);
...
@@ -117,7 +117,7 @@ __device__ auto block_reduce(index idx, Op op, T init, Index n, F f)
...
@@ -117,7 +117,7 @@ __device__ auto block_reduce(index idx, Op op, T init, Index n, F f)
}
}
__syncthreads
();
__syncthreads
();
type
y
=
init
;
type
y
=
type
(
init
)
;
for
(
index_int
i
=
0
;
i
<
idx
.
nlocal
()
/
lanes_per_thread
;
i
++
)
for
(
index_int
i
=
0
;
i
<
idx
.
nlocal
()
/
lanes_per_thread
;
i
++
)
{
{
y
=
op
(
y
,
buffer
[
i
]);
y
=
op
(
y
,
buffer
[
i
]);
...
@@ -244,9 +244,8 @@ struct reducer_base
...
@@ -244,9 +244,8 @@ struct reducer_base
{
{
auto
&&
derived
=
static_cast
<
const
Derived
&>
(
*
this
);
auto
&&
derived
=
static_cast
<
const
Derived
&>
(
*
this
);
auto
t
=
derived
.
slice
(
x
);
auto
t
=
derived
.
slice
(
x
);
return
make_storage_access
<
typename
decltype
(
t
)
::
type
>
([
=
](
auto
i
,
auto
...)
->
auto
&
{
return
make_storage_access
<
typename
decltype
(
t
)
::
type
>
(
return
t
[
i
];
[
=
](
auto
i
,
auto
...)
->
auto
&
{
return
t
[
i
];
});
});
}
}
}
}
...
@@ -393,7 +392,7 @@ struct block
...
@@ -393,7 +392,7 @@ struct block
{
{
using
max_iterations
=
decltype
(
idx
.
max_local_stride_iterations
(
n
));
using
max_iterations
=
decltype
(
idx
.
max_local_stride_iterations
(
n
));
inner_storage
<
R
,
max_iterations
{},
N
>
storage
;
inner_storage
<
R
,
max_iterations
{},
N
>
storage
;
idx
.
local_stride
(
n
,
[
&
](
auto
j
,
auto
d
)
{
storage
(
j
,
d
)
=
f
(
xs
(
j
,
d
)...);
});
idx
.
local_stride
(
n
,
[
&
](
auto
j
,
auto
d
)
{
storage
(
j
,
d
)
=
R
{
f
(
xs
(
j
,
d
)...)
}
;
});
return
storage
;
return
storage
;
}
}
};
};
...
@@ -482,7 +481,7 @@ struct lane
...
@@ -482,7 +481,7 @@ struct lane
__device__
auto
reduce_impl
(
Op
op
,
T
init
,
Read
read
,
N
n
,
U
&&
x
,
Us
&&
...
xs
)
const
__device__
auto
reduce_impl
(
Op
op
,
T
init
,
Read
read
,
N
n
,
U
&&
x
,
Us
&&
...
xs
)
const
{
{
using
type
=
remove_reference_t
<
decltype
(
x
(
0
,
_c
<
0
>
))
>
;
using
type
=
remove_reference_t
<
decltype
(
x
(
0
,
_c
<
0
>
))
>
;
type
r
=
init
;
type
r
=
type
(
init
)
;
for
(
index_int
j
=
0
;
j
<
n
;
j
++
)
for
(
index_int
j
=
0
;
j
<
n
;
j
++
)
{
{
r
=
op
(
r
,
read
(
x
(
j
,
_c
<
0
>
),
xs
(
j
,
_c
<
0
>
)...));
r
=
op
(
r
,
read
(
x
(
j
,
_c
<
0
>
),
xs
(
j
,
_c
<
0
>
)...));
...
...
src/targets/gpu/kernels/include/migraphx/kernels/roialign.hpp
View file @
eafd55de
...
@@ -62,7 +62,7 @@ struct avg_pool
...
@@ -62,7 +62,7 @@ struct avg_pool
template
<
class
T
>
template
<
class
T
>
MIGRAPHX_DEVICE_CONSTEXPR
T
final
(
T
x
,
index_int
y
)
MIGRAPHX_DEVICE_CONSTEXPR
T
final
(
T
x
,
index_int
y
)
{
{
return
(
y
==
0
)
?
0.0
:
(
x
/
y
)
;
return
(
y
==
0
)
?
T
{
0.0
}
:
T
{
x
/
y
}
;
}
}
};
};
...
@@ -76,7 +76,7 @@ MIGRAPHX_DEVICE_CONSTEXPR typename Iterator::value_type bilinear_interpolate(
...
@@ -76,7 +76,7 @@ MIGRAPHX_DEVICE_CONSTEXPR typename Iterator::value_type bilinear_interpolate(
{
{
if
(
xy
[
ii
]
<
-
1.0
f
or
xy
[
ii
]
>
dims
[
ii
])
if
(
xy
[
ii
]
<
-
1.0
f
or
xy
[
ii
]
>
dims
[
ii
])
{
{
return
0
;
return
implicit_conversion
(
0
)
;
}
}
xy
[
ii
]
=
migraphx
::
max
(
xy
[
ii
],
0.0
f
);
xy
[
ii
]
=
migraphx
::
max
(
xy
[
ii
],
0.0
f
);
...
@@ -96,11 +96,12 @@ MIGRAPHX_DEVICE_CONSTEXPR typename Iterator::value_type bilinear_interpolate(
...
@@ -96,11 +96,12 @@ MIGRAPHX_DEVICE_CONSTEXPR typename Iterator::value_type bilinear_interpolate(
float
lx
=
xy
[
1
]
-
low
[
1
];
float
lx
=
xy
[
1
]
-
low
[
1
];
float
hy
=
1.0
f
-
ly
;
float
hy
=
1.0
f
-
ly
;
float
hx
=
1.0
f
-
lx
;
float
hx
=
1.0
f
-
lx
;
array
<
typename
Iterator
::
value_type
,
4
>
ws
=
{
hy
*
hx
,
hy
*
lx
,
ly
*
hx
,
ly
*
lx
};
// do calculations in floating point and convert final result to required type
array
<
float
,
4
>
ws
=
{
hy
*
hx
,
hy
*
lx
,
ly
*
hx
,
ly
*
lx
};
auto
v01
=
pooling
(
data
[
locs
[
0
]]
*
ws
[
0
],
data
[
locs
[
1
]]
*
ws
[
1
]);
auto
v01
=
pooling
(
data
[
locs
[
0
]]
*
ws
[
0
],
data
[
locs
[
1
]]
*
ws
[
1
]);
auto
v23
=
pooling
(
data
[
locs
[
2
]]
*
ws
[
2
],
data
[
locs
[
3
]]
*
ws
[
3
]);
auto
v23
=
pooling
(
data
[
locs
[
2
]]
*
ws
[
2
],
data
[
locs
[
3
]]
*
ws
[
3
]);
return
pooling
(
v01
,
v23
);
return
implicit_conversion
(
pooling
(
v01
,
v23
)
)
;
}
}
template
<
class
Iterator
,
class
Op
>
template
<
class
Iterator
,
class
Op
>
...
@@ -113,7 +114,8 @@ MIGRAPHX_DEVICE_CONSTEXPR auto calc_pooling(const Iterator& data,
...
@@ -113,7 +114,8 @@ MIGRAPHX_DEVICE_CONSTEXPR auto calc_pooling(const Iterator& data,
float
roi_offset
,
float
roi_offset
,
Op
op
)
Op
op
)
{
{
typename
Iterator
::
value_type
output_val
=
op
.
init
();
using
in_dtype
=
typename
Iterator
::
value_type
;
in_dtype
output_val
=
in_dtype
{
op
.
init
()};
const
int64_t
count
=
bin_grid_size
[
0
]
*
bin_grid_size
[
1
];
const
int64_t
count
=
bin_grid_size
[
0
]
*
bin_grid_size
[
1
];
dfor
(
bin_grid_size
[
0
],
bin_grid_size
[
1
])([
&
](
auto
iy
,
auto
ix
)
{
dfor
(
bin_grid_size
[
0
],
bin_grid_size
[
1
])([
&
](
auto
iy
,
auto
ix
)
{
array
<
index_int
,
2
>
id
=
{
iy
,
ix
};
array
<
index_int
,
2
>
id
=
{
iy
,
ix
};
...
@@ -148,7 +150,6 @@ __device__ void roialign(const T& x_t, const U& rois_t, const V& ind_t, W& y_t,
...
@@ -148,7 +150,6 @@ __device__ void roialign(const T& x_t, const U& rois_t, const V& ind_t, W& y_t,
const
auto
x
=
x_t
.
begin
();
const
auto
x
=
x_t
.
begin
();
const
auto
rois
=
rois_t
.
begin
();
const
auto
rois
=
rois_t
.
begin
();
const
auto
ind
=
ind_t
.
begin
();
const
auto
ind
=
ind_t
.
begin
();
// input shape
// input shape
auto
x_lens
=
x_t
.
get_shape
().
lens
;
auto
x_lens
=
x_t
.
get_shape
().
lens
;
auto
channel_num
=
x_lens
[
1
];
auto
channel_num
=
x_lens
[
1
];
...
@@ -176,10 +177,12 @@ __device__ void roialign(const T& x_t, const U& rois_t, const V& ind_t, W& y_t,
...
@@ -176,10 +177,12 @@ __device__ void roialign(const T& x_t, const U& rois_t, const V& ind_t, W& y_t,
const
auto
offset_rois
=
rois
+
(
n
*
roi_column_num
);
const
auto
offset_rois
=
rois
+
(
n
*
roi_column_num
);
const
int
batch_ind
=
ind
[
n
];
const
int
batch_ind
=
ind
[
n
];
array
<
float
,
2
>
roi_starts
=
{
offset_rois
[
1
]
*
s
.
spatial_scale
,
array
<
float
,
2
>
roi_starts
=
{
offset_rois
[
0
]
*
s
.
spatial_scale
};
static_cast
<
float
>
(
offset_rois
[
1
])
*
static_cast
<
float
>
(
s
.
spatial_scale
),
array
<
float
,
2
>
roi_ends
=
{
offset_rois
[
3
]
*
s
.
spatial_scale
,
static_cast
<
float
>
(
offset_rois
[
0
])
*
static_cast
<
float
>
(
s
.
spatial_scale
)};
offset_rois
[
2
]
*
s
.
spatial_scale
};
array
<
float
,
2
>
roi_ends
=
{
static_cast
<
float
>
(
offset_rois
[
3
])
*
static_cast
<
float
>
(
s
.
spatial_scale
),
static_cast
<
float
>
(
offset_rois
[
2
])
*
static_cast
<
float
>
(
s
.
spatial_scale
)};
array
<
float
,
2
>
roi_size
{};
array
<
float
,
2
>
roi_size
{};
array
<
float
,
2
>
bin_size
{};
array
<
float
,
2
>
bin_size
{};
...
...
src/targets/gpu/kernels/include/migraphx/kernels/softmax.hpp
View file @
eafd55de
...
@@ -43,7 +43,7 @@ __device__ void softmax(Input input1, Output output)
...
@@ -43,7 +43,7 @@ __device__ void softmax(Input input1, Output output)
auto
exp_in
=
r
.
inner
([
&
](
auto
x
)
{
return
migraphx
::
exp
(
x
-
c
);
})(
input
);
auto
exp_in
=
r
.
inner
([
&
](
auto
x
)
{
return
migraphx
::
exp
(
x
-
c
);
})(
input
);
auto
batch_sum
=
auto
batch_sum
=
r
.
reduce
(
op
::
sum
{},
0
,
[](
auto
x
)
{
return
migraphx
::
convert
<
float
>
(
x
);
})(
exp_in
);
r
.
reduce
(
op
::
sum
{},
0
,
[](
auto
x
)
{
return
migraphx
::
convert
<
float
>
(
x
);
})(
exp_in
);
r
.
inner
([
&
](
auto
&
y
,
auto
x
)
{
y
=
x
/
batch_sum
;
})(
output
,
exp_in
);
r
.
inner
([
&
](
auto
&
y
,
auto
x
)
{
y
=
implicit_conversion
(
x
/
batch_sum
)
;
})(
output
,
exp_in
);
});
});
}
}
...
...
src/targets/gpu/kernels/include/migraphx/kernels/tensor_view.hpp
View file @
eafd55de
...
@@ -27,6 +27,7 @@
...
@@ -27,6 +27,7 @@
#include <migraphx/kernels/shape.hpp>
#include <migraphx/kernels/shape.hpp>
#include <migraphx/kernels/debug.hpp>
#include <migraphx/kernels/debug.hpp>
#include <migraphx/kernels/iota_iterator.hpp>
#include <migraphx/kernels/iota_iterator.hpp>
#include <migraphx/kernels/float8.hpp>
namespace
migraphx
{
namespace
migraphx
{
...
...
src/targets/gpu/kernels/include/migraphx/kernels/type_traits.hpp
View file @
eafd55de
...
@@ -251,7 +251,7 @@ constexpr T numeric_max()
...
@@ -251,7 +251,7 @@ constexpr T numeric_max()
}
}
template
<
class
T
>
template
<
class
T
>
constexpr
T
numeric_lowest
()
constexpr
auto
numeric_lowest
()
->
decltype
(
numeric_max
<
T
>
())
{
{
if
constexpr
(
is_integral
<
T
>
{})
if
constexpr
(
is_integral
<
T
>
{})
{
{
...
...
src/targets/gpu/kernels/include/migraphx/kernels/vec.hpp
View file @
eafd55de
...
@@ -207,7 +207,7 @@ struct implicit_conversion_op
...
@@ -207,7 +207,7 @@ struct implicit_conversion_op
template
<
class
U
>
template
<
class
U
>
constexpr
operator
U
()
const
constexpr
operator
U
()
const
{
{
return
x
;
return
static_cast
<
U
>
(
x
)
;
}
}
};
};
...
...
src/targets/gpu/target.cpp
View file @
eafd55de
...
@@ -98,6 +98,7 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
...
@@ -98,6 +98,7 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
ctx
.
set_exhaustive_tune_flag
(
options
.
exhaustive_tune
);
ctx
.
set_exhaustive_tune_flag
(
options
.
exhaustive_tune
);
std
::
set
<
shape
::
type_t
>
unsupported_types
(
shape
::
types
().
begin
(),
shape
::
types
().
end
());
std
::
set
<
shape
::
type_t
>
unsupported_types
(
shape
::
types
().
begin
(),
shape
::
types
().
end
());
unsupported_types
.
erase
(
shape
::
type_t
::
float_type
);
unsupported_types
.
erase
(
shape
::
type_t
::
float_type
);
unsupported_types
.
erase
(
shape
::
type_t
::
fp8e4m3fnuz_type
);
unsupported_types
.
erase
(
shape
::
type_t
::
half_type
);
unsupported_types
.
erase
(
shape
::
type_t
::
half_type
);
unsupported_types
.
erase
(
shape
::
type_t
::
bool_type
);
unsupported_types
.
erase
(
shape
::
type_t
::
bool_type
);
unsupported_types
.
erase
(
shape
::
type_t
::
int8_type
);
unsupported_types
.
erase
(
shape
::
type_t
::
int8_type
);
...
...
test/gpu/jit.cpp
View file @
eafd55de
...
@@ -350,19 +350,20 @@ TEST_CASE(compile_math)
...
@@ -350,19 +350,20 @@ TEST_CASE(compile_math)
auto
vec_sizes
=
{
2
,
4
,
6
};
auto
vec_sizes
=
{
2
,
4
,
6
};
for
(
auto
&&
t
:
migraphx
::
shape
::
types
())
for
(
auto
&&
t
:
migraphx
::
shape
::
types
())
{
{
if
(
contains
({
migraphx
::
shape
::
bool_type
,
if
(
contains
({
migraphx
::
shape
::
bool_type
,
migraphx
::
shape
::
tuple_type
},
t
))
migraphx
::
shape
::
fp8e4m3fnuz_type
,
migraphx
::
shape
::
tuple_type
},
t
))
continue
;
continue
;
auto
name
=
migraphx
::
shape
::
cpp_type
(
t
);
auto
name
=
migraphx
::
shape
::
cpp_type
(
t
);
if
(
t
==
migraphx
::
shape
::
half_type
)
if
(
t
==
migraphx
::
shape
::
half_type
)
name
.
insert
(
0
,
"migraphx::"
);
name
.
insert
(
0
,
"migraphx::"
);
data_types
.
push_back
(
name
);
data_types
.
push_back
(
name
);
// fp8 doesn't have vectorization support yet, therefore skip it for now.
if
(
t
!=
migraphx
::
shape
::
fp8e4m3fnuz_type
)
{
migraphx
::
transform
(
vec_sizes
,
std
::
back_inserter
(
data_types
),
[
&
](
auto
i
)
{
migraphx
::
transform
(
vec_sizes
,
std
::
back_inserter
(
data_types
),
[
&
](
auto
i
)
{
return
"migraphx::vec<"
+
name
+
", "
+
std
::
to_string
(
i
)
+
">"
;
return
"migraphx::vec<"
+
name
+
", "
+
std
::
to_string
(
i
)
+
">"
;
});
});
}
}
}
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
5
,
2
}};
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
5
,
2
}};
migraphx
::
gpu
::
hip_compile_options
options
;
migraphx
::
gpu
::
hip_compile_options
options
;
options
.
global
=
1024
;
options
.
global
=
1024
;
...
@@ -431,7 +432,6 @@ TEST_CASE(assert_type_min_max)
...
@@ -431,7 +432,6 @@ TEST_CASE(assert_type_min_max)
min
=
std
::
to_string
(
as
.
min
());
min
=
std
::
to_string
(
as
.
min
());
max
=
std
::
to_string
(
as
.
max
());
max
=
std
::
to_string
(
as
.
max
());
}
}
auto
src
=
migraphx
::
interpolate_string
(
assert_template
,
auto
src
=
migraphx
::
interpolate_string
(
assert_template
,
{{
"type"
,
name
},
{
"max"
,
max
},
{
"min"
,
min
}});
{{
"type"
,
name
},
{
"max"
,
max
},
{
"min"
,
min
}});
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
5
,
2
}};
migraphx
::
shape
input
{
migraphx
::
shape
::
float_type
,
{
5
,
2
}};
...
...
test/simplify_algebra_test.cpp
View file @
eafd55de
...
@@ -1017,6 +1017,40 @@ TEST_CASE(simplify_concat_add_relu_broadcast_same_axis)
...
@@ -1017,6 +1017,40 @@ TEST_CASE(simplify_concat_add_relu_broadcast_same_axis)
EXPECT
(
m1
==
m2
);
EXPECT
(
m1
==
m2
);
}
}
TEST_CASE
(
concat_convert_fusion
)
{
auto
s
=
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
64
}};
migraphx
::
module
m1
;
{
auto
x
=
m1
.
add_parameter
(
"x"
,
s
);
auto
y
=
m1
.
add_parameter
(
"y"
,
s
);
auto
xh
=
m1
.
add_instruction
(
migraphx
::
make_op
(
"convert"
,
{{
"target_type"
,
migraphx
::
to_value
(
migraphx
::
shape
::
half_type
)}}),
x
);
auto
yh
=
m1
.
add_instruction
(
migraphx
::
make_op
(
"convert"
,
{{
"target_type"
,
migraphx
::
to_value
(
migraphx
::
shape
::
half_type
)}}),
y
);
auto
concat
=
m1
.
add_instruction
(
migraphx
::
make_op
(
"concat"
,
{{
"axis"
,
0
}}),
xh
,
yh
);
m1
.
add_instruction
(
pass_op
{},
concat
);
}
run_pass
(
m1
);
migraphx
::
module
m2
;
{
auto
x
=
m2
.
add_parameter
(
"x"
,
s
);
auto
y
=
m2
.
add_parameter
(
"y"
,
s
);
auto
concat
=
m2
.
add_instruction
(
migraphx
::
make_op
(
"concat"
,
{{
"axis"
,
0
}}),
x
,
y
);
auto
concath
=
m2
.
add_instruction
(
migraphx
::
make_op
(
"convert"
,
{{
"target_type"
,
migraphx
::
to_value
(
migraphx
::
shape
::
half_type
)}}),
concat
);
m2
.
add_instruction
(
pass_op
{},
concath
);
}
EXPECT
(
m1
==
m2
);
}
TEST_CASE
(
simplify_div_const
)
TEST_CASE
(
simplify_div_const
)
{
{
migraphx
::
module
m1
;
migraphx
::
module
m1
;
...
...
test/verify/test_abs.cpp
View file @
eafd55de
...
@@ -27,14 +27,19 @@
...
@@ -27,14 +27,19 @@
#include <migraphx/generate.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/make_op.hpp>
struct
test_abs
:
verify_program
<
test_abs
>
template
<
migraphx
::
shape
::
type_t
DType
>
struct
test_abs
:
verify_program
<
test_abs
<
DType
>>
{
{
migraphx
::
program
create_program
()
const
migraphx
::
program
create_program
()
const
{
{
migraphx
::
program
p
;
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
auto
*
mm
=
p
.
get_main_module
();
auto
x
=
mm
->
add_parameter
(
"x"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_t
ype
,
{
4
,
3
,
3
,
3
}});
auto
x
=
mm
->
add_parameter
(
"x"
,
migraphx
::
shape
{
DT
ype
,
{
4
,
3
,
3
,
3
}});
mm
->
add_instruction
(
migraphx
::
make_op
(
"abs"
),
x
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"abs"
),
x
);
return
p
;
return
p
;
}
}
};
};
template
struct
test_abs
<
migraphx
::
shape
::
fp8e4m3fnuz_type
>;
template
struct
test_abs
<
migraphx
::
shape
::
half_type
>;
template
struct
test_abs
<
migraphx
::
shape
::
float_type
>;
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment