Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
e7f7ea10
Commit
e7f7ea10
authored
Nov 30, 2022
by
Alan Turner
Browse files
Merge remote-tracking branch 'origin/optimize' into ck-gsg
parents
9c6ba1ed
ae13eb93
Changes
157
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
376 additions
and
180 deletions
+376
-180
src/include/migraphx/common.hpp
src/include/migraphx/common.hpp
+3
-0
src/include/migraphx/dyn_output.hpp
src/include/migraphx/dyn_output.hpp
+33
-22
src/include/migraphx/layout_nhwc.hpp
src/include/migraphx/layout_nhwc.hpp
+47
-0
src/include/migraphx/match/layernorm.hpp
src/include/migraphx/match/layernorm.hpp
+4
-3
src/include/migraphx/op/binary.hpp
src/include/migraphx/op/binary.hpp
+14
-4
src/include/migraphx/op/broadcast.hpp
src/include/migraphx/op/broadcast.hpp
+90
-33
src/include/migraphx/op/common.hpp
src/include/migraphx/op/common.hpp
+2
-2
src/include/migraphx/op/contiguous.hpp
src/include/migraphx/op/contiguous.hpp
+18
-9
src/include/migraphx/op/convert.hpp
src/include/migraphx/op/convert.hpp
+1
-1
src/include/migraphx/op/convolution.hpp
src/include/migraphx/op/convolution.hpp
+8
-16
src/include/migraphx/op/deconvolution.hpp
src/include/migraphx/op/deconvolution.hpp
+2
-2
src/include/migraphx/op/elu.hpp
src/include/migraphx/op/elu.hpp
+9
-5
src/include/migraphx/op/layout.hpp
src/include/migraphx/op/layout.hpp
+22
-24
src/include/migraphx/op/leaky_relu.hpp
src/include/migraphx/op/leaky_relu.hpp
+7
-4
src/include/migraphx/op/multibroadcast.hpp
src/include/migraphx/op/multibroadcast.hpp
+66
-25
src/include/migraphx/op/pooling.hpp
src/include/migraphx/op/pooling.hpp
+3
-3
src/include/migraphx/op/quant_convolution.hpp
src/include/migraphx/op/quant_convolution.hpp
+5
-7
src/include/migraphx/op/unary.hpp
src/include/migraphx/op/unary.hpp
+5
-4
src/include/migraphx/operation.hpp
src/include/migraphx/operation.hpp
+37
-15
src/include/migraphx/operators.hpp
src/include/migraphx/operators.hpp
+0
-1
No files found.
src/include/migraphx/common.hpp
View file @
e7f7ea10
...
...
@@ -36,6 +36,9 @@ struct operation;
std
::
vector
<
std
::
size_t
>
compute_broadcasted_lens
(
std
::
vector
<
std
::
size_t
>
s0
,
std
::
vector
<
std
::
size_t
>
s1
);
std
::
vector
<
shape
::
dynamic_dimension
>
compute_broadcasted_dyn_dims
(
shape
s0
,
shape
s1
);
shape
common_shape
(
const
std
::
vector
<
shape
>&
shapes
);
instruction_ref
insert_common_op
(
module
&
m
,
...
...
src/
targets/gpu/
include/migraphx/
gpu/leaky_relu
.hpp
→
src/include/migraphx/
dyn_output
.hpp
View file @
e7f7ea10
...
...
@@ -21,44 +21,55 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_
RTGLIB_LEAKY_RELU
_HPP
#define MIGRAPHX_GUARD_
RTGLIB_LEAKY_RELU
_HPP
#ifndef MIGRAPHX_GUARD_
MIGRAPHLIB_DYN_OUTPUT
_HPP
#define MIGRAPHX_GUARD_
MIGRAPHLIB_DYN_OUTPUT
_HPP
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/reflect.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/argument.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
struct
context
;
struct
dyn_output
{
// original shape from the instruction
shape
ins_shape
;
// shape computed at eval time using input arguments
shape
computed_shape
;
};
struct
miopen_leaky_relu
/**
* Handle dynamic and static shape at evaluation time.
* If converted to shape type, returns original ins_shape.
* If converted to dyn_output type, will compute an output shape using the input arguments.
*/
template
<
class
F
>
struct
compute_output_shape
{
op
::
leaky_relu
op
;
shared
<
activation_descriptor
>
ad
;
F
ins_inputs
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
operator
dyn_output
()
const
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
return
ins_inputs
([](
const
auto
&
x
,
shape
ins_shape
,
const
std
::
vector
<
argument
>&
inputs
)
{
if
(
ins_shape
.
dynamic
())
return
dyn_output
{
ins_shape
,
compute_shape
(
x
,
to_shapes
(
inputs
))};
return
dyn_output
{
ins_shape
,
ins_shape
};
});
}
std
::
string
name
()
const
{
return
"gpu::leaky_relu"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
;
void
finalize
(
context
&
,
const
shape
&
,
const
std
::
vector
<
shape
>&
);
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
shapes
)
const
operator
shape
()
const
{
return
shapes
.
size
()
-
1
;
return
ins_inputs
(
[](
const
auto
&
,
shape
ins_shape
,
const
std
::
vector
<
argument
>&
)
{
return
ins_shape
;
});
}
};
}
// namespace gpu
template
<
class
F
>
compute_output_shape
<
F
>
make_compute_output_shape
(
F
f
)
{
return
{
f
};
}
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/layout_nhwc.hpp
0 → 100644
View file @
e7f7ea10
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_MIGRAPHX_LAYOUT_NHWC_HPP
#define MIGRAPHX_GUARD_MIGRAPHX_LAYOUT_NHWC_HPP
#include <string>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/config.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
struct
module_pass_manager
;
/**
* Transform convolutions to nhwc
*/
struct
layout_nhwc
{
std
::
string
name
()
const
{
return
"layout_nhwc"
;
}
void
apply
(
module_pass_manager
&
mpm
)
const
;
};
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif // MIGRAPHX_GUARD_MIGRAPHX_LAYOUT_NHWC_HPP
src/include/migraphx/match/layernorm.hpp
View file @
e7f7ea10
...
...
@@ -48,10 +48,11 @@ struct layernorm_matcher
auto
layernorm_onnx
()
const
{
return
f
(
"div"
)(
arg
(
0
)(
x_minus_mean
()),
auto
add_eps
=
f
(
"add"
)(
either_arg
(
0
,
1
)(
variance
(),
is_constant
().
bind
(
"eps"
)));
return
f
(
"div"
)(
arg
(
0
)(
x_minus_mean
()),
arg
(
1
)(
skip_broadcasts
(
f
(
"sqrt"
)(
arg
(
0
)(
f
(
"add"
)(
either_arg
(
0
,
1
)(
variance
(),
is_constant
().
bind
(
"eps"
))))))));
arg
(
1
)(
skip_broadcasts
(
f
(
"sqrt"
)(
arg
(
0
)(
match
::
any_of
(
add_eps
,
variance
()))))));
}
auto
matcher
()
const
{
return
layernorm_onnx
();
}
...
...
src/include/migraphx/op/binary.hpp
View file @
e7f7ea10
...
...
@@ -28,6 +28,7 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -60,10 +61,19 @@ struct binary : op_name<Derived>
value
attributes
()
const
{
return
base_attributes
();
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
static_cast
<
const
Derived
&>
(
*
this
)}.
has
(
2
).
same_type
().
same_dims
();
check_shapes
{
inputs
,
static_cast
<
const
Derived
&>
(
*
this
),
true
}
.
has
(
2
)
.
same_type
()
.
same_dims
();
auto
s0
=
inputs
.
at
(
0
);
auto
s1
=
inputs
.
at
(
1
);
if
(
s0
==
s1
and
s0
.
packed
())
if
(
s0
.
dynamic
()
or
s1
.
dynamic
())
{
if
(
s0
==
s1
)
return
s0
;
MIGRAPHX_THROW
(
"BINARY: "
+
point_function
()
+
": fixed-dyn shape for inputs"
);
}
else
if
(
s0
==
s1
and
s0
.
packed
())
{
return
s0
;
}
...
...
@@ -81,9 +91,9 @@ struct binary : op_name<Derived>
}
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
out
put_shape
};
argument
result
{
dyn_out
.
com
put
ed
_shape
};
visit_all
(
result
,
args
[
0
],
args
[
1
])([
&
](
auto
output
,
auto
input1
,
auto
input2
)
{
std
::
transform
(
input1
.
begin
(),
input1
.
end
(),
...
...
src/include/migraphx/op/broadcast.hpp
View file @
e7f7ea10
...
...
@@ -27,23 +27,30 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/dyn_output.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
/// The broadcast operator performs the numpy-style broadcasting of an axis of a given tensor. This
/// is achieved primarily by setting the stride of the broadcasted axis to zero. Linear indicies are
/// computed from multi-indicies by computing the inner product on the multi-index with the strides.
/// For example, if we have a tensor A(2,3) it has lengths of (2,3) and strides of (3,1). If we want
/// to compute the linear offset that corresponds to the element on the 2nd row (i = 1) and 3rd
/// column (j = 2), we compute the following inner product (1,2) dot (3, 1) = 1*3 + 2*1 = 5. It is
/// obvious from there that we can negate the effects of a given axis by setting the stride of that
/// axis to zero.
/**
* 1 input version:
* Broadcasts a tensor from the original shape to the broadcast_lens by setting the stride of
* broadcasted dimensions to zero. `axis` attribute for a 1D input shape is the output dimension
* that stays the same. ex: broadcasting shape [1024] -> [4, 1024, 3] has axis = 1 For higher rank
* input shapes, axis is an offset parameter for the broadcasting. Such that this operator would
* work in the opposite direction of NumPy broadcasting. ex: broadcasting shape [2, 2] -> [2, 2, 3]
* with axis = 0
*
* 2 input version:
* Broadcast the first input 1D shape into the second input shape based on the axis parameter.
* Handles broadcasting a 1D static shape into a higher rank dynamic shape.
* broadcast_lens is not used
*/
struct
broadcast
{
uint64_t
axis
=
0
;
std
::
vector
<
std
::
size_t
>
broadcast_lens
;
uint64_t
axis
=
0
;
std
::
vector
<
std
::
size_t
>
broadcast_lens
=
{}
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
...
...
@@ -54,36 +61,86 @@ struct broadcast
std
::
string
name
()
const
{
return
"broadcast"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
input
=
inputs
.
at
(
0
);
auto
t
=
input
.
type
();
std
::
vector
<
size_t
>
bcast_strides
(
broadcast_lens
.
size
(),
0
);
// the broacast op is deprecated now, so not handling the negative
// value of axis anymore
if
(
axis
>=
broadcast_lens
.
size
())
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
,
2
);
auto
s0
=
inputs
.
at
(
0
);
auto
t
=
s0
.
type
();
if
(
inputs
.
size
()
==
1
)
{
MIGRAPHX_THROW
(
"BROADCAST : axis is out of range"
);
}
// the ONNX broadcast op is deprecated now, so not handling the negative
// value of axis anymore
if
(
axis
>=
broadcast_lens
.
size
())
{
MIGRAPHX_THROW
(
"BROADCAST : axis "
+
migraphx
::
to_string
(
axis
)
+
" is out of range"
);
}
if
(
broadcast_lens
.
size
()
-
axis
<
s0
.
lens
().
size
())
{
MIGRAPHX_THROW
(
"BROADCAST: (broadcast ndims - axis) is less than s0 ndims"
);
}
if
(
not
std
::
equal
(
s0
.
lens
().
begin
(),
s0
.
lens
().
end
(),
broadcast_lens
.
begin
()
+
axis
))
{
MIGRAPHX_THROW
(
"BROADCAST: when broadcasting, succeeding sizes must match"
);
}
if
(
broadcast_lens
.
size
()
-
axis
<
input
.
lens
().
size
())
{
MIGRAPHX_THROW
(
"BROADCAST: (broadcast ndims - axis) is less than input ndims"
);
std
::
vector
<
size_t
>
bcast_strides
(
broadcast_lens
.
size
(),
0
);
std
::
copy
(
s0
.
strides
().
begin
(),
s0
.
strides
().
end
(),
bcast_strides
.
begin
()
+
axis
);
shape
output
{
t
,
broadcast_lens
,
std
::
move
(
bcast_strides
)};
if
(
output
.
elements
()
<
s0
.
elements
())
{
// don't think this can occur?
MIGRAPHX_THROW
(
"BROADCAST: output size must be greater than or equal to s0 size"
);
}
return
output
;
}
if
(
not
std
::
equal
(
input
.
lens
().
begin
(),
input
.
lens
().
end
(),
broadcast_lens
.
begin
()
+
axis
))
else
{
MIGRAPHX_THROW
(
"BROADCAST: when broadcasting, succeeding sizes must match"
);
}
std
::
copy
(
input
.
strides
().
begin
(),
input
.
strides
().
end
(),
bcast_strides
.
begin
()
+
axis
);
// two inputs
auto
s1
=
inputs
.
at
(
1
);
if
(
s0
.
dynamic
())
{
MIGRAPHX_THROW
(
"BROADCAST_2in: s0 is a dynamic shape, does not handle broadcasting "
"a dynamic shape"
);
}
if
(
s0
.
ndim
()
!=
1
)
{
MIGRAPHX_THROW
(
"BROADCAST_2in: s0 has ndim "
+
migraphx
::
to_string
(
s0
.
ndim
())
+
", only handle ndim = 1"
);
}
if
(
axis
>=
s1
.
ndim
())
{
MIGRAPHX_THROW
(
"BROADCAST_2in: axis "
+
migraphx
::
to_string
(
axis
)
+
" is out of range"
);
}
if
(
s1
.
dynamic
())
{
s0
=
s0
.
to_dynamic
();
if
(
s0
.
dyn_dims
()[
0
]
!=
s1
.
dyn_dims
()[
axis
])
{
MIGRAPHX_THROW
(
"BROADCAST_2in: s0 length doesn't match with dynamic s1 axis "
"dimension length ("
+
migraphx
::
to_string
(
s0
.
dyn_dims
()[
0
])
+
" != "
+
migraphx
::
to_string
(
s1
.
dyn_dims
()[
axis
])
+
")"
);
}
return
s1
;
}
shape
output
{
t
,
broadcast_lens
,
std
::
move
(
bcast_strides
)};
if
(
output
.
elements
()
<
input
.
elements
())
MIGRAPHX_THROW
(
"BROADCAST: output size must be greater than or equal to input size"
);
return
output
;
if
(
s0
.
lens
()[
0
]
!=
s1
.
lens
()[
axis
])
{
MIGRAPHX_THROW
(
"BROADCAST_2in: s0 length doesn't match with static s1 axis "
"dimension length ("
+
migraphx
::
to_string
(
s0
.
lens
()[
0
])
+
" != "
+
migraphx
::
to_string
(
s1
.
lens
()[
axis
])
+
")"
);
}
std
::
vector
<
size_t
>
bcast_strides
(
s1
.
ndim
(),
0
);
std
::
copy
(
s0
.
strides
().
begin
(),
s0
.
strides
().
end
(),
bcast_strides
.
begin
()
+
axis
);
shape
output
{
t
,
s1
.
lens
(),
std
::
move
(
bcast_strides
)};
return
output
;
}
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
return
args
[
0
].
reshape
(
out
put_shape
);
return
args
[
0
].
reshape
(
dyn_out
.
com
put
ed
_shape
);
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
...
...
src/include/migraphx/op/common.hpp
View file @
e7f7ea10
...
...
@@ -33,11 +33,11 @@ namespace migraphx {
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
// Padding mode is default_ for fixed shape padding.
// same_lower and same_upper used for dynamic padding.
enum
padding_mode_t
{
default_
,
// NOLINT
same
,
valid
,
same_lower
,
same_upper
};
...
...
src/include/migraphx/op/contiguous.hpp
View file @
e7f7ea10
...
...
@@ -28,6 +28,7 @@
#include <migraphx/argument.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <migraphx/dyn_output.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -42,19 +43,27 @@ namespace op {
struct
contiguous
{
std
::
string
name
()
const
{
return
"contiguous"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
if
(
inputs
.
front
().
standard
())
return
inputs
.
front
();
auto
lens
=
inputs
.
at
(
0
).
lens
();
auto
t
=
inputs
.
at
(
0
).
type
();
return
{
t
,
lens
};
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
auto
s0
=
inputs
.
front
();
if
(
s0
.
dynamic
()
or
s0
.
standard
())
{
return
s0
;
}
else
{
const
auto
&
lens
=
s0
.
lens
();
auto
t
=
s0
.
type
();
return
{
t
,
lens
};
}
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
assert
(
out
put_shape
.
standard
());
argument
result
{
out
put_shape
};
assert
(
dyn_out
.
com
put
ed
_shape
.
standard
());
argument
result
{
dyn_out
.
com
put
ed
_shape
};
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
input
)
{
shape_for_each
(
output
.
get_shape
(),
[
&
](
const
auto
&
idx
)
{
output
(
idx
.
begin
(),
idx
.
end
())
=
input
(
idx
.
begin
(),
idx
.
end
());
...
...
src/include/migraphx/op/convert.hpp
View file @
e7f7ea10
...
...
@@ -44,7 +44,7 @@ struct convert : unary<convert>
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
auto
input
=
inputs
.
at
(
0
);
if
(
input
.
dynamic
())
{
...
...
src/include/migraphx/op/convolution.hpp
View file @
e7f7ea10
...
...
@@ -41,9 +41,8 @@ struct convolution
std
::
vector
<
std
::
size_t
>
stride
=
{
1
,
1
};
std
::
vector
<
std
::
size_t
>
dilation
=
{
1
,
1
};
int
group
=
1
;
padding_mode_t
padding_mode
=
default_
;
bool
use_dynamic_same_auto_pad
=
false
;
int
group
=
1
;
padding_mode_t
padding_mode
=
default_
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
...
...
@@ -52,16 +51,15 @@ struct convolution
f
(
self
.
stride
,
"stride"
),
f
(
self
.
dilation
,
"dilation"
),
f
(
self
.
group
,
"group"
),
f
(
self
.
padding_mode
,
"padding_mode"
),
f
(
self
.
use_dynamic_same_auto_pad
,
"use_dynamic_same_auto_pad"
));
f
(
self
.
padding_mode
,
"padding_mode"
));
}
std
::
string
name
()
const
{
return
"convolution"
;
}
void
check_attribute_size
()
const
{
if
(
not
(
(
padding
.
size
()
=
=
stride
.
size
()
or
(
padding
.
size
()
/
2
)
=
=
stride
.
size
())
and
stride
.
size
()
=
=
dilation
.
size
())
)
if
((
padding
.
size
()
!
=
stride
.
size
()
and
(
padding
.
size
()
/
2
)
!
=
stride
.
size
())
or
stride
.
size
()
!
=
dilation
.
size
())
{
MIGRAPHX_THROW
(
"CONVOLUTION: inconsistent attribute sizes"
);
}
...
...
@@ -76,7 +74,8 @@ struct convolution
// num of dims of input and attribute should match
const
auto
input_size
=
inputs
[
0
].
max_lens
().
size
();
const
auto
padding_size
=
padding
.
size
();
if
(
not
(
input_size
==
padding_size
/
2
+
2
or
input_size
==
padding_size
+
2
))
if
(
input_size
!=
padding_size
/
2
+
2
&&
input_size
!=
padding_size
+
2
)
{
MIGRAPHX_THROW
(
"CONVOLUTION: input and attribute size mismatch!"
);
}
...
...
@@ -93,13 +92,6 @@ struct convolution
x_shape
.
lens
().
at
(
1
)
!=
(
w_shape
.
lens
().
at
(
1
)
*
group
))
MIGRAPHX_THROW
(
"CONVOLUTION: mismatched channel numbers"
);
std
::
vector
<
op
::
padding_mode_t
>
dyn_pad_modes
=
{
op
::
padding_mode_t
::
same_upper
,
op
::
padding_mode_t
::
same_lower
};
if
(
use_dynamic_same_auto_pad
and
not
contains
(
dyn_pad_modes
,
padding_mode
))
{
MIGRAPHX_THROW
(
"CONVOLUTION: use_dynamic_same_auto_pad set with invalid padding mode"
);
}
if
(
x_shape
.
dynamic
()
or
w_shape
.
dynamic
())
{
return
dynamic_compute_shape
(
x_shape
,
w_shape
);
...
...
@@ -161,7 +153,7 @@ struct convolution
dynamic_shape_push_back
(
w_shape
);
const
size_t
num_spatial_dims
=
x_shape
.
max_lens
().
size
()
-
2
;
if
(
use_dynamic_same_auto_pad
)
if
(
padding_mode
!=
default_
)
{
for
(
std
::
size_t
i
=
0
;
i
<
num_spatial_dims
;
++
i
)
{
...
...
src/include/migraphx/op/deconvolution.hpp
View file @
e7f7ea10
...
...
@@ -61,8 +61,8 @@ struct deconvolution
void
check_attribute_size
()
const
{
if
(
not
(
(
padding
.
size
()
=
=
stride
.
size
()
or
(
padding
.
size
()
/
2
)
=
=
stride
.
size
())
and
stride
.
size
()
=
=
dilation
.
size
())
)
if
((
padding
.
size
()
!
=
stride
.
size
()
and
(
padding
.
size
()
/
2
)
!
=
stride
.
size
())
or
stride
.
size
()
!
=
dilation
.
size
())
{
MIGRAPHX_THROW
(
"deconvolution: inconsistent attribute sizes"
);
}
...
...
src/include/migraphx/op/elu.hpp
View file @
e7f7ea10
...
...
@@ -32,14 +32,13 @@ namespace migraphx {
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
elu
struct
elu
:
unary
<
elu
>
{
std
::
string
name
()
const
{
return
"elu"
;
}
float
alpha
=
1
;
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
std
::
string
point_op
()
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
return
inputs
.
front
();
return
"${function:where}(${0} > 0, ${0}, ${alpha} * (${function:exp}(${0}) - 1))"
;
}
template
<
class
Self
,
class
F
>
...
...
@@ -47,6 +46,11 @@ struct elu
{
return
pack
(
f
(
self
.
alpha
,
"alpha"
));
}
auto
apply
()
const
{
return
[
&
](
auto
x
)
{
return
x
>
0
?
x
:
alpha
*
std
::
expm1
(
x
);
};
}
};
}
// namespace op
...
...
src/include/migraphx/op/
batch_norm_inference
.hpp
→
src/include/migraphx/op/
layout
.hpp
View file @
e7f7ea10
...
...
@@ -21,50 +21,48 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OP
ERATORS_BATCH_NORM
_HPP
#define MIGRAPHX_GUARD_OP
ERATORS_BATCH_NORM
_HPP
#ifndef MIGRAPHX_GUARD_OP
_LAYOUT
_HPP
#define MIGRAPHX_GUARD_OP
_LAYOUT
_HPP
#include <migraphx/check_shapes.hpp>
#include <migraphx/config.hpp>
#include <array>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/op/unary.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
batch_norm_inference
struct
layout
:
unary
<
layout
>
{
float
epsilon
=
1.0e-6
f
;
float
momentum
=
0.9
f
;
std
::
string
name
()
const
{
return
"batch_norm_inference"
;
}
enum
bn_infer_mode_t
{
per_activation
,
spatial
,
};
bn_infer_mode_t
bn_mode
=
spatial
;
std
::
vector
<
int64_t
>
permutation
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
epsilon
,
"epsilon"
),
f
(
self
.
momentum
,
"momentum"
),
f
(
self
.
bn_mode
,
"bn_mode"
));
return
pack
(
f
(
self
.
permutation
,
"permutation"
));
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
5
);
check_shapes
{
inputs
.
data
(),
inputs
.
data
()
+
1
,
*
this
}.
same_ndims
();
check_shapes
{
inputs
.
data
()
+
1
,
inputs
.
data
()
+
inputs
.
size
(),
*
this
}.
same_shape
();
return
inputs
.
front
();
check_shapes
{
inputs
,
*
this
}.
has
(
1
).
only_dims
(
permutation
.
size
());
auto
lens
=
inputs
.
at
(
0
).
lens
();
auto
t
=
inputs
.
at
(
0
).
type
();
return
shape
::
from_permutation
(
t
,
lens
,
permutation
);
}
auto
apply
()
const
{
return
[](
auto
x
)
{
return
x
;
};
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
#endif // MIGRAPHX_GUARD_OP_LAYOUT_HPP
src/include/migraphx/op/leaky_relu.hpp
View file @
e7f7ea10
...
...
@@ -26,12 +26,13 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/config.hpp>
#include <migraphx/op/unary.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
leaky_relu
struct
leaky_relu
:
unary
<
leaky_relu
>
{
float
alpha
=
0.01
;
...
...
@@ -41,11 +42,13 @@ struct leaky_relu
return
pack
(
f
(
self
.
alpha
,
"alpha"
));
}
std
::
string
point_op
()
const
{
return
"${function:where}(${0} > 0, ${0}, ${alpha} * ${0})"
;
}
std
::
string
name
()
const
{
return
"leaky_relu"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
auto
apply
()
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
return
inputs
.
front
();
return
[
&
](
auto
x
)
{
return
x
>
0
?
x
:
x
*
alpha
;
};
}
};
...
...
src/include/migraphx/op/multibroadcast.hpp
View file @
e7f7ea10
...
...
@@ -26,64 +26,105 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/common.hpp>
#include <migraphx/config.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
/**
* Broadcast multiple dimensions between two tensors.
* Two versions of this operator: one input and two inputs.
* One input version uses output_lens attribute and broadcasts to it.
* Two inputs version broadcasts both inputs to the common shape at evaluation time.
*/
struct
multibroadcast
{
std
::
vector
<
std
::
size_t
>
output_lens
;
std
::
vector
<
std
::
size_t
>
output_lens
=
{};
// optional attribute
std
::
vector
<
shape
::
dynamic_dimension
>
output_dyn_dims
=
{};
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
output_lens
,
"out_lens"
));
return
pack
(
f
(
self
.
output_lens
,
"out_lens"
)
,
f
(
self
.
output_dyn_dims
,
"out_dyn_dims"
)
);
}
std
::
string
name
()
const
{
return
"multibroadcast"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
t
=
inputs
.
at
(
0
).
type
();
auto
input
=
inputs
.
at
(
0
);
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
,
2
);
if
(
input
.
lens
().
empty
())
{
MIGRAPHX_THROW
(
"MULTIBROADCAST: inputs dimensions should be > 0"
);
}
auto
t
=
inputs
.
at
(
0
).
type
();
auto
s0
=
inputs
.
at
(
0
);
if
(
input
.
lens
().
size
()
>
output_lens
.
size
())
if
(
s0
.
max_lens
().
empty
())
{
MIGRAPHX_THROW
(
"MULTIBROADCAST: input
s
dimensions should
<= output size
"
);
MIGRAPHX_THROW
(
"MULTIBROADCAST: input dimensions should
be > 0
"
);
}
auto
offset
=
output_lens
.
size
()
-
input
.
lens
().
size
();
for
(
std
::
ptrdiff_t
i
=
input
.
lens
().
size
()
-
1
;
i
>=
0
;
i
--
)
auto
make_bcast_strides
=
[
&
](
std
::
vector
<
std
::
size_t
>
bcast_lens
,
std
::
size_t
offset
)
{
std
::
vector
<
size_t
>
bcast_strides
(
bcast_lens
.
size
(),
0
);
for
(
std
::
ptrdiff_t
i
=
s0
.
lens
().
size
()
-
1
;
i
>=
0
;
i
--
)
{
if
(
bcast_lens
[
i
+
offset
]
==
s0
.
lens
()[
i
])
{
bcast_strides
[
i
+
offset
]
=
s0
.
strides
()[
i
];
}
}
return
bcast_strides
;
};
if
(
inputs
.
size
()
==
1
)
{
if
(
output_lens
[
i
+
offset
]
!=
input
.
lens
()[
i
]
and
in
put
.
lens
()[
i
]
!=
1
)
if
(
s0
.
lens
().
size
()
>
out
put
_
lens
.
size
()
)
{
MIGRAPHX_THROW
(
"MULTIBROADCAST: input shape {"
+
to_string_range
(
input
.
lens
())
+
"} cannot be broadcasted to {"
+
to_string_range
(
output_lens
)
+
"}!"
);
MIGRAPHX_THROW
(
"MULTIBROADCAST: input dimensions should <= output size"
);
}
}
std
::
vector
<
size_t
>
bcast_strides
(
output_lens
.
size
(),
0
);
for
(
std
::
ptrdiff_t
i
=
input
.
lens
().
size
()
-
1
;
i
>=
0
;
i
--
)
auto
offset
=
output_lens
.
size
()
-
s0
.
lens
().
size
();
for
(
std
::
ptrdiff_t
i
=
s0
.
lens
().
size
()
-
1
;
i
>=
0
;
i
--
)
{
if
(
output_lens
[
i
+
offset
]
!=
s0
.
lens
()[
i
]
and
s0
.
lens
()[
i
]
!=
1
)
{
MIGRAPHX_THROW
(
"MULTIBROADCAST: input shape {"
+
to_string_range
(
s0
.
lens
())
+
"} cannot be broadcasted to {"
+
to_string_range
(
output_lens
)
+
"}!"
);
}
}
auto
bcast_strides
=
make_bcast_strides
(
output_lens
,
offset
);
return
{
t
,
output_lens
,
std
::
move
(
bcast_strides
)};
}
else
{
if
(
output_lens
[
i
+
offset
]
==
input
.
lens
()[
i
])
// two inputs
auto
s1
=
inputs
.
at
(
1
);
if
(
s0
.
dynamic
()
or
s1
.
dynamic
())
{
bcast_strides
[
i
+
offset
]
=
input
.
strides
()[
i
];
if
(
not
output_dyn_dims
.
empty
())
{
return
{
t
,
output_dyn_dims
};
}
return
{
t
,
compute_broadcasted_dyn_dims
(
s0
,
s1
)};
}
else
{
auto
bcast_lens
=
compute_broadcasted_lens
(
s0
.
lens
(),
s1
.
lens
());
auto
offset
=
bcast_lens
.
size
()
-
s0
.
lens
().
size
();
auto
bcast_strides
=
make_bcast_strides
(
bcast_lens
,
offset
);
return
{
t
,
std
::
move
(
bcast_lens
),
std
::
move
(
bcast_strides
)};
}
}
return
{
t
,
output_lens
,
bcast_strides
};
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
return
args
[
0
].
reshape
(
out
put_shape
);
return
args
[
0
].
reshape
(
dyn_out
.
com
put
ed
_shape
);
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
...
...
src/include/migraphx/op/pooling.hpp
View file @
e7f7ea10
...
...
@@ -64,8 +64,8 @@ struct pooling
void
check_attribute_size
()
const
{
if
(
not
(
(
padding
.
size
()
=
=
stride
.
size
()
or
(
padding
.
size
()
/
2
)
=
=
stride
.
size
())
and
stride
.
size
()
=
=
lengths
.
size
())
)
if
((
padding
.
size
()
!
=
stride
.
size
()
and
(
padding
.
size
()
/
2
)
!
=
stride
.
size
())
or
stride
.
size
()
!
=
lengths
.
size
())
{
MIGRAPHX_THROW
(
"POOLING: inconsistent attribute sizes"
);
}
...
...
@@ -83,7 +83,7 @@ struct pooling
size_t
kdims
=
input_lens
.
size
()
-
2
;
auto
input_size
=
inputs
[
0
].
lens
().
size
();
auto
padding_size
=
padding
.
size
();
if
(
not
(
input_size
=
=
padding_size
/
2
+
2
or
input_size
=
=
padding_size
+
2
)
)
if
(
input_size
!
=
padding_size
/
2
+
2
and
input_size
!
=
padding_size
+
2
)
{
MIGRAPHX_THROW
(
"POOLING: input and attribute size mismatch!"
);
}
...
...
src/include/migraphx/op/quant_convolution.hpp
View file @
e7f7ea10
...
...
@@ -41,9 +41,8 @@ struct quant_convolution
std
::
vector
<
std
::
size_t
>
stride
=
{
1
,
1
};
std
::
vector
<
std
::
size_t
>
dilation
=
{
1
,
1
};
padding_mode_t
padding_mode
=
default_
;
int
group
=
1
;
bool
use_dynamic_same_auto_pad
=
false
;
padding_mode_t
padding_mode
=
default_
;
int
group
=
1
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
...
...
@@ -52,8 +51,7 @@ struct quant_convolution
f
(
self
.
stride
,
"stride"
),
f
(
self
.
dilation
,
"dilation"
),
f
(
self
.
padding_mode
,
"padding_mode"
),
f
(
self
.
group
,
"group"
),
f
(
self
.
use_dynamic_same_auto_pad
,
"use_dynamic_same_auto_pad"
));
f
(
self
.
group
,
"group"
));
}
value
attributes
()
const
...
...
@@ -65,8 +63,8 @@ struct quant_convolution
void
check_attribute_size
()
const
{
if
(
not
(
(
padding
.
size
()
=
=
stride
.
size
()
or
(
padding
.
size
()
/
2
)
=
=
stride
.
size
())
and
stride
.
size
()
=
=
dilation
.
size
())
)
if
((
padding
.
size
()
!
=
stride
.
size
()
and
(
padding
.
size
()
/
2
)
!
=
stride
.
size
())
or
stride
.
size
()
!
=
dilation
.
size
())
{
MIGRAPHX_THROW
(
"QUANT_CONVOLUTION: inconsistent attribute sizes"
);
}
...
...
src/include/migraphx/op/unary.hpp
View file @
e7f7ea10
...
...
@@ -30,6 +30,7 @@
#include <migraphx/argument.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -62,9 +63,9 @@ struct unary : op_name<Derived>
value
attributes
()
const
{
return
base_attributes
();
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
static_cast
<
const
Derived
&>
(
*
this
)}.
has
(
1
);
check_shapes
{
inputs
,
static_cast
<
const
Derived
&>
(
*
this
)
,
true
}.
has
(
1
);
auto
s
=
inputs
.
at
(
0
);
if
(
s
.
scalar
())
if
(
s
.
dynamic
()
or
s
.
scalar
())
{
return
s
;
}
...
...
@@ -78,9 +79,9 @@ struct unary : op_name<Derived>
}
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
out
put_shape
};
argument
result
{
dyn_out
.
com
put
ed
_shape
};
result
.
visit
([
&
](
auto
output
)
{
args
[
0
].
visit
([
&
](
auto
input
)
{
std
::
transform
(
input
.
begin
(),
...
...
src/include/migraphx/operation.hpp
View file @
e7f7ea10
...
...
@@ -32,6 +32,8 @@
#include <utility>
#include <unordered_map>
#include <migraphx/reflect.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/normalize_attributes.hpp>
#include <migraphx/argument.hpp>
...
...
@@ -199,9 +201,12 @@ auto compute_op(rank<1>,
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
input
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
output_shape
,
input
))
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
)),
input
))
{
return
x
.
compute
(
auto_any_cast
(
ctx
),
output_shape
,
input
);
return
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
)),
input
);
}
template
<
class
T
>
...
...
@@ -220,9 +225,9 @@ compute_op(const T& x, context& ctx, const shape& output_shape, const std::vecto
template
<
class
T
>
auto
compute_op
(
rank
<
1
>
,
const
T
&
x
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
input
)
->
decltype
(
x
.
compute
(
output_shape
,
input
))
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
))
,
input
))
{
return
x
.
compute
(
output_shape
,
input
);
return
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
))
,
input
);
}
template
<
class
T
>
...
...
@@ -244,9 +249,11 @@ auto compute_op(rank<1>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
module_args
,
F
f
)
->
decltype
(
x
.
compute
(
output
,
inputs
,
module_args
,
f
))
F
f
)
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
))
{
return
x
.
compute
(
output
,
inputs
,
module_args
,
f
);
return
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
))
,
inputs
,
module_args
,
f
);
}
template
<
class
T
,
class
F
>
...
...
@@ -278,9 +285,17 @@ auto compute_op(rank<4>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
module_args
,
F
f
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
output
,
inputs
,
module_args
,
f
))
F
f
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
))
{
return
x
.
compute
(
auto_any_cast
(
ctx
),
output
,
inputs
,
module_args
,
f
);
return
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
);
}
template
<
class
T
,
class
F
>
...
...
@@ -290,9 +305,11 @@ auto compute_op(rank<3>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
module_args
,
F
f
)
->
decltype
(
x
.
compute
(
output
,
inputs
,
module_args
,
f
))
F
f
)
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
,
module_args
,
f
))
{
return
x
.
compute
(
output
,
inputs
,
module_args
,
f
);
return
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
))
,
inputs
,
module_args
,
f
);
}
template
<
class
T
,
class
F
>
...
...
@@ -302,9 +319,10 @@ auto compute_op(rank<2>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
,
F
)
->
decltype
(
x
.
compute
(
output
,
inputs
))
F
)
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
))
{
return
x
.
compute
(
output
,
inputs
);
return
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
))
,
inputs
);
}
template
<
class
T
,
class
F
>
...
...
@@ -314,9 +332,12 @@ auto compute_op(rank<1>,
const
shape
&
output
,
const
std
::
vector
<
argument
>&
inputs
,
const
std
::
vector
<
module_ref
>&
,
F
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
output
,
inputs
))
F
)
->
decltype
(
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
))
{
return
x
.
compute
(
auto_any_cast
(
ctx
),
output
,
inputs
);
return
x
.
compute
(
auto_any_cast
(
ctx
),
make_compute_output_shape
(
pack
(
x
,
output
,
inputs
)),
inputs
);
}
template
<
class
T
,
class
F
>
...
...
@@ -348,7 +369,8 @@ auto is_context_free_op(rank<1>,
const
T
&
x
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
input
)
->
decltype
(
x
.
compute
(
output_shape
,
input
),
std
::
true_type
{});
->
decltype
(
x
.
compute
(
make_compute_output_shape
(
pack
(
x
,
output_shape
,
input
)),
input
),
std
::
true_type
{});
template
<
class
T
>
auto
is_context_free_op
(
rank
<
0
>
,
const
T
&
,
const
shape
&
,
const
std
::
vector
<
argument
>&
)
...
...
src/include/migraphx/operators.hpp
View file @
e7f7ea10
...
...
@@ -35,7 +35,6 @@
#include <migraphx/op/as_shape.hpp>
#include <migraphx/op/atan.hpp>
#include <migraphx/op/atanh.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/binary.hpp>
#include <migraphx/op/broadcast.hpp>
#include <migraphx/op/capture.hpp>
...
...
Prev
1
2
3
4
5
6
…
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment