Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
e4f95696
Commit
e4f95696
authored
May 01, 2019
by
Khalique
Browse files
Merge branch 'develop' of
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX
into depthwise_conv
parents
cc09f36e
24d68767
Changes
9
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
227 additions
and
51 deletions
+227
-51
src/include/migraphx/op/unsqueeze.hpp
src/include/migraphx/op/unsqueeze.hpp
+7
-3
src/include/migraphx/program.hpp
src/include/migraphx/program.hpp
+12
-1
src/onnx/onnx.cpp
src/onnx/onnx.cpp
+38
-24
src/program.cpp
src/program.cpp
+64
-2
src/targets/cpu/lowering.cpp
src/targets/cpu/lowering.cpp
+1
-1
src/tf/tf.cpp
src/tf/tf.cpp
+24
-16
test/onnx/onnx_test.cpp
test/onnx/onnx_test.cpp
+1
-2
test/program_test.cpp
test/program_test.cpp
+78
-0
test/tf/tf_test.cpp
test/tf/tf_test.cpp
+2
-2
No files found.
src/include/migraphx/op/unsqueeze.hpp
View file @
e4f95696
...
...
@@ -29,9 +29,13 @@ struct unsqueeze
std
::
string
name
()
const
{
return
"unsqueeze"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
auto
input_shape
=
inputs
[
0
];
auto
type
=
input_shape
.
type
();
auto
old_lens
=
input_shape
.
lens
();
auto
input_shape
=
inputs
[
0
];
auto
type
=
input_shape
.
type
();
auto
old_lens
=
input_shape
.
lens
();
if
(
input_shape
.
scalar
())
return
shape
{
type
,
old_lens
};
std
::
size_t
new_size
=
old_lens
.
size
()
+
axes
.
size
();
std
::
vector
<
std
::
size_t
>
new_lens
(
new_size
);
std
::
size_t
p
=
0
;
...
...
src/include/migraphx/program.hpp
View file @
e4f95696
...
...
@@ -30,8 +30,16 @@ const operation& get_operation(instruction_ref ins);
struct
program
{
program
();
// move constructor
program
(
program
&&
)
noexcept
;
program
&
operator
=
(
program
&&
)
noexcept
;
// copy constructor
program
(
const
program
&
);
// copy assignment operator
program
&
operator
=
(
program
);
~
program
()
noexcept
;
using
parameter_map
=
std
::
unordered_map
<
std
::
string
,
argument
>
;
...
...
@@ -118,6 +126,9 @@ struct program
friend
bool
operator
==
(
const
program
&
x
,
const
program
&
y
);
friend
bool
operator
!=
(
const
program
&
x
,
const
program
&
y
)
{
return
!
(
x
==
y
);
}
private:
void
assign
(
const
program
&
p
);
private:
std
::
unique_ptr
<
program_impl
>
impl
;
};
...
...
src/onnx/onnx.cpp
View file @
e4f95696
...
...
@@ -1361,28 +1361,26 @@ struct onnx_parser
static
literal
parse_tensor
(
const
onnx
::
TensorProto
&
t
)
{
std
::
vector
<
std
::
size_t
>
dims
(
t
.
dims
().
begin
(),
t
.
dims
().
end
());
// in case of scalar constants in onnx file, use dims=1 to fill initializer data
if
(
dims
.
empty
())
{
dims
=
{
1
};
}
if
(
t
.
has_raw_data
())
{
const
std
::
string
&
s
=
t
.
raw_data
();
switch
(
t
.
data_type
())
{
case
onnx
::
TensorProto
::
UNDEFINED
:
throw
std
::
runtime_error
(
""
);
case
onnx
::
TensorProto
::
FLOAT
:
return
literal
{{
shape
::
float_type
,
dims
}
,
s
.
data
()
}
;
case
onnx
::
TensorProto
::
FLOAT
:
return
create_
literal
(
shape
::
float_type
,
dims
,
s
.
data
()
)
;
case
onnx
::
TensorProto
::
UINT8
:
throw
std
::
runtime_error
(
""
);
case
onnx
::
TensorProto
::
INT8
:
return
literal
{{
shape
::
int32_type
,
dims
},
s
.
data
()};
case
onnx
::
TensorProto
::
UINT16
:
return
literal
{{
shape
::
int32_type
,
dims
},
s
.
data
()};
case
onnx
::
TensorProto
::
INT16
:
return
literal
{{
shape
::
int32_type
,
dims
},
s
.
data
()};
case
onnx
::
TensorProto
::
INT32
:
return
literal
{{
shape
::
int32_type
,
dims
},
s
.
data
()};
case
onnx
::
TensorProto
::
INT64
:
return
literal
{{
shape
::
int64_type
,
dims
},
s
.
data
()};
case
onnx
::
TensorProto
::
INT8
:
return
create_literal
(
shape
::
int32_type
,
dims
,
s
.
data
());
case
onnx
::
TensorProto
::
UINT16
:
return
create_literal
(
shape
::
int32_type
,
dims
,
s
.
data
());
case
onnx
::
TensorProto
::
INT16
:
return
create_literal
(
shape
::
int32_type
,
dims
,
s
.
data
());
case
onnx
::
TensorProto
::
INT32
:
return
create_literal
(
shape
::
int32_type
,
dims
,
s
.
data
());
case
onnx
::
TensorProto
::
INT64
:
return
create_literal
(
shape
::
int64_type
,
dims
,
s
.
data
());
case
onnx
::
TensorProto
::
STRING
:
throw
std
::
runtime_error
(
""
);
case
onnx
::
TensorProto
::
BOOL
:
return
literal
{{
shape
::
int32_type
,
dims
},
s
.
data
()};
case
onnx
::
TensorProto
::
FLOAT16
:
return
literal
{{
shape
::
half_type
,
dims
},
s
.
data
()};
case
onnx
::
TensorProto
::
DOUBLE
:
return
literal
{{
shape
::
double_type
,
dims
},
s
.
data
()};
case
onnx
::
TensorProto
::
BOOL
:
return
create_literal
(
shape
::
int32_type
,
dims
,
s
.
data
());
case
onnx
::
TensorProto
::
FLOAT16
:
return
create_literal
(
shape
::
half_type
,
dims
,
s
.
data
());
case
onnx
::
TensorProto
::
DOUBLE
:
return
create_literal
(
shape
::
double_type
,
dims
,
s
.
data
());
case
onnx
::
TensorProto
::
UINT32
:
throw
std
::
runtime_error
(
""
);
case
onnx
::
TensorProto
::
UINT64
:
throw
std
::
runtime_error
(
""
);
case
onnx
::
TensorProto
::
COMPLEX64
:
throw
std
::
runtime_error
(
""
);
...
...
@@ -1394,21 +1392,21 @@ struct onnx_parser
{
case
onnx
::
TensorProto
::
UNDEFINED
:
throw
std
::
runtime_error
(
""
);
case
onnx
::
TensorProto
::
FLOAT
:
return
literal
{{
shape
::
float_type
,
dims
}
,
t
.
float_data
()
.
begin
(),
t
.
float_data
().
end
()}
;
return
create_
literal
(
shape
::
float_type
,
dims
,
t
.
float_data
()
)
;
case
onnx
::
TensorProto
::
UINT8
:
throw
std
::
runtime_error
(
""
);
case
onnx
::
TensorProto
::
INT8
:
return
literal
{{
shape
::
int32_type
,
dims
}
,
t
.
int32_data
()
.
begin
(),
t
.
int32_data
().
end
()}
;
return
create_
literal
(
shape
::
int32_type
,
dims
,
t
.
int32_data
()
)
;
case
onnx
::
TensorProto
::
UINT16
:
return
literal
{{
shape
::
int32_type
,
dims
}
,
t
.
int32_data
()
.
begin
(),
t
.
int32_data
().
end
()}
;
return
create_
literal
(
shape
::
int32_type
,
dims
,
t
.
int32_data
()
)
;
case
onnx
::
TensorProto
::
INT16
:
return
literal
{{
shape
::
int32_type
,
dims
}
,
t
.
int32_data
()
.
begin
(),
t
.
int32_data
().
end
()}
;
return
create_
literal
(
shape
::
int32_type
,
dims
,
t
.
int32_data
()
)
;
case
onnx
::
TensorProto
::
INT32
:
return
literal
{{
shape
::
int32_type
,
dims
}
,
t
.
int32_data
()
.
begin
(),
t
.
int32_data
().
end
()}
;
return
create_
literal
(
shape
::
int32_type
,
dims
,
t
.
int32_data
()
)
;
case
onnx
::
TensorProto
::
INT64
:
return
literal
{{
shape
::
int64_type
,
dims
}
,
t
.
int64_data
()
.
begin
(),
t
.
int64_data
().
end
()}
;
return
create_
literal
(
shape
::
int64_type
,
dims
,
t
.
int64_data
()
)
;
case
onnx
::
TensorProto
::
STRING
:
throw
std
::
runtime_error
(
""
);
case
onnx
::
TensorProto
::
BOOL
:
return
literal
{{
shape
::
int32_type
,
dims
}
,
t
.
int32_data
()
.
begin
(),
t
.
int32_data
().
end
()}
;
return
create_
literal
(
shape
::
int32_type
,
dims
,
t
.
int32_data
()
)
;
case
onnx
::
TensorProto
::
FLOAT16
:
{
std
::
vector
<
uint16_t
>
data_uint16
(
t
.
int32_data
().
begin
(),
t
.
int32_data
().
end
());
...
...
@@ -1417,11 +1415,10 @@ struct onnx_parser
data_uint16
.
end
(),
std
::
back_inserter
(
data_half
),
[](
uint16_t
raw_val
)
{
return
*
reinterpret_cast
<
half
*>
(
&
raw_val
);
});
return
literal
{{
shape
::
half_type
,
dims
}
,
data_half
.
begin
(),
data_half
.
end
()}
;
return
create_
literal
(
shape
::
half_type
,
dims
,
data_half
)
;
}
case
onnx
::
TensorProto
::
DOUBLE
:
return
literal
{
{
shape
::
double_type
,
dims
},
t
.
double_data
().
begin
(),
t
.
double_data
().
end
()};
return
create_literal
(
shape
::
double_type
,
dims
,
t
.
double_data
());
case
onnx
::
TensorProto
::
UINT32
:
throw
std
::
runtime_error
(
""
);
case
onnx
::
TensorProto
::
UINT64
:
throw
std
::
runtime_error
(
""
);
case
onnx
::
TensorProto
::
COMPLEX64
:
throw
std
::
runtime_error
(
""
);
...
...
@@ -1430,6 +1427,23 @@ struct onnx_parser
MIGRAPHX_THROW
(
"Invalid tensor type"
);
}
static
literal
create_literal
(
shape
::
type_t
shape_type
,
const
std
::
vector
<
size_t
>&
dims
,
const
char
*
data
)
{
// in case of scalar constants in onnx file, use dims=1 to fill initializer data
if
(
dims
.
empty
())
return
literal
{{
shape_type
},
data
};
return
literal
{{
shape_type
,
dims
},
data
};
}
template
<
class
T
,
MIGRAPHX_REQUIRES
(
not
std
::
is_pointer
<
T
>{})
>
static
literal
create_literal
(
shape
::
type_t
shape_type
,
const
std
::
vector
<
size_t
>&
dims
,
T
data
)
{
if
(
dims
.
empty
())
return
literal
{{
shape_type
},
data
.
begin
(),
data
.
end
()};
return
literal
{{
shape_type
,
dims
},
data
.
begin
(),
data
.
end
()};
}
static
shape
parse_type
(
const
onnx
::
TypeProto
&
t
)
{
shape
::
type_t
shape_type
{};
...
...
src/program.cpp
View file @
e4f95696
...
...
@@ -86,8 +86,70 @@ static void print_program(const program& p, F print_func)
program
::
program
()
:
impl
(
std
::
make_unique
<
program_impl
>
())
{}
program
::
program
(
program
&&
)
noexcept
=
default
;
program
&
program
::
operator
=
(
program
&&
)
noexcept
=
default
;
program
::~
program
()
noexcept
=
default
;
program
::~
program
()
noexcept
=
default
;
// copy constructor
program
::
program
(
const
program
&
p
)
{
assign
(
p
);
}
// copy assignment operator
program
&
program
::
operator
=
(
program
p
)
{
std
::
swap
(
p
.
impl
,
this
->
impl
);
return
*
this
;
}
void
program
::
assign
(
const
program
&
p
)
{
// clean the current program
if
(
!
impl
)
{
impl
=
std
::
make_unique
<
program_impl
>
();
}
else
if
(
!
impl
->
instructions
.
empty
())
{
impl
->
instructions
.
clear
();
}
impl
->
ctx
=
p
.
impl
->
ctx
;
std
::
unordered_map
<
instruction_ref
,
instruction_ref
>
ins_map
;
for
(
auto
ins
:
iterator_for
(
p
))
{
instruction_ref
copy_ins
{};
if
(
ins
->
name
()
==
"@literal"
)
{
auto
l
=
ins
->
get_literal
();
copy_ins
=
impl
->
instructions
.
insert
(
impl
->
instructions
.
end
(),
instruction
{
l
});
}
else
if
(
ins
->
name
()
==
"@param"
)
{
auto
&&
name
=
any_cast
<
builtin
::
param
>
(
ins
->
get_operator
()).
parameter
;
auto
s
=
ins
->
get_shape
();
copy_ins
=
impl
->
instructions
.
insert
(
impl
->
instructions
.
end
(),
{
builtin
::
param
{
name
},
std
::
move
(
s
),
{}});
}
else
if
(
ins
->
name
()
==
"@outline"
)
{
auto
s
=
ins
->
get_shape
();
copy_ins
=
impl
->
instructions
.
insert
(
impl
->
instructions
.
end
(),
{
builtin
::
outline
{
s
},
s
,
{}});
}
else
{
// retrieve its mapped input
auto
inputs
=
ins
->
inputs
();
// ensure all inputs have its corresponding copy instructions
assert
(
std
::
all_of
(
inputs
.
begin
(),
inputs
.
end
(),
[
&
](
auto
i
)
{
return
ins_map
.
count
(
i
)
>
0
;
}));
std
::
vector
<
instruction_ref
>
copy_inputs
(
inputs
.
size
());
std
::
transform
(
inputs
.
begin
(),
inputs
.
end
(),
copy_inputs
.
begin
(),
[
&
](
auto
i
)
{
return
ins_map
[
i
];
});
copy_ins
=
add_instruction
(
ins
->
get_operator
(),
copy_inputs
);
}
ins_map
[
ins
]
=
copy_ins
;
}
}
instruction_ref
program
::
add_instruction
(
const
operation
&
op
,
std
::
vector
<
instruction_ref
>
args
)
{
...
...
src/targets/cpu/lowering.cpp
View file @
e4f95696
...
...
@@ -772,7 +772,7 @@ template <typename Op>
struct
cpu_binary
{
Op
op
;
std
::
string
name
()
const
{
return
op
.
name
();
}
std
::
string
name
()
const
{
return
"cpu::"
+
op
.
name
();
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
inputs
.
front
();
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
...
...
src/tf/tf.cpp
View file @
e4f95696
...
...
@@ -794,10 +794,6 @@ struct tf_parser
static
literal
parse_tensor
(
const
tensorflow
::
TensorProto
&
t
)
{
std
::
vector
<
size_t
>
dims
=
parse_dims
(
t
.
tensor_shape
());
if
(
dims
.
empty
())
{
dims
=
{
1
};
}
size_t
shape_size
=
std
::
accumulate
(
dims
.
begin
(),
dims
.
end
(),
1
,
std
::
multiplies
<
size_t
>
());
if
(
!
t
.
tensor_content
().
empty
())
// has raw data
{
...
...
@@ -808,17 +804,17 @@ struct tf_parser
case
tensorflow
::
DataType
::
DT_FLOAT
:
return
literal
{{
shape
::
float_type
,
dims
},
s
.
data
()};
case
tensorflow
::
DataType
::
DT_UINT8
:
throw
std
::
runtime_error
(
""
);
case
tensorflow
::
DataType
::
DT_INT8
:
return
literal
{{
shape
::
int
32
_type
,
dims
},
s
.
data
()};
case
tensorflow
::
DataType
::
DT_INT8
:
return
literal
{{
shape
::
int
8
_type
,
dims
},
s
.
data
()};
case
tensorflow
::
DataType
::
DT_UINT16
:
return
literal
{{
shape
::
int
32
_type
,
dims
},
s
.
data
()};
return
literal
{{
shape
::
u
int
16
_type
,
dims
},
s
.
data
()};
case
tensorflow
::
DataType
::
DT_INT16
:
return
literal
{{
shape
::
int
32
_type
,
dims
},
s
.
data
()};
return
literal
{{
shape
::
int
16
_type
,
dims
},
s
.
data
()};
case
tensorflow
::
DataType
::
DT_INT32
:
return
literal
{{
shape
::
int32_type
,
dims
},
s
.
data
()};
case
tensorflow
::
DataType
::
DT_INT64
:
return
literal
{{
shape
::
int64_type
,
dims
},
s
.
data
()};
case
tensorflow
::
DataType
::
DT_STRING
:
throw
std
::
runtime_error
(
""
);
case
tensorflow
::
DataType
::
DT_BOOL
:
return
literal
{{
shape
::
int
32
_type
,
dims
},
s
.
data
()};
case
tensorflow
::
DataType
::
DT_BOOL
:
return
literal
{{
shape
::
int
8
_type
,
dims
},
s
.
data
()};
case
tensorflow
::
DataType
::
DT_HALF
:
return
literal
{{
shape
::
half_type
,
dims
},
s
.
data
()};
case
tensorflow
::
DataType
::
DT_DOUBLE
:
return
literal
{{
shape
::
double_type
,
dims
},
s
.
data
()};
...
...
@@ -868,21 +864,23 @@ struct tf_parser
{
case
tensorflow
::
DataType
::
DT_INVALID
:
throw
std
::
runtime_error
(
""
);
case
tensorflow
::
DataType
::
DT_FLOAT
:
return
literal
{{
shape
::
float_type
,
dims
},
get_data_vals
(
t
.
float_val
(),
shape_size
)};
return
create_literal
(
shape
::
float_type
,
dims
,
get_data_vals
(
t
.
float_val
(),
shape_size
));
case
tensorflow
::
DataType
::
DT_UINT8
:
throw
std
::
runtime_error
(
""
);
case
tensorflow
::
DataType
::
DT_INT8
:
return
literal
{{
shape
::
int
32
_type
,
dims
}
,
get_data_vals
(
t
.
int_val
(),
shape_size
)
}
;
return
create_
literal
(
shape
::
int
8
_type
,
dims
,
get_data_vals
(
t
.
int_val
(),
shape_size
)
)
;
case
tensorflow
::
DataType
::
DT_UINT16
:
return
literal
{{
shape
::
int
32
_type
,
dims
}
,
get_data_vals
(
t
.
int_val
(),
shape_size
)
}
;
return
create_
literal
(
shape
::
u
int
16
_type
,
dims
,
get_data_vals
(
t
.
int_val
(),
shape_size
)
)
;
case
tensorflow
::
DataType
::
DT_INT16
:
return
literal
{{
shape
::
int
32
_type
,
dims
}
,
get_data_vals
(
t
.
int_val
(),
shape_size
)
}
;
return
create_
literal
(
shape
::
int
16
_type
,
dims
,
get_data_vals
(
t
.
int_val
(),
shape_size
)
)
;
case
tensorflow
::
DataType
::
DT_INT32
:
return
literal
{{
shape
::
int32_type
,
dims
}
,
get_data_vals
(
t
.
int_val
(),
shape_size
)
}
;
return
create_
literal
(
shape
::
int32_type
,
dims
,
get_data_vals
(
t
.
int_val
(),
shape_size
)
)
;
case
tensorflow
::
DataType
::
DT_INT64
:
return
literal
{{
shape
::
int64_type
,
dims
},
get_data_vals
(
t
.
int64_val
(),
shape_size
)};
return
create_literal
(
shape
::
int64_type
,
dims
,
get_data_vals
(
t
.
int64_val
(),
shape_size
));
case
tensorflow
::
DataType
::
DT_STRING
:
throw
std
::
runtime_error
(
""
);
case
tensorflow
::
DataType
::
DT_BOOL
:
return
literal
{{
shape
::
int32_type
,
dims
}
,
get_data_vals
(
t
.
bool_val
(),
shape_size
)
}
;
return
create_
literal
(
shape
::
int32_type
,
dims
,
get_data_vals
(
t
.
bool_val
(),
shape_size
)
)
;
case
tensorflow
::
DataType
::
DT_HALF
:
{
std
::
vector
<
int
>
data_int32
=
get_data_vals
(
t
.
half_val
(),
shape_size
);
...
...
@@ -892,7 +890,7 @@ struct tf_parser
data_uint16
.
end
(),
std
::
back_inserter
(
data_half
),
[](
uint16_t
raw_val
)
{
return
*
reinterpret_cast
<
half
*>
(
&
raw_val
);
});
return
literal
{{
shape
::
half_type
,
dims
}
,
data_half
}
;
return
create_
literal
(
shape
::
half_type
,
dims
,
data_half
)
;
}
case
tensorflow
::
DataType
::
DT_DOUBLE
:
return
literal
{{
shape
::
double_type
,
dims
},
get_data_vals
(
t
.
double_val
(),
shape_size
)};
...
...
@@ -964,6 +962,16 @@ struct tf_parser
[](
tensorflow
::
TensorShapeProto_Dim
dim
)
{
return
dim
.
size
();
});
return
dims
;
}
template
<
class
T
>
static
literal
create_literal
(
shape
::
type_t
shape_type
,
const
std
::
vector
<
size_t
>&
dims
,
std
::
vector
<
T
>
data
)
{
// assume if explicit value is mentioned in protobuf and dim size <= 1, treat as scalar
if
(
dims
.
empty
()
or
(
dims
.
size
()
==
1
and
dims
.
front
()
==
1
))
return
literal
{{
shape_type
},
data
};
return
literal
{{
shape_type
,
dims
},
data
};
}
};
program
parse_tf
(
const
std
::
string
&
name
,
bool
is_nhwc
)
...
...
test/onnx/onnx_test.cpp
View file @
e4f95696
...
...
@@ -699,8 +699,7 @@ TEST_CASE(add_scalar_test)
{
migraphx
::
program
p
;
auto
l0
=
p
.
add_parameter
(
"0"
,
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
2
,
3
,
4
,
5
}});
auto
l1
=
p
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
1
}},
{
1
}});
auto
l1
=
p
.
add_literal
(
migraphx
::
literal
{
migraphx
::
shape
{
migraphx
::
shape
::
float_type
},
{
1
}});
auto
m0
=
p
.
add_instruction
(
migraphx
::
op
::
multibroadcast
{{
2
,
3
,
4
,
5
}},
l0
);
auto
m1
=
p
.
add_instruction
(
migraphx
::
op
::
multibroadcast
{{
2
,
3
,
4
,
5
}},
l1
);
p
.
add_instruction
(
migraphx
::
op
::
add
{},
m0
,
m1
);
...
...
test/program_test.cpp
View file @
e4f95696
...
...
@@ -2,6 +2,10 @@
#include <migraphx/program.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/op/add.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/mul.hpp>
#include <migraphx/cpu/target.hpp>
#include <sstream>
#include "test.hpp"
#include <basic_ops.hpp>
...
...
@@ -27,4 +31,78 @@ TEST_CASE(program_equality)
EXPECT
(
x
==
y
);
}
TEST_CASE
(
program_copy
)
{
auto
create_program_1
=
[]
{
migraphx
::
program
p
;
migraphx
::
shape
s
{
migraphx
::
shape
::
float_type
,
{
3
,
4
,
5
}};
std
::
vector
<
float
>
data
(
3
*
4
*
5
);
std
::
iota
(
data
.
begin
(),
data
.
end
(),
1.0
f
);
auto
l2
=
p
.
add_literal
(
migraphx
::
literal
(
s
,
data
));
auto
p1
=
p
.
add_parameter
(
"x"
,
s
);
auto
po
=
p
.
add_outline
(
s
);
auto
sum
=
p
.
add_instruction
(
migraphx
::
op
::
add
{},
l2
,
po
);
p
.
add_instruction
(
migraphx
::
op
::
mul
{},
sum
,
p1
);
return
p
;
};
{
auto
p1
=
create_program_1
();
migraphx
::
program
p2
{};
p2
=
p1
;
p2
.
compile
(
migraphx
::
cpu
::
target
{});
EXPECT
(
p1
!=
p2
);
p1
.
compile
(
migraphx
::
cpu
::
target
{});
EXPECT
(
p1
==
p2
);
}
{
auto
p1
=
create_program_1
();
auto
p2
(
p1
);
EXPECT
(
p1
==
p2
);
p1
.
compile
(
migraphx
::
cpu
::
target
{});
EXPECT
(
p1
!=
p2
);
p2
=
p1
;
EXPECT
(
p1
==
p2
);
}
{
auto
p1
=
create_program_1
();
auto
p2
=
create_program
();
EXPECT
(
p1
!=
p2
);
p2
=
p1
;
EXPECT
(
p1
==
p2
);
p1
.
compile
(
migraphx
::
cpu
::
target
{});
p2
.
compile
(
migraphx
::
cpu
::
target
{});
EXPECT
(
p1
==
p2
);
}
{
migraphx
::
program
p1
;
migraphx
::
shape
s1
{
migraphx
::
shape
::
float_type
,
{
2
,
3
}};
migraphx
::
shape
s2
{
migraphx
::
shape
::
float_type
,
{
3
,
6
}};
migraphx
::
shape
s3
{
migraphx
::
shape
::
float_type
,
{
2
,
6
}};
auto
para1
=
p1
.
add_parameter
(
"m1"
,
s1
);
auto
para2
=
p1
.
add_parameter
(
"m2"
,
s2
);
auto
para3
=
p1
.
add_parameter
(
"m3"
,
s3
);
p1
.
add_instruction
(
migraphx
::
op
::
dot
{
0.31
f
,
0.28
f
},
para1
,
para2
,
para3
);
migraphx
::
program
p2
{};
p2
=
p1
;
EXPECT
(
p2
==
p1
);
p1
.
compile
(
migraphx
::
cpu
::
target
{});
p2
.
compile
(
migraphx
::
cpu
::
target
{});
EXPECT
(
p2
==
p1
);
}
}
int
main
(
int
argc
,
const
char
*
argv
[])
{
test
::
run
(
argc
,
argv
);
}
test/tf/tf_test.cpp
View file @
e4f95696
...
...
@@ -80,7 +80,7 @@ TEST_CASE(concat_test)
int
axis
=
1
;
// tf uses axis as the third input, and it is in int32 format
// add the literal using a vector in order to set stride to 1 (like in tf parser)
p
.
add_literal
(
migraphx
::
shape
{
migraphx
::
shape
::
int32_type
,
{
1
}
},
std
::
vector
<
int
>
{
axis
});
p
.
add_literal
(
migraphx
::
shape
{
migraphx
::
shape
::
int32_type
},
std
::
vector
<
int
>
{
axis
});
p
.
add_instruction
(
migraphx
::
op
::
concat
{
static_cast
<
std
::
size_t
>
(
axis
)},
l0
,
l1
);
auto
prog
=
migraphx
::
parse_tf
(
"concat_test.pb"
,
false
);
...
...
@@ -91,7 +91,7 @@ TEST_CASE(concat_test)
TEST_CASE
(
const_test
)
{
migraphx
::
program
p
;
p
.
add_literal
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
,
{
1
}
},
std
::
vector
<
float
>
{
1.0
f
});
p
.
add_literal
(
migraphx
::
shape
{
migraphx
::
shape
::
float_type
},
std
::
vector
<
float
>
{
1.0
f
});
auto
prog
=
migraphx
::
parse_tf
(
"constant_test.pb"
,
false
);
EXPECT
(
p
==
prog
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment