Commit dfa26315 authored by charlie's avatar charlie
Browse files

Merge branch 'develop' of github.com:ROCmSoftwarePlatform/AMDMIGraphX into dyn_shape_update

parents aa085491 4a5a23a4
#include <migraphx/migraphx.hpp>
#include "test.hpp"
struct array2 : migraphx::array_base<array2>
{
std::vector<int> v;
array2() = default;
array2(std::initializer_list<int> x) : v(x) {}
std::size_t size() const { return v.size(); }
int operator[](std::size_t i) const { return v[i]; }
};
TEST_CASE(iterators)
{
array2 a = {1, 2, 3};
EXPECT(bool{std::equal(a.begin(), a.end(), a.v.begin())});
}
TEST_CASE(front_back)
{
array2 a = {1, 2, 3};
EXPECT(a.front() == 1);
EXPECT(a.back() == 3);
}
TEST_CASE(empty)
{
array2 a = {1, 2, 3};
EXPECT(not a.empty());
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
#include <numeric>
#include <hip/hip_runtime_api.h>
#include <migraphx/migraphx.h>
#include <migraphx/migraphx.hpp>
#include "test.hpp"
......@@ -38,6 +39,7 @@ TEST_CASE(load_and_run_ctx)
pp.add(name, migraphx::argument::generate(param_shapes[name]));
}
auto ctx = p.experimental_get_context();
EXPECT(ctx.get_queue<hipStream_t>() != nullptr);
p.eval(pp);
ctx.finish();
}
......
......@@ -60,16 +60,16 @@ TEST_CASE(if_then_else_op)
p.compile(migraphx::target("ref"));
auto outputs =
p.eval({{"cond", migraphx::argument(cond_s, &cond)}, {"x", x_arg}, {"y", y_arg}});
return outputs;
return outputs[0];
};
// then branch
auto then_res = run_prog(true);
CHECK(bool{then_res[0] == x_arg});
CHECK(bool{then_res == x_arg});
// else branch
auto else_res = run_prog(false);
CHECK(bool{else_res[0] == y_arg});
CHECK(bool{else_res == y_arg});
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
gathernd_batch_dims_test:
/
data
indicesy"GatherND*
batch_dimsgathernd_batch_dims_testZ
data



Z
indices


b
y


B
\ No newline at end of file
 gathernd_test:q

data
indicesy"GatherND gathernd_testZ
data


Z
indices


b
y

B
\ No newline at end of file
......@@ -1666,6 +1666,35 @@ def gather_elements_axis1_test():
return ([node], [x, i], [y])
@onnx_test
def gathernd_test():
x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2])
i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2])
node = onnx.helper.make_node('GatherND',
inputs=['data', 'indices'],
outputs=['y'])
return ([node], [x, i], [y])
@onnx_test
def gathernd_batch_dims_test():
x = helper.make_tensor_value_info('data', TensorProto.FLOAT, [2, 2, 2])
i = helper.make_tensor_value_info('indices', TensorProto.INT64, [2, 1])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2])
node = onnx.helper.make_node(
'GatherND',
inputs=['data', 'indices'],
outputs=['y'],
batch_dims=1,
)
return ([node], [x, i], [y])
@onnx_test
def gemm_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5, 7])
......@@ -4385,6 +4414,142 @@ def resize_upsample_pc_test():
return ([node], [X], [Y], [scale_tensor])
@onnx_test
def reversesequence_4D_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 2, 2, 2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 2, 2, 2])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x'],
outputs=['y'],
time_axis=0,
batch_axis=1,
sequence_lens=[2, 1],
)
return ([node], [x], [y])
@onnx_test
def reversesequence_batch_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
seq_lens = np.array([1, 2, 3, 4])
seq_lens_tensor = helper.make_tensor(
name="sequence_lens",
data_type=TensorProto.INT64,
dims=seq_lens.shape,
vals=seq_lens.astype(np.int64),
)
arg_seq_lens = helper.make_node(
"Constant",
inputs=[],
outputs=['arg_seq_lens'],
value=seq_lens_tensor,
)
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x', 'arg_seq_lens'],
outputs=['y'],
time_axis=1,
batch_axis=0,
)
return ([arg_seq_lens, node], [x], [y])
@onnx_test
def reversesequence_batch_axis_err_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4, 2])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4, 2])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x'],
outputs=['y'],
time_axis=0,
batch_axis=2,
sequence_lens=[4, 3, 2, 1],
)
return ([node], [x], [y])
@onnx_test
def reversesequence_rank_err_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x'],
outputs=['y'],
sequence_lens=[4, 3, 2, 1],
)
return ([node], [x], [y])
@onnx_test
def reversesequence_sequence_lens_shape_err_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x'],
outputs=['y'],
sequence_lens=[4, 3, 2],
)
return ([node], [x], [y])
@onnx_test
def reversesequence_same_axis_err_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x'],
outputs=['y'],
time_axis=1,
batch_axis=1,
sequence_lens=[4, 3, 2, 1],
)
return ([node], [x], [y])
@onnx_test
def reversesequence_time_axis_err_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4, 2, 3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4, 2, 3])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x'],
outputs=['y'],
time_axis=3,
batch_axis=0,
sequence_lens=[4, 3, 2, 1],
)
return ([node], [x], [y])
@onnx_test
def reversesequence_time_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [4, 4])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 4])
node = onnx.helper.make_node(
'ReverseSequence',
inputs=['x'],
outputs=['y'],
time_axis=0,
batch_axis=1,
sequence_lens=[4, 3, 2, 1],
)
return ([node], [x], [y])
@onnx_test
def roialign_default_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 4, 7, 8])
......
......@@ -1582,6 +1582,31 @@ TEST_CASE(gather_elements_axis1_test)
EXPECT(p == prog);
}
TEST_CASE(gathernd_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {2, 2}});
auto l1 = mm->add_parameter("indices", migraphx::shape{migraphx::shape::int64_type, {2, 2}});
mm->add_instruction(migraphx::make_op("gathernd"), l0, l1);
auto prog = optimize_onnx("gathernd_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(gathernd_batch_dims_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto l0 = mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {2, 2, 2}});
auto l1 = mm->add_parameter("indices", migraphx::shape{migraphx::shape::int64_type, {2, 1}});
int batch_dims = 1;
mm->add_instruction(migraphx::make_op("gathernd", {{"batch_dims", batch_dims}}), l0, l1);
auto prog = optimize_onnx("gathernd_batch_dims_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(gemm_test)
{
migraphx::program p;
......@@ -4222,6 +4247,126 @@ TEST_CASE(resize_upsample_pf_test)
EXPECT(p == prog);
}
TEST_CASE(reversesequence_batch_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
int batch_axis = 0;
int time_axis = 1;
migraphx::shape sx{migraphx::shape::float_type, {4, 4}};
auto input = mm->add_parameter("x", sx);
std::vector<int64_t> sequence_lens = {1, 2, 3, 4};
mm->add_literal({{migraphx::shape::int64_type, {4}}, sequence_lens});
int batch_size = sx.lens()[batch_axis];
int time_size = sx.lens()[time_axis];
auto add_slice =
[&mm, &input, batch_axis, time_axis](int b_start, int b_end, int t_start, int t_end) {
return mm->add_instruction(migraphx::make_op("slice",
{{"axes", {batch_axis, time_axis}},
{"starts", {b_start, t_start}},
{"ends", {b_end, t_end}}}),
input);
};
auto ret = add_slice(0, 1, 0, time_size);
for(int b = 1; b < batch_size; ++b)
{
auto s0 = add_slice(b, b + 1, 0, sequence_lens[b]);
s0 = mm->add_instruction(migraphx::make_op("reverse", {{"axes", {time_axis}}}), s0);
if(sequence_lens[b] < time_size)
{
auto s1 = add_slice(b, b + 1, sequence_lens[b], time_size);
s0 = mm->add_instruction(migraphx::make_op("concat", {{"axis", time_axis}}), s0, s1);
}
ret = mm->add_instruction(migraphx::make_op("concat", {{"axis", batch_axis}}), ret, s0);
}
mm->add_return({ret});
auto prog = migraphx::parse_onnx("reversesequence_batch_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(reversesequence_batch_axis_err_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("reversesequence_batch_axis_err_test.onnx"); }));
}
TEST_CASE(reversesequence_rank_err_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("reversesequence_rank_err_test.onnx"); }));
}
TEST_CASE(reversesequence_sequence_lens_shape_err_test)
{
EXPECT(test::throws(
[&] { migraphx::parse_onnx("reversesequence_sequence_lens_shape_err_test.onnx"); }));
}
TEST_CASE(reversesequence_same_axis_err_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("reversesequence_same_axis_err_test.onnx"); }));
}
TEST_CASE(reversesequence_time_axis_err_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("reversesequence_time_axis_err_test.onnx"); }));
}
TEST_CASE(reversesequence_time_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
int batch_axis = 1;
int time_axis = 0;
migraphx::shape sx{migraphx::shape::float_type, {4, 4}};
auto input = mm->add_parameter("x", sx);
int batch_size = sx.lens()[batch_axis];
int time_size = sx.lens()[time_axis];
std::vector<int64_t> sequence_lens = {4, 3, 2, 1};
auto add_slice =
[&mm, &input, batch_axis, time_axis](int b_start, int b_end, int t_start, int t_end) {
return mm->add_instruction(migraphx::make_op("slice",
{{"axes", {batch_axis, time_axis}},
{"starts", {b_start, t_start}},
{"ends", {b_end, t_end}}}),
input);
};
migraphx::instruction_ref ret;
for(int b = 0; b < batch_size - 1; ++b)
{
auto s0 = add_slice(b, b + 1, 0, sequence_lens[b]);
s0 = mm->add_instruction(migraphx::make_op("reverse", {{"axes", {time_axis}}}), s0);
if(sequence_lens[b] < time_size)
{
auto s1 = add_slice(b, b + 1, sequence_lens[b], time_size);
s0 = mm->add_instruction(migraphx::make_op("concat", {{"axis", time_axis}}), s0, s1);
}
if(b == 0)
{
ret = s0;
}
else
{
ret = mm->add_instruction(migraphx::make_op("concat", {{"axis", batch_axis}}), ret, s0);
}
}
auto s0 = add_slice(batch_size - 1, batch_size, 0, time_size);
ret = mm->add_instruction(migraphx::make_op("concat", {{"axis", batch_axis}}), ret, s0);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("reversesequence_time_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(roialign_default_test)
{
migraphx::shape sx{migraphx::shape::float_type, {10, 4, 7, 8}};
......
reversesequence_rank_err_test:v
3
xy"ReverseSequence*
sequence_lens@@@@reversesequence_rank_err_testZ
x

b
y

B
\ No newline at end of file
"reversesequence_same_axis_err_test:
X
xy"ReverseSequence*
batch_axis*
sequence_lens@@@@*
time_axis"reversesequence_same_axis_err_testZ
x


b
y


B
\ No newline at end of file
,reversesequence_sequence_lens_shape_err_test:‹
1
xy"ReverseSequence*
sequence_lens@@@ ,reversesequence_sequence_lens_shape_err_testZ
x


b
y


B
\ No newline at end of file
......@@ -698,6 +698,69 @@ TEST_CASE(resize_upsample_pf_test)
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(reversesequence_4D_verify_test)
{
migraphx::program p = migraphx::parse_onnx("reversesequence_4D_test.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape xs{migraphx::shape::float_type, {2, 2, 2, 2}};
std::vector<float> x_data = {
0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0};
migraphx::parameter_map param_map;
param_map["x"] = migraphx::argument(xs, x_data.data());
auto result = p.eval(param_map).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {
8.0, 9.0, 10.0, 11.0, 4.0, 5.0, 6.0, 7.0, 0.0, 1.0, 2.0, 3.0, 12.0, 13.0, 14.0, 15.0};
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(reversesequence_batch_verify_test)
{
migraphx::program p = migraphx::parse_onnx("reversesequence_batch_test.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape xs{migraphx::shape::float_type, {4, 4}};
std::vector<float> x_data = {
0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0};
migraphx::parameter_map param_map;
param_map["x"] = migraphx::argument(xs, x_data.data());
auto result = p.eval(param_map).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {
0.0, 1.0, 2.0, 3.0, 5.0, 4.0, 6.0, 7.0, 10.0, 9.0, 8.0, 11.0, 15.0, 14.0, 13.0, 12.0};
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(reversesequence_time_verify_test)
{
migraphx::program p = migraphx::parse_onnx("reversesequence_time_test.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape xs{migraphx::shape::float_type, {4, 4}};
std::vector<float> x_data = {
0.0, 4.0, 8.0, 12.0, 1.0, 5.0, 9.0, 13.0, 2.0, 6.0, 10.0, 14.0, 3.0, 7.0, 11.0, 15.0};
migraphx::parameter_map param_map;
param_map["x"] = migraphx::argument(xs, x_data.data());
auto result = p.eval(param_map).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {
3.0, 6.0, 9.0, 12.0, 2.0, 5.0, 8.0, 13.0, 1.0, 4.0, 10.0, 14.0, 0.0, 7.0, 11.0, 15.0};
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(selu_test)
{
migraphx::program p = migraphx::parse_onnx("selu_test.onnx");
......
......@@ -178,6 +178,7 @@ def create_backend_test(testname=None, target_device=None):
backend_test.include(r'.*test_reduce.*')
backend_test.include(r'.*test_ReLU*')
backend_test.include(r'.*test_relu.*')
#backend_test.include(r'.*test_reversesequence.*')
backend_test.include(r'.*test_RoiAlign*')
backend_test.include(r'.*test_roialign.*')
backend_test.include(r'.*test_scatter.*')
......@@ -267,9 +268,6 @@ def create_backend_test(testname=None, target_device=None):
backend_test.exclude(r'test_expand_shape_model2_cpu')
backend_test.exclude(r'test_expand_shape_model3_cpu')
backend_test.exclude(r'test_expand_shape_model4_cpu')
backend_test.exclude(r'test_gathernd_example_float32_cpu')
backend_test.exclude(r'test_gathernd_example_int32_batch_dim1_cpu')
backend_test.exclude(r'test_gathernd_example_int32_cpu')
backend_test.exclude(r'test_identity_sequence_cpu')
backend_test.exclude(r'test_maxpool_2d_uint8_cpu')
backend_test.exclude(r'test_negative_log_likelihood_loss_*')
......
......@@ -1653,6 +1653,203 @@ TEST_CASE(gather_test)
}
}
TEST_CASE(gathernd_test)
{
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape ds{migraphx::shape::float_type, {2, 2}};
migraphx::shape is{migraphx::shape::int64_type, {2, 2}};
std::vector<float> data_vec(2 * 2);
std::iota(data_vec.begin(), data_vec.end(), 0);
std::vector<int64_t> indices_vec{0, 0, 1, 1};
auto data = mm->add_literal(migraphx::literal{ds, data_vec});
auto indices = mm->add_literal(migraphx::literal{is, indices_vec});
mm->add_instruction(migraphx::make_op("gathernd"), data, indices);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> res_data{};
std::vector<float> gold{0, 3};
result.visit([&](auto output) { res_data.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(res_data, gold));
}
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape ds{migraphx::shape::float_type, {2, 2}};
migraphx::shape is{migraphx::shape::int64_type, {2, 1}};
std::vector<float> data_vec(2 * 2);
std::iota(data_vec.begin(), data_vec.end(), 0);
std::vector<int64_t> indices_vec{1, 0};
auto data = mm->add_literal(migraphx::literal{ds, data_vec});
auto indices = mm->add_literal(migraphx::literal{is, indices_vec});
mm->add_instruction(migraphx::make_op("gathernd"), data, indices);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> res_data{};
std::vector<float> gold{2, 3, 0, 1};
result.visit([&](auto output) { res_data.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(res_data, gold));
}
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape ds{migraphx::shape::float_type, {2, 3, 1}};
migraphx::shape is{migraphx::shape::int64_type, {2, 2, 1}};
std::vector<float> data_vec(2 * 3 * 1);
std::iota(data_vec.begin(), data_vec.end(), 0);
std::vector<int64_t> indices_vec{1, 0, 0, 1};
auto data = mm->add_literal(migraphx::literal{ds, data_vec});
auto indices = mm->add_literal(migraphx::literal{is, indices_vec});
mm->add_instruction(migraphx::make_op("gathernd"), data, indices);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> res_data{};
std::vector<float> gold{3, 4, 5, 0, 1, 2, 0, 1, 2, 3, 4, 5};
result.visit([&](auto output) { res_data.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(res_data, gold));
}
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape ds{migraphx::shape::float_type, {2, 3, 2, 3}};
migraphx::shape is{migraphx::shape::int64_type, {2, 2, 2}};
std::vector<float> data_vec(2 * 3 * 2 * 3);
std::iota(data_vec.begin(), data_vec.end(), 0);
std::vector<int64_t> indices_vec{0, 0, 0, 1, 0, 0, 0, 1};
const int batch_dims = 1;
auto data = mm->add_literal(migraphx::literal{ds, data_vec});
auto indices = mm->add_literal(migraphx::literal{is, indices_vec});
mm->add_instruction(
migraphx::make_op("gathernd", {{"batch_dims", batch_dims}}), data, indices);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> res_data{};
std::vector<float> gold{0, 1, 2, 3, 4, 5, 18, 19, 20, 21, 22, 23};
result.visit([&](auto output) { res_data.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(res_data, gold));
}
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape ds{migraphx::shape::float_type, {2, 3, 1, 3}};
migraphx::shape is{migraphx::shape::int64_type, {2, 3, 2}};
std::vector<float> data_vec(2 * 3 * 1 * 3);
std::iota(data_vec.begin(), data_vec.end(), 0);
std::vector<int64_t> indices_vec{0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 0};
const int batch_dims = 2;
auto data = mm->add_literal(migraphx::literal{ds, data_vec});
auto indices = mm->add_literal(migraphx::literal{is, indices_vec});
mm->add_instruction(
migraphx::make_op("gathernd", {{"batch_dims", batch_dims}}), data, indices);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> res_data{};
std::vector<float> gold{0, 4, 8, 11, 13, 15};
result.visit([&](auto output) { res_data.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(res_data, gold));
}
{
// k > r - batch_dims
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape ds{migraphx::shape::float_type, {2, 3, 1, 3}};
migraphx::shape is{migraphx::shape::int64_type, {2, 3, 3}};
std::vector<float> data_vec(2 * 3 * 1 * 3);
std::iota(data_vec.begin(), data_vec.end(), 0);
std::vector<int64_t> indices_vec(2 * 3 * 3, 0);
const int batch_dims = 2;
auto data = mm->add_literal(migraphx::literal{ds, data_vec});
auto indices = mm->add_literal(migraphx::literal{is, indices_vec});
EXPECT(test::throws([&] {
mm->add_instruction(
migraphx::make_op("gathernd", {{"batch_dims", batch_dims}}), data, indices);
}));
}
}
TEST_CASE(gathernd_negative_index_test)
{
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape ds{migraphx::shape::float_type, {2, 2}};
migraphx::shape is{migraphx::shape::int64_type, {2, 1, 1}};
std::vector<float> data_vec(2 * 2);
std::iota(data_vec.begin(), data_vec.end(), 0);
std::vector<int64_t> indices_vec{-1, 0};
auto data = mm->add_literal(migraphx::literal{ds, data_vec});
auto indices = mm->add_literal(migraphx::literal{is, indices_vec});
mm->add_instruction(migraphx::make_op("gathernd"), data, indices);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> res_data{};
std::vector<float> gold{2, 3, 0, 1};
result.visit([&](auto output) { res_data.assign(output.begin(), output.end()); });
EXPECT(migraphx::verify_range(res_data, gold));
}
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape ds{migraphx::shape::float_type, {2, 2}};
migraphx::shape is{migraphx::shape::int64_type, {2, 1, 1}};
std::vector<float> data_vec(2 * 2);
std::iota(data_vec.begin(), data_vec.end(), 0);
std::vector<int64_t> indices_vec{-3, 0};
auto data = mm->add_literal(migraphx::literal{ds, data_vec});
auto indices = mm->add_literal(migraphx::literal{is, indices_vec});
mm->add_instruction(migraphx::make_op("gathernd"), data, indices);
p.compile(migraphx::ref::target{});
EXPECT(test::throws([&] { p.eval({}); }));
}
}
TEST_CASE(globalavgpool_test)
{
migraphx::program p;
......
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_gathernd_batch_dims_1 : verify_program<test_gathernd_batch_dims_1>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape ds{migraphx::shape::float_type, {2, 3, 2, 3}};
migraphx::shape is{migraphx::shape::int64_type, {2, 3, 2}};
std::vector<int64_t> indices{1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0};
auto a0 = mm->add_parameter("data", ds);
auto a1 = mm->add_literal(migraphx::literal{is, indices});
int batch_dims = 1;
mm->add_instruction(migraphx::make_op("gathernd", {{"batch_dims", batch_dims}}), a0, a1);
return p;
}
};
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_gathernd_batch_dims_2 : verify_program<test_gathernd_batch_dims_2>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape ds{migraphx::shape::float_type, {2, 3, 1, 3}};
migraphx::shape is{migraphx::shape::int64_type, {2, 3, 2}};
std::vector<int64_t> indices{0, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 0};
auto a0 = mm->add_parameter("data", ds);
auto a1 = mm->add_literal(migraphx::literal{is, indices});
int batch_dims = 2;
mm->add_instruction(migraphx::make_op("gathernd", {{"batch_dims", batch_dims}}), a0, a1);
return p;
}
};
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment