"src/git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "0b2fb46a473bd8ab448f2b65b3f491dbabf967a6"
Commit df7f8a35 authored by Umang Yadav's avatar Umang Yadav
Browse files

changes for the FP8 ref implementation

parent 35e5298e
......@@ -44,7 +44,8 @@
m(int32_type, int32_t) \
m(int64_type, int64_t) \
m(uint32_type, uint32_t) \
m(uint64_type, uint64_t)
m(uint64_type, uint64_t) \
m(fp8e4m3fnuz_type, migraphx_fp8::fp8e4m3fnuz)
// clang-format on
#ifdef __cplusplus
......
......@@ -27,6 +27,7 @@
#include <half/half.hpp>
#include <migraphx/config.hpp>
#include <migraphx/migraphx_float8.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -67,6 +68,18 @@ struct common_type<T, migraphx::half> : std::common_type<float, T> // NOLINT
{
};
template <>
struct common_type<migraphx_fp8::fp8e4m3fnuz, migraphx::half>
{
using type = float;
};
template <>
struct common_type<migraphx::half, migraphx_fp8::fp8e4m3fnuz>
{
using type = float;
};
template <>
struct common_type<migraphx::half, migraphx::half>
{
......
/* ************************************************************************
* Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#ifndef MIGRAPHX_FP8_IMPL_HPP
#define MIGRAPHX_FP8_IMPL_HPP
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wreserved-identifier"
#endif
#define CONST_FOLD(x) (__builtin_constant_p(x) ? (x) : (x))
namespace migraphx_f8_impl {
namespace detail {
template <bool B, class T, class F>
struct conditional
{
using type = T;
};
template <class T, class F>
struct conditional<false, T, F>
{
using type = F;
};
template <typename To, typename From>
inline constexpr To bit_cast(From fr) noexcept
{
static_assert(sizeof(To) == sizeof(From));
#if defined(__GNUC__) and !defined(__clang__)
To x = CONST_FOLD(*reinterpret_cast<To*>(&fr));
#else
To x = __builtin_bit_cast(To, fr);
#endif
return x;
}
} // namespace detail
template <int wm, int we, typename T, bool negative_zero_nan, bool clip>
constexpr uint8_t cast_to_f8(T _x, bool stoch, uint32_t rng)
{
static_assert(wm + we == 7, "wm+we==7");
const int mfmt = (sizeof(T) == 4) ? 23 : 10;
typename detail::conditional<sizeof(T) == 2, uint16_t, uint32_t>::type x;
if constexpr(sizeof(T) == 4)
x = detail::bit_cast<uint32_t>(_x);
else
x = detail::bit_cast<uint16_t>(_x);
uint32_t head, mantissa;
int exponent, bias;
uint32_t sign;
if constexpr(sizeof(T) == 4)
{
head = x & 0xFF800000;
mantissa = x & 0x7FFFFF;
exponent = (head >> 23) & 0xFF;
sign = head >> 31;
bias = 127;
}
else
{
head = x & 0xFC00;
mantissa = x & 0x3FF;
exponent = (head >> 10) & 0x1F;
sign = head >> 15;
bias = 15;
}
uint32_t signed_inf = (sign << 7) + (((1 << we) - 1) << wm);
// Deal with inf and NaNs
if(negative_zero_nan)
{
if(sizeof(T) == 4)
{
if((x & 0x7F800000) == 0x7F800000)
return 0x80;
}
else
{
// if(__hisinf(x) || __hisnan(x))
if((x & 0x7C00) == 0x7C00)
return 0x80;
}
}
else
{
if(sizeof(T) == 4)
{
if((x & 0x7F800000) == 0x7F800000)
return signed_inf + (mantissa != 0 ? 1 : 0);
}
else
{
if((x & 0x7C00) == 0x7C00)
return signed_inf + (mantissa != 0 ? 1 : 0);
}
}
// handle positive zero
if(x == 0)
return 0;
// handle negative zero
if((sizeof(T) == 4 and x == 0x80000000) or (sizeof(T) == 2 and x == 0x8000))
{
if(negative_zero_nan)
{
return 0;
}
else
{
return 0x80;
}
}
// First need to check if it is normal or denorm as there is a difference of implict 1
// Then need to adjust the exponent to align with the F8 exponent, in the meanwhile, shift
// The mantissa. Then for stochastic rounding, add rng to mantissa and truncate. And for
// RNE, no need to add rng. Then probably need to check whether there is carry and adjust
// exponent and mantissa again
// For IEEE bias mode, the bias is 2^(k-1) -1 where k is the width of exponent bits
const int f8_bias = (1 << (we - 1)) - 1 + (negative_zero_nan ? 1 : 0);
const int f8_denormal_act_exponent = 1 - f8_bias; // actual exponent of f8 denormal
// act_exponent is the actual exponent of fp32/fp16 (after subtracting bias)
// f8_exponent is the converted f8 exponent with bias encoding
// exponent_diff is the diff between fp32/fp16 exponent and f8 exponent,
// the difference needs to be adjusted and mantissa shifted
int act_exponent, f8_exponent, exponent_diff;
if(exponent == 0)
{ // fp32/fp16 is in denormal.
/* fp32 denormal is below 2^-127 so it is usually not a concern here, we mostly concern fp16
here. In this case, f8 is usually in denormal. But there could be exceptions. fp16 denormal has
exponent bias 15 while bf8 with NANOO has exponent bias 16. It means that there are some numbers in
fp16 denormal but they are bf8 (NANOO) normals - smallest bf8 (NANOO) normal is 2^-15. fp16 numbers
where exponent==0 (actual exponent -14) and highest bit of mantissa is 1 are bf8 (NANOO) normal. In
this case, the fp16 mantissa should be shift left by 1 */
act_exponent = exponent - bias + 1;
exponent_diff = f8_denormal_act_exponent -
act_exponent; // actual exponent is exponent-bias+1 as it is denormal
}
else
{ // fp32/fp16 is normal with implicit 1
act_exponent = exponent - bias;
if(act_exponent <= f8_denormal_act_exponent)
{
/* This is the case where fp32/fp16 is normal but it is in f8 denormal range.
For example fp8 nanoo mode, denormal exponent is -7, but if the fp32/fp16
actual exponent is -7, it is actually larger due to the implict 1,
Therefore it needs to be adjust to -6 and mantissa shift right by 1.
So for fp32/fp16, exponent -8 is the cut point to convert to fp8 nanoo */
exponent_diff = f8_denormal_act_exponent - act_exponent;
}
else
{ // both fp32/fp16 and f8 are in normal range
exponent_diff =
0; // exponent_diff=0 does not mean there is no difference for this case,
// act_exponent could be larger. Just that it does not need shift mantissa
}
mantissa += (1 << mfmt); // Add the implicit 1 into mantissa
}
bool midpoint = (mantissa & ((1 << (mfmt - wm + exponent_diff)) - 1)) ==
(1 << (mfmt - wm + exponent_diff - 1));
/* This part is a bit tricky. The judgment of whether it is a tie needs to be done before we
shift right as shift right could rip off some residual part and make something not midpoint look
like midpoint. For example, the fp16 number 0x1002 (0 00100 0000000010), it is larger than
midpoint, but after shift right by 4 bits, it would look like midpoint.
*/
if(exponent_diff > 0)
mantissa >>= exponent_diff;
else if(exponent_diff == -1)
mantissa <<= -exponent_diff;
bool implicit_one = mantissa & (1 << mfmt);
// if there is no implict 1, it means the f8 is denormal and need to adjust to denorm exponent
f8_exponent =
(act_exponent + exponent_diff) /*actual f8 exponent*/ + f8_bias - (implicit_one ? 0 : 1);
// Now we have the exponent and mantissa adjusted
uint32_t drop_mask = (1 << (mfmt - wm)) - 1;
bool odd =
mantissa & (1 << (mfmt - wm)); // if the least significant bit that is not truncated is 1
mantissa += (stoch ? rng : (midpoint ? (odd ? mantissa : mantissa - 1) : mantissa)) & drop_mask;
// Now we deal with overflow
if(f8_exponent == 0)
{
if((1 << mfmt) & mantissa)
{
f8_exponent = 1; // denormal overflow to become normal, promote exponent
}
}
else
{
if((1 << (mfmt + 1)) & mantissa)
{
mantissa >>= 1;
f8_exponent++;
}
}
mantissa >>= (mfmt - wm);
// above range: quantize to maximum possible float of the same sign
const int max_exp = (1 << we) - (negative_zero_nan ? 1 : 2);
if(f8_exponent > max_exp)
{
if(clip)
{
mantissa = (1 << wm) - 1;
f8_exponent = max_exp;
}
else
{
return signed_inf;
}
}
if(f8_exponent == 0 && mantissa == 0)
return negative_zero_nan ? 0 : (sign << 7);
mantissa &= (1 << wm) - 1;
return (sign << 7) | (f8_exponent << wm) | mantissa;
}
template <int wm, int we, typename T, bool negative_zero_nan>
constexpr T cast_from_f8(uint8_t x)
{
constexpr int weo = 8;
constexpr int wmo = 23;
T fInf, fNegInf, fNaN, fNeg0;
uint32_t ifInf = 0x7F800000;
uint32_t ifNegInf = 0xFF800000;
uint32_t ifNaN = 0x7F800001;
uint32_t ifNeg0 = 0x80000000;
// TODO: need to change T for half but right now it would never called with half
fInf = detail::bit_cast<float>(ifInf);
fNegInf = detail::bit_cast<float>(ifNegInf);
fNaN = detail::bit_cast<float>(ifNaN);
fNeg0 = detail::bit_cast<float>(ifNeg0);
if(x == 0)
return 0;
uint32_t sign = x >> 7;
uint32_t mantissa = x & ((1 << wm) - 1);
int exponent = (x & 0x7F) >> wm;
if(negative_zero_nan)
{
if(x == 0x80)
return fNaN;
}
else
{
if(x == 0x80)
return fNeg0;
if(exponent == ((1 << we) - 1))
return (mantissa == 0) ? (sign ? fNegInf : fInf) : fNaN;
}
typename detail::conditional<sizeof(T) == 2, uint16_t, uint32_t>::type retval;
const int exp_low_cutoff = (1 << (weo - 1)) - (1 << (we - 1)) + 1 - (negative_zero_nan ? 1 : 0);
// subnormal input
if(exponent == 0)
{
// guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
int sh = 1 + __builtin_clz(mantissa) - (32 - wm);
mantissa <<= sh;
exponent += 1 - sh;
mantissa &= ((1 << wm) - 1);
}
exponent += exp_low_cutoff - 1;
mantissa <<= wmo - wm;
// subnormal output (occurs when T=half, we=5, negative_zero_nan=true)
if(exponent <= 0)
{
mantissa |= 1 << wmo;
mantissa >>= 1 - exponent;
exponent = 0;
}
if(sizeof(T) == 2)
retval = (sign << 15) | (exponent << 10) | mantissa;
else
retval = (sign << 31) | (exponent << 23) | mantissa;
return detail::bit_cast<T>(retval);
}
} // namespace migraphx_f8_impl
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
#endif // MIGRAPHX_FP8_IMPL_HPP
/* ************************************************************************
* Copyright (C) 2016-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell cop-
* ies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IM-
* PLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNE-
* CTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* ************************************************************************ */
#ifndef MIGRAPHX_GUARD_RTGLIB_FLOAT8_HPP
#define MIGRAPHX_GUARD_RTGLIB_FLOAT8_HPP
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wold-style-cast"
#pragma clang diagnostic ignored "-Wfloat-equal"
#pragma clang diagnostic ignored "-Wmacro-redefined"
#pragma clang diagnostic ignored "-Wc++20-extensions"
#endif // __clang__
#ifndef MIGRAPHX_FP8_FNUZ
#define MIGRAPHX_FP8_FNUZ true
#endif // MIGRAPHX_FP8_FNUZ
// We are clipping in down conversion by default
#define MIGRAPHX_F8_DOWNCAST_CLIPPING 1
#include <cmath>
#include <cstdint>
#include <climits>
#include <cstring>
#include <iosfwd>
#include <limits>
#include <sstream>
#include <iostream>
#include <string>
#include <utility>
namespace migraphx_f8_impl {
template <int wm, int we, typename T, bool negative_zero_nan, bool clip>
constexpr uint8_t cast_to_f8(T _x, bool stoch = false, uint32_t rng = 0);
template <int wm, int we, typename T, bool negative_zero_nan>
constexpr T cast_from_f8(uint8_t x);
} // namespace migraphx_f8_impl
#include <migraphx/migraphx_f8_impl.hpp>
namespace migraphx_fp8 {
enum class migraphx_f8_rounding_mode
{
standard, // standard rounding is doing RNE -- round to nearest even
stochastic
};
enum class f8_type
{
bf8 = 0, // s1e5m2
fp8 = 1 // s1e4m3
};
template <typename T>
class numeric_limits;
template <migraphx_fp8::f8_type T = migraphx_fp8::f8_type::fp8>
struct float8
{
uint8_t data;
// default constructor
constexpr float8() = default;
// default copy constructor
constexpr float8(const float8<T>& y) = default;
struct from_bits_t
{
};
static constexpr from_bits_t from_bits() { return from_bits_t(); }
explicit constexpr float8(uint8_t bits, from_bits_t) : data(bits) {}
explicit constexpr float8(float v,
migraphx_fp8::migraphx_f8_rounding_mode rm =
migraphx_fp8::migraphx_f8_rounding_mode::standard,
uint32_t rng = 0)
{
if constexpr(T == migraphx_fp8::f8_type::fp8)
{
#ifdef MIGRAPHX_F8_DOWNCAST_CLIPPING
data = migraphx_f8_impl::
cast_to_f8<3, 4, float, MIGRAPHX_FP8_FNUZ /*negative_zero_nan*/, true /*clip*/>(
v, (rm == migraphx_fp8::migraphx_f8_rounding_mode::stochastic), rng);
#else // MIGRAPHX_F8_DOWNCAST_CLIPPING
data = migraphx_f8_impl::
cast_to_f8<3, 4, float, MIGRAPHX_FP8_FNUZ /*negative_zero_nan*/, false /*clip*/>(
v, (rm == migraphx_fp8::migraphx_f8_rounding_mode::stochastic), rng);
#endif // MIGRAPHX_F8_DOWNCAST_CLIPPING
}
else
{
#ifdef MIGRAPHX_F8_DOWNCAST_CLIPPING
data = migraphx_f8_impl::
cast_to_f8<2, 5, float, MIGRAPHX_FP8_FNUZ /*negative_zero_nan*/, true /*clip*/>(
v, (rm == migraphx_fp8::migraphx_f8_rounding_mode::stochastic), rng);
#else // MIGRAPHX_F8_DOWNCAST_CLIPPING
data = migraphx_f8_impl::
cast_to_f8<2, 5, float, MIGRAPHX_FP8_FNUZ /*negative_zero_nan*/, false /*clip*/>(
v, (rm == migraphx_fp8::migraphx_f8_rounding_mode::stochastic), rng);
#endif // rocblas_F8_downcast_clipping}
}
}
inline constexpr operator float() const
{
if constexpr(T == migraphx_fp8::f8_type::fp8)
{
return migraphx_f8_impl::
cast_from_f8<3, 4, float, MIGRAPHX_FP8_FNUZ /*negative_zero_nan*/>(data);
} // else
return migraphx_f8_impl::cast_from_f8<2, 5, float, MIGRAPHX_FP8_FNUZ /*negative_zero_nan*/>(
data);
}
inline constexpr bool is_zero() const
{
if constexpr(MIGRAPHX_FP8_FNUZ)
{
return data == 0x00;
}
else
{
return (data == 0x00) || (data == 0x80);
}
}
inline constexpr bool is_nan() const
{
if constexpr(MIGRAPHX_FP8_FNUZ)
{
return data == 0x80;
}
else
{
if(T == migraphx_fp8::f8_type::bf8)
{
return (data == 0x7d) || (data == 0x7e) || (data == 0x7f) || (data == 0xfd) ||
(data == 0xfe) || (data == 0xff);
}
else
{
return (data == 0x79) || (data == 0x7a) || (data == 0x7b) || (data == 0x7c) ||
(data == 0x7d) || (data == 0x7e) || (data == 0x7f) || (data == 0xf9) ||
(data == 0xfa) || (data == 0xfb) || (data == 0xfc) || (data == 0xfd) ||
(data == 0xfe) || (data == 0xff);
}
}
}
inline constexpr bool is_inf() const
{
if constexpr(MIGRAPHX_FP8_FNUZ)
{
return data == 0x80;
}
else
{
if(T == migraphx_fp8::f8_type::bf8)
{
return (data == 0x7c) || (data == 0xfc);
}
else
{
return (data == 0x78) || (data == 0xf8);
}
}
}
#define MIGRAPHX_FP8_UNARY_OP(unary_op, binary_op) \
constexpr float8& operator unary_op(const float8& rhs) \
{ \
const auto tmp = static_cast<float>(*this) binary_op static_cast<float>(rhs); \
*this = static_cast<float8>(tmp); \
return *this; \
} \
constexpr float8& operator unary_op(const float& rhs) \
{ \
const auto tmp = static_cast<float>(*this) binary_op static_cast<float>(rhs); \
*this = static_cast<float8>(tmp); \
return *this; \
}
MIGRAPHX_FP8_UNARY_OP(*=, *)
MIGRAPHX_FP8_UNARY_OP(-=, -)
MIGRAPHX_FP8_UNARY_OP(+=, +)
MIGRAPHX_FP8_UNARY_OP(/=, /)
inline constexpr float8& operator=(const float8& rhs) = default;
inline constexpr float8& operator=(float8&& rhs) = default;
inline constexpr float8& operator=(float rhs)
{
*this = static_cast<float8>(rhs);
return *this;
}
inline constexpr bool operator==(const float8& rhs) const
{
if((rhs.is_zero() && this->is_zero()) ||
(fabs(rhs - *this) < migraphx_fp8::numeric_limits<float8<T>>::epsilon()))
return true;
else if(rhs.is_nan() || rhs.is_inf() || this->is_nan() || this->is_inf())
return false;
return false;
}
inline constexpr bool operator<(const float8& rhs) const
{
const auto we = static_cast<float>(*this);
const auto them = static_cast<float>(rhs);
return we < them;
}
inline constexpr bool operator>(const float8& rhs) const
{
const auto we = static_cast<float>(*this);
const auto them = static_cast<float>(rhs);
return we > them;
}
};
// Special operator overloading
template <migraphx_fp8::f8_type T>
inline std::ostream& operator<<(std::ostream& os, const migraphx_fp8::float8<T>& rhs)
{
return os << static_cast<float>(rhs);
}
// NOLINTNEXTLINE
#define MIGRAPHX_FP8_BINARY_OP(binary_op, U) \
template <migraphx_fp8::f8_type T> \
inline constexpr U operator binary_op(const migraphx_fp8::float8<T>& lhs, \
const migraphx_fp8::float8<T>& rhs) \
{ \
return U(static_cast<float>(lhs) binary_op static_cast<float>(rhs)); \
}
// TODO: these should return floats
MIGRAPHX_FP8_BINARY_OP(*, migraphx_fp8::float8<T>)
MIGRAPHX_FP8_BINARY_OP(-, migraphx_fp8::float8<T>)
MIGRAPHX_FP8_BINARY_OP(/, migraphx_fp8::float8<T>)
MIGRAPHX_FP8_BINARY_OP(+, migraphx_fp8::float8<T>)
// TODO: Comparison ops shouldn't convert to float, maybe need to take care of rounding effects.
MIGRAPHX_FP8_BINARY_OP(==, bool)
MIGRAPHX_FP8_BINARY_OP(>=, bool)
MIGRAPHX_FP8_BINARY_OP(<=, bool)
MIGRAPHX_FP8_BINARY_OP(>, bool)
MIGRAPHX_FP8_BINARY_OP(<, bool)
MIGRAPHX_FP8_BINARY_OP(!=, bool)
template <migraphx_fp8::f8_type T>
inline migraphx_fp8::float8<T> fabs(migraphx_fp8::float8<T> v)
{
v.data = v.data & 0x7f;
return v;
}
template <class T>
constexpr T F8_Max()
{
return T{0x7F, T::from_bits()};
}
template <class T>
constexpr T F8_Lowest()
{
return T{0xFF, T::from_bits()};
}
using fp8e4m3fnuz = float8<migraphx_fp8::f8_type::fp8>;
template <>
class numeric_limits<migraphx_fp8::float8<migraphx_fp8::f8_type::fp8>>
{
public:
// TODO :figure out epsilon in Hex to make it constexpr
static constexpr migraphx_fp8::float8<migraphx_fp8::f8_type::fp8> epsilon()
{
return migraphx_fp8::float8<migraphx_fp8::f8_type::fp8>(
0x28, migraphx_fp8::float8<>::from_bits());
}
static constexpr migraphx_fp8::float8<migraphx_fp8::f8_type::fp8> quiet_NaN()
{
return migraphx_fp8::float8<migraphx_fp8::f8_type::fp8>(
MIGRAPHX_FP8_FNUZ ? 0x80 : 0x7F, migraphx_fp8::float8<>::from_bits());
}
static constexpr migraphx_fp8::float8<migraphx_fp8::f8_type::fp8> max()
{
return migraphx_fp8::F8_Max<migraphx_fp8::float8<migraphx_fp8::f8_type::fp8>>();
}
// TODO figure out Hex value
static migraphx_fp8::float8<migraphx_fp8::f8_type::fp8> min()
{
return static_cast<migraphx_fp8::float8<migraphx_fp8::f8_type::fp8>>(-1.0f) *
migraphx_fp8::F8_Max<migraphx_fp8::float8<migraphx_fp8::f8_type::fp8>>();
}
static constexpr migraphx_fp8::float8<migraphx_fp8::f8_type::fp8> lowest()
{
return migraphx_fp8::F8_Lowest<migraphx_fp8::float8<migraphx_fp8::f8_type::fp8>>();
}
static constexpr migraphx_fp8::float8<migraphx_fp8::f8_type::fp8> infinity()
{
return migraphx_fp8::float8<migraphx_fp8::f8_type::fp8>(
MIGRAPHX_FP8_FNUZ ? 0x80 : 0x7F, migraphx_fp8::float8<>::from_bits());
}
};
template <>
class numeric_limits<migraphx_fp8::float8<migraphx_fp8::f8_type::bf8>>
{
public:
static constexpr migraphx_fp8::float8<migraphx_fp8::f8_type::bf8> epsilon()
{
return migraphx_fp8::float8<migraphx_fp8::f8_type::bf8>(
0x34, migraphx_fp8::float8<migraphx_fp8::f8_type::bf8>::from_bits());
}
static constexpr migraphx_fp8::float8<migraphx_fp8::f8_type::bf8> quiet_NaN()
{
return migraphx_fp8::float8<migraphx_fp8::f8_type::bf8>(
MIGRAPHX_FP8_FNUZ ? 0x80 : 0x7d,
migraphx_fp8::float8<migraphx_fp8::f8_type::bf8>::from_bits());
}
static constexpr migraphx_fp8::float8<migraphx_fp8::f8_type::bf8> max()
{
return static_cast<migraphx_fp8::float8<migraphx_fp8::f8_type::bf8>>(
migraphx_fp8::F8_Max<migraphx_fp8::float8<migraphx_fp8::f8_type::bf8>>());
}
// TODO figure out constexpr value
static migraphx_fp8::float8<migraphx_fp8::f8_type::bf8> min()
{
return static_cast<migraphx_fp8::float8<migraphx_fp8::f8_type::bf8>>(float(-1.0f)) *
migraphx_fp8::F8_Max<migraphx_fp8::float8<migraphx_fp8::f8_type::bf8>>();
}
static constexpr migraphx_fp8::float8<migraphx_fp8::f8_type::bf8> lowest()
{
return migraphx_fp8::F8_Lowest<migraphx_fp8::float8<migraphx_fp8::f8_type::bf8>>();
}
static constexpr migraphx_fp8::float8<migraphx_fp8::f8_type::bf8> infinity()
{
return migraphx_fp8::float8<migraphx_fp8::f8_type::bf8>(
MIGRAPHX_FP8_FNUZ ? 0x80 : 0x7c,
migraphx_fp8::float8<migraphx_fp8::f8_type::bf8>::from_bits());
}
};
} // namespace migraphx_fp8
// define numeric limits for the new data type
namespace std {
inline bool isfinite(migraphx_fp8::float8<migraphx_fp8::f8_type::fp8> x) // NOLINT
{
return x.is_inf();
}
inline bool isfinite(migraphx_fp8::float8<migraphx_fp8::f8_type::bf8> x) // NOLINT
{
return x.is_inf();
}
inline bool isnan(migraphx_fp8::float8<migraphx_fp8::f8_type::fp8> x) // NOLINT
{
return x.is_nan();
}
inline bool isnan(migraphx_fp8::float8<migraphx_fp8::f8_type::bf8> x) // NOLINT
{
return x.is_nan();
}
template <>
class numeric_limits<migraphx_fp8::float8<migraphx_fp8::f8_type::fp8>>
: public migraphx_fp8::numeric_limits<migraphx_fp8::float8<migraphx_fp8::f8_type::fp8>>
{
};
template <>
class numeric_limits<migraphx_fp8::float8<migraphx_fp8::f8_type::bf8>>
: public migraphx_fp8::numeric_limits<migraphx_fp8::float8<migraphx_fp8::f8_type::bf8>>
{
};
template <class T>
struct common_type<migraphx_fp8::fp8e4m3fnuz, T> : std::common_type<float, T> // NOLINT
{
};
template <class T>
struct common_type<T, migraphx_fp8::fp8e4m3fnuz> : std::common_type<float, T> // NOLINT
{
};
template <>
struct common_type<migraphx_fp8::fp8e4m3fnuz, migraphx_fp8::fp8e4m3fnuz>
{
using type = float;
};
} // namespace std
// =================================================================================================
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
#endif // MIGRAPHX_GUARD_RTGLIB_FLOAT8_HPP
......@@ -34,6 +34,7 @@
#include <migraphx/functional.hpp>
#include <migraphx/errors.hpp>
#include <migraphx/half.hpp>
#include <migraphx/migraphx_float8.hpp>
#include <migraphx/serialize.hpp>
#include <migraphx/config.hpp>
......@@ -60,7 +61,8 @@ struct MIGRAPHX_EXPORT shape
m(int32_type, int32_t) \
m(int64_type, int64_t) \
m(uint32_type, uint32_t) \
m(uint64_type, uint64_t)
m(uint64_type, uint64_t) \
m(fp8e4m3fnuz_type, migraphx_fp8::fp8e4m3fnuz)
// clang-format on
#define MIGRAPHX_SHAPE_GENERATE_ENUM_TYPES(x, t) x,
......
......@@ -28,25 +28,45 @@
#include <type_traits>
#include <migraphx/half.hpp>
#include <migraphx/config.hpp>
#include <migraphx/migraphx_float8.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
#define MIGRAPHX_DETAIL_DEFINE_TRAIT(trait) \
template <class X> \
struct trait : std::trait<X> \
{ \
};
#define MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR(trait, T) \
template <class X> \
struct trait : std::trait<X> \
{ \
}; \
\
template <> \
struct trait<T> : std::true_type \
{ \
};
MIGRAPHX_DETAIL_DEFINE_TRAIT(is_floating_point);
MIGRAPHX_DETAIL_DEFINE_TRAIT(is_arithmetic);
MIGRAPHX_DETAIL_DEFINE_TRAIT(is_signed);
template <class T, class U>
struct is_same : std::is_same<T, U>
{
};
template <bool B, class T, class U>
struct conditional : std::conditional<B, T, U>
{
};
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR(is_floating_point, half)
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR(is_signed, half)
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR(is_arithmetic, half)
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR(is_floating_point, migraphx_fp8::fp8e4m3fnuz)
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR(is_signed, migraphx_fp8::fp8e4m3fnuz)
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR(is_arithmetic, migraphx_fp8::fp8e4m3fnuz)
template <class T>
using accumulator_type =
std::conditional_t<is_floating_point<T>{},
......
......@@ -40,7 +40,7 @@
#include <migraphx/json.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/migraphx_float8.hpp>
#ifdef HAVE_GPU
#include <migraphx/gpu/hip.hpp>
#endif
......@@ -144,6 +144,17 @@ struct npy_format_descriptor<half>
static constexpr auto name() { return _("half"); }
};
template <>
struct npy_format_descriptor<migraphx_fp8::fp8e4m3fnuz>
{
static std::string format()
{
// following: https://docs.python.org/3/library/struct.html#format-characters
return "z";
}
static constexpr auto name() { return _("fp8e4m3fnuz"); }
};
} // namespace detail
} // namespace pybind11
......
......@@ -146,20 +146,20 @@ __device__ __host__ T to_hip_type(T x)
// Hip doens't support __fp16
inline __device__ __host__ float to_hip_type(gpu_half x) { return x; }
#define MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR(trait, T) \
template <class X> \
struct trait : std::trait<X> \
{ \
}; \
\
template <> \
struct trait<T> : std::true_type \
{ \
#define MIGRAPHX_DEVICE_DETAIL_EXTEND_TRAIT_FOR(trait, T) \
template <class X> \
struct trait : std::trait<X> \
{ \
}; \
\
template <> \
struct trait<T> : std::true_type \
{ \
};
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR(is_floating_point, __fp16)
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR(is_signed, __fp16)
MIGRAPHX_DETAIL_EXTEND_TRAIT_FOR(is_arithmetic, __fp16)
MIGRAPHX_DEVICE_DETAIL_EXTEND_TRAIT_FOR(is_floating_point, __fp16)
MIGRAPHX_DEVICE_DETAIL_EXTEND_TRAIT_FOR(is_signed, __fp16)
MIGRAPHX_DEVICE_DETAIL_EXTEND_TRAIT_FOR(is_arithmetic, __fp16)
} // namespace device
} // namespace gpu
......
......@@ -150,6 +150,7 @@ function(test_headers PREFIX)
list(REMOVE_ITEM HEADERS
${CMAKE_SOURCE_DIR}/src/targets/gpu/include/migraphx/gpu/ck.hpp)
endif()
list(REMOVE_ITEM HEADERS ${CMAKE_SOURCE_DIR}/src/include/migraphx/migraphx_f8_impl.hpp)
foreach(HEADER ${HEADERS})
file(RELATIVE_PATH HEADER_REL ${CMAKE_SOURCE_DIR} ${HEADER})
string(MAKE_C_IDENTIFIER ${HEADER_REL} TEST_NAME)
......
......@@ -22,6 +22,7 @@
* THE SOFTWARE.
*/
#include <migraphx/float_equal.hpp>
#include <migraphx/migraphx_float8.hpp>
#include <migraphx/half.hpp>
#include "test.hpp"
......@@ -53,7 +54,7 @@ auto test_float_equal(T x, U y)
template <class T, class U>
void test_equality()
{
auto x1 = T(0.1);
auto x1 = T(0.125);
auto x2 = U(0.0);
auto x3 = U(1.0);
EXPECT(test_float_equal(x1, x1));
......@@ -71,8 +72,12 @@ void test_equality()
TEST_CASE_REGISTER(test_equality<double, float>);
TEST_CASE_REGISTER(test_equality<double, int>);
TEST_CASE_REGISTER(test_equality<double, migraphx::half>);
TEST_CASE_REGISTER(test_equality<double, migraphx_fp8::fp8e4m3fnuz>);
TEST_CASE_REGISTER(test_equality<float, int>);
TEST_CASE_REGISTER(test_equality<float, migraphx_fp8::fp8e4m3fnuz>);
TEST_CASE_REGISTER(test_equality<migraphx::half, int>);
TEST_CASE_REGISTER(test_equality<migraphx::half, migraphx_fp8::fp8e4m3fnuz>);
TEST_CASE_REGISTER(test_equality<migraphx_fp8::fp8e4m3fnuz, int>);
template <class T, class U>
void test_limits()
......@@ -110,8 +115,13 @@ void test_limits()
TEST_CASE_REGISTER(test_limits<double, float>);
TEST_CASE_REGISTER(test_limits<double, int>);
TEST_CASE_REGISTER(test_limits<double, migraphx::half>);
TEST_CASE_REGISTER(test_limits<double, migraphx_fp8::fp8e4m3fnuz>);
TEST_CASE_REGISTER(test_limits<float, int>);
TEST_CASE_REGISTER(test_limits<float, migraphx_fp8::fp8e4m3fnuz>);
TEST_CASE_REGISTER(test_limits<int, migraphx::half>);
TEST_CASE_REGISTER(test_limits<int, migraphx_fp8::fp8e4m3fnuz>);
TEST_CASE_REGISTER(test_limits<migraphx_fp8::fp8e4m3fnuz, migraphx::half>);
#ifndef _WIN32
// On Windows, types int and long have the same min and max values.
TEST_CASE_REGISTER(test_limits<long, int>);
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <cmath>
#include <migraphx/float_equal.hpp>
#include <migraphx/migraphx_float8.hpp>
#include <migraphx/half.hpp>
#include <migraphx/ranges.hpp>
#include "test.hpp"
#include <limits>
float fp8e4m3fnuz_to_fp32_value(uint8_t input)
{
constexpr std::array<float, 256> e4m3fnuz_lut = {
0.0f, 0.0009765625f, 0.001953125f,
0.0029296875f, 0.00390625f, 0.0048828125f,
0.005859375f, 0.0068359375f, 0.0078125f,
0.0087890625f, 0.009765625f, 0.0107421875f,
0.01171875f, 0.0126953125f, 0.013671875f,
0.0146484375f, 0.015625f, 0.017578125f,
0.01953125f, 0.021484375f, 0.0234375f,
0.025390625f, 0.02734375f, 0.029296875f,
0.03125f, 0.03515625f, 0.0390625f,
0.04296875f, 0.046875f, 0.05078125f,
0.0546875f, 0.05859375f, 0.0625f,
0.0703125f, 0.078125f, 0.0859375f,
0.09375f, 0.1015625f, 0.109375f,
0.1171875f, 0.125f, 0.140625f,
0.15625f, 0.171875f, 0.1875f,
0.203125f, 0.21875f, 0.234375f,
0.25f, 0.28125f, 0.3125f,
0.34375f, 0.375f, 0.40625f,
0.4375f, 0.46875f, 0.5f,
0.5625f, 0.625f, 0.6875f,
0.75f, 0.8125f, 0.875f,
0.9375f, 1.0f, 1.125f,
1.25f, 1.375f, 1.5f,
1.625f, 1.75f, 1.875f,
2.0f, 2.25f, 2.5f,
2.75f, 3.0f, 3.25f,
3.5f, 3.75f, 4.0f,
4.5f, 5.0f, 5.5f,
6.0f, 6.5f, 7.0f,
7.5f, 8.0f, 9.0f,
10.0f, 11.0f, 12.0f,
13.0f, 14.0f, 15.0f,
16.0f, 18.0f, 20.0f,
22.0f, 24.0f, 26.0f,
28.0f, 30.0f, 32.0f,
36.0f, 40.0f, 44.0f,
48.0f, 52.0f, 56.0f,
60.0f, 64.0f, 72.0f,
80.0f, 88.0f, 96.0f,
104.0f, 112.0f, 120.0f,
128.0f, 144.0f, 160.0f,
176.0f, 192.0f, 208.0f,
224.0f, 240.0f, std::numeric_limits<float>::quiet_NaN(),
-0.0009765625f, -0.001953125f, -0.0029296875f,
-0.00390625f, -0.0048828125f, -0.005859375f,
-0.0068359375f, -0.0078125f, -0.0087890625f,
-0.009765625f, -0.0107421875f, -0.01171875f,
-0.0126953125f, -0.013671875f, -0.0146484375f,
-0.015625f, -0.017578125f, -0.01953125f,
-0.021484375f, -0.0234375f, -0.025390625f,
-0.02734375f, -0.029296875f, -0.03125f,
-0.03515625f, -0.0390625f, -0.04296875f,
-0.046875f, -0.05078125f, -0.0546875f,
-0.05859375f, -0.0625f, -0.0703125f,
-0.078125f, -0.0859375f, -0.09375f,
-0.1015625f, -0.109375f, -0.1171875f,
-0.125f, -0.140625f, -0.15625f,
-0.171875f, -0.1875f, -0.203125f,
-0.21875f, -0.234375f, -0.25f,
-0.28125f, -0.3125f, -0.34375f,
-0.375f, -0.40625f, -0.4375f,
-0.46875f, -0.5f, -0.5625f,
-0.625f, -0.6875f, -0.75f,
-0.8125f, -0.875f, -0.9375f,
-1.0f, -1.125f, -1.25f,
-1.375f, -1.5f, -1.625f,
-1.75f, -1.875f, -2.0f,
-2.25f, -2.5f, -2.75f,
-3.0f, -3.25f, -3.5f,
-3.75f, -4.0f, -4.5f,
-5.0f, -5.5f, -6.0f,
-6.5f, -7.0f, -7.5f,
-8.0f, -9.0f, -10.0f,
-11.0f, -12.0f, -13.0f,
-14.0f, -15.0f, -16.0f,
-18.0f, -20.0f, -22.0f,
-24.0f, -26.0f, -28.0f,
-30.0f, -32.0f, -36.0f,
-40.0f, -44.0f, -48.0f,
-52.0f, -56.0f, -60.0f,
-64.0f, -72.0f, -80.0f,
-88.0f, -96.0f, -104.0f,
-112.0f, -120.0f, -128.0f,
-144.0f, -160.0f, -176.0f,
-192.0f, -208.0f, -224.0f,
-240.0f,
};
return e4m3fnuz_lut[input];
}
TEST_CASE(test_fp8_cast_to_float)
{
std::vector<uint8_t> bit_vals(256);
std::iota(bit_vals.begin(), bit_vals.end(), 0);
EXPECT(bool{std::all_of(bit_vals.begin(), bit_vals.end(), [](uint8_t bit_val) {
migraphx_fp8::fp8e4m3fnuz fp8_val(bit_val, migraphx_fp8::fp8e4m3fnuz::from_bits());
if(std::isnan(float(fp8_val)) and std::isnan(fp8e4m3fnuz_to_fp32_value(bit_val)))
{
return true;
}
return migraphx::float_equal(float(fp8_val), fp8e4m3fnuz_to_fp32_value(bit_val));
})});
}
TEST_CASE(test_positive_zero)
{
float zero = 0.0;
migraphx_fp8::fp8e4m3fnuz fp8_zero(zero);
EXPECT(fp8_zero.is_zero());
EXPECT(migraphx::float_equal(zero, float(fp8_zero)));
}
TEST_CASE(test_negative_zero)
{
float nzero = -0.0;
float pzero = 0.0;
migraphx_fp8::fp8e4m3fnuz fp8_nzero(nzero);
EXPECT(fp8_nzero.is_zero());
// negative zero gets converted to positive zero
EXPECT(migraphx::float_equal(pzero, float(fp8_nzero)));
}
TEST_CASE(test_nan_1)
{
float fnan = std::numeric_limits<float>::quiet_NaN();
migraphx_fp8::fp8e4m3fnuz fp8_nan(fnan);
EXPECT(fp8_nan.is_nan());
EXPECT(std::isnan(fp8_nan));
}
TEST_CASE(test_nan_2)
{
auto fnan = std::numeric_limits<migraphx_fp8::fp8e4m3fnuz>::quiet_NaN();
migraphx_fp8::fp8e4m3fnuz fp8_nan(fnan.data, migraphx_fp8::fp8e4m3fnuz::from_bits());
EXPECT(fp8_nan.is_nan());
EXPECT(std::isnan(fp8_nan));
EXPECT(std::isnan(float(fp8_nan)));
}
TEST_CASE(test_infinity_1)
{
float finf = std::numeric_limits<float>::infinity();
// no inf in fp8e4m3fnuz
migraphx_fp8::fp8e4m3fnuz fp8_nan(finf);
EXPECT(fp8_nan.is_nan());
EXPECT(std::isnan(float(fp8_nan)));
}
TEST_CASE(test_infinity_2)
{
// no inf in fp8e4m3fnuz, it gets converted to NaNs
migraphx_fp8::fp8e4m3fnuz fp8_nan(std::numeric_limits<migraphx_fp8::fp8e4m3fnuz>::infinity());
EXPECT(fp8_nan.is_nan());
EXPECT(std::isnan(float(fp8_nan)));
}
TEST_CASE(test_infinity_3)
{
// neg inf
float finf = -1.0 * std::numeric_limits<float>::infinity();
// no inf in fp8e4m3fnuz
migraphx_fp8::fp8e4m3fnuz fp8_nan(finf);
EXPECT(fp8_nan.is_nan());
EXPECT(std::isnan(float(fp8_nan)));
}
TEST_CASE(test_numeric_max_1)
{
float fmax = std::numeric_limits<float>::max();
migraphx_fp8::fp8e4m3fnuz fp8_max(fmax);
EXPECT(fp8_max == std::numeric_limits<migraphx_fp8::fp8e4m3fnuz>::max());
}
TEST_CASE(test_numeric_max_2)
{
// gets clipped to max
float fmax = 2 * std::numeric_limits<migraphx_fp8::fp8e4m3fnuz>::max();
migraphx_fp8::fp8e4m3fnuz fp8_max(fmax);
EXPECT(fp8_max == std::numeric_limits<migraphx_fp8::fp8e4m3fnuz>::max());
}
TEST_CASE(test_numeric_lowest_1)
{
float flowest = std::numeric_limits<float>::lowest();
migraphx_fp8::fp8e4m3fnuz fp8_lowest(flowest);
EXPECT(fp8_lowest == std::numeric_limits<migraphx_fp8::fp8e4m3fnuz>::lowest());
}
TEST_CASE(test_numeric_lowest_2)
{
// gets clipped to lowest
float fmin = 2.0 * std::numeric_limits<migraphx_fp8::fp8e4m3fnuz>::lowest();
migraphx_fp8::fp8e4m3fnuz fp8_lowest(fmin);
EXPECT(fp8_lowest == std::numeric_limits<migraphx_fp8::fp8e4m3fnuz>::lowest());
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
......@@ -237,12 +237,12 @@ TEST_CASE(code_object_hip)
std::vector<migraphx::shape> expected_inputs = {input, input};
auto co = migraphx::make_op("gpu::code_object",
{{"code_object", migraphx::value::binary{binaries.front()}},
{"symbol_name", "add_2"},
{"global", input.elements()},
{"local", 1024},
{"expected_inputs", migraphx::to_value(expected_inputs)},
{"output", migraphx::to_value(input)}});
{{"code_object", migraphx::value::binary{binaries.front()}},
{"symbol_name", "add_2"},
{"global", input.elements()},
{"local", 1024},
{"expected_inputs", migraphx::to_value(expected_inputs)},
{"output", migraphx::to_value(input)}});
migraphx::program p;
auto* mm = p.get_main_module();
......@@ -348,7 +348,10 @@ TEST_CASE(compile_math)
auto vec_sizes = {2, 4, 6};
for(auto&& t : migraphx::shape::types())
{
if(contains({migraphx::shape::bool_type, migraphx::shape::tuple_type}, t))
if(contains({migraphx::shape::bool_type,
migraphx::shape::fp8e4m3fnuz_type,
migraphx::shape::tuple_type},
t))
continue;
auto name = migraphx::shape::cpp_type(t);
if(t == migraphx::shape::half_type)
......@@ -396,7 +399,10 @@ TEST_CASE(assert_type_min_max)
migraphx::gpu::hip_compile_options options;
for(auto&& t : migraphx::shape::types())
{
if(contains({migraphx::shape::bool_type, migraphx::shape::tuple_type}, t))
if(contains({migraphx::shape::bool_type,
migraphx::shape::fp8e4m3fnuz_type,
migraphx::shape::tuple_type},
t))
continue;
auto name = migraphx::shape::cpp_type(t);
if(t == migraphx::shape::half_type)
......
......@@ -44,7 +44,8 @@
m(int32_type, int32_t) \
m(int64_type, int64_t) \
m(uint32_type, uint32_t) \
m(uint64_type, uint64_t)
m(uint64_type, uint64_t) \
m(fp8e4m3fnuz_type, migraphx_fp8::fp8e4m3fnuz)
// clang-format on
#ifdef __cplusplus
......@@ -70,7 +71,9 @@ typedef enum
} migraphx_shape_datatype_t;
#undef MIGRAPHX_SHAPE_GENERATE_ENUM_TYPES
<% generate_c_header() %>
<%
generate_c_header()
%>
#ifdef __cplusplus
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment