Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
dcb98a60
Commit
dcb98a60
authored
Aug 30, 2023
by
Paul
Browse files
Merge branch 'develop' into ubuntu-22.04-default
parents
d05768a4
d2486dcd
Changes
114
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
273 additions
and
132 deletions
+273
-132
src/module.cpp
src/module.cpp
+13
-6
src/normalize_attributes.cpp
src/normalize_attributes.cpp
+42
-14
src/onnx/include/migraphx/onnx/onnx_parser.hpp
src/onnx/include/migraphx/onnx/onnx_parser.hpp
+1
-0
src/onnx/onnx_parser.cpp
src/onnx/onnx_parser.cpp
+12
-9
src/onnx/parse_constant_of_shape.cpp
src/onnx/parse_constant_of_shape.cpp
+2
-3
src/onnx/parse_pooling.cpp
src/onnx/parse_pooling.cpp
+33
-22
src/onnx/parse_randomuniform_ops.cpp
src/onnx/parse_randomuniform_ops.cpp
+1
-1
src/onnx/parse_slice.cpp
src/onnx/parse_slice.cpp
+82
-49
src/pad_calc.cpp
src/pad_calc.cpp
+40
-1
src/program.cpp
src/program.cpp
+17
-8
src/py/CMakeLists.txt
src/py/CMakeLists.txt
+1
-0
src/py/include/migraphx/py.hpp
src/py/include/migraphx/py.hpp
+2
-1
src/py/py_loader.cpp
src/py/py_loader.cpp
+3
-3
src/rewrite_quantization.cpp
src/rewrite_quantization.cpp
+5
-7
src/simplify_algebra.cpp
src/simplify_algebra.cpp
+6
-5
src/sqlite.cpp
src/sqlite.cpp
+1
-0
src/targets/cpu/gemm.cpp
src/targets/cpu/gemm.cpp
+5
-1
src/targets/cpu/include/migraphx/cpu/dnnl.hpp
src/targets/cpu/include/migraphx/cpu/dnnl.hpp
+5
-1
src/targets/cpu/target.cpp
src/targets/cpu/target.cpp
+1
-1
src/targets/gpu/CMakeLists.txt
src/targets/gpu/CMakeLists.txt
+1
-0
No files found.
src/module.cpp
View file @
dcb98a60
...
...
@@ -873,12 +873,11 @@ module::print_py(std::ostream& os,
if
(
ins
->
name
()
==
"@literal"
)
{
os
<<
mname
<<
".add_literal("
;
bool
use_abs
=
false
;
ins
->
get_literal
().
visit
([
&
](
auto
v
)
{
use_abs
=
std
::
none_of
(
v
.
begin
(),
v
.
end
(),
[](
auto
x
)
{
return
x
<
0
;
});
});
const
bool
use_abs
=
false
;
// Disable abs for now
use_abs
=
false
;
// ins->get_literal().visit([&](auto v) {
// use_abs = std::none_of(v.begin(), v.end(), [](auto x) { return x < 0; });
// });
if
(
use_abs
)
os
<<
"migraphx.abs_literal("
;
os
<<
"migraphx.generate_argument("
;
...
...
@@ -1011,9 +1010,17 @@ std::vector<module_ref> module::get_sub_modules(bool shallow) const
module
&
module
::
sort
()
{
auto
implicit_deps
=
calc_implicit_deps
();
fix
([
&
](
auto
self
,
auto
ins
)
{
this
->
move_instruction
(
ins
,
this
->
begin
());
for
(
auto
child
:
ins
->
inputs
())
auto
ins_inputs
=
ins
->
inputs
();
if
(
implicit_deps
.
find
(
ins
)
!=
implicit_deps
.
end
())
{
auto
ins_implict_inputs
=
implicit_deps
.
at
(
ins
);
ins_inputs
.
insert
(
ins_inputs
.
end
(),
ins_implict_inputs
.
begin
(),
ins_implict_inputs
.
end
());
}
for
(
auto
child
:
ins_inputs
)
{
if
(
not
contains
(
this
->
impl
->
instructions
,
child
))
{
...
...
src/normalize_attributes.cpp
View file @
dcb98a60
...
...
@@ -26,7 +26,7 @@
#include <migraphx/normalize_attributes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/op/common.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -49,6 +49,10 @@ auto tune_attribute(const std::vector<int64_t>& vec,
Message
m
)
{
std
::
vector
<
int64_t
>
result
(
vec
);
if
(
result
.
empty
())
{
return
result
;
};
int64_t
n_rank
=
input_shape
.
ndim
();
std
::
vector
<
op
::
normalize_attribute
>
vec_attrs
=
val
.
to_vector
<
op
::
normalize_attribute
>
();
if
(
contains
(
vec_attrs
,
op
::
normalize_attribute
::
use_output
))
...
...
@@ -188,20 +192,27 @@ bool normalize_attributes(operation& op, const shape& input_shape)
auto
val
=
op
.
to_value
();
if
(
attrs
.
contains
(
"normalize_padding"
))
{
auto
padding
=
val
.
at
(
attrs
.
at
(
"normalize_padding"
).
to
<
std
::
string
>
());
auto
padding_size
=
padding
.
size
();
auto
padding_start
=
2
;
if
(
padding_size
==
2
*
(
input_shape
.
ndim
()
-
padding_start
))
tuned
=
true
;
else
if
(
padding_size
!=
(
input_shape
.
ndim
()
-
padding_start
))
MIGRAPHX_THROW
(
"inconsistent padding size"
);
else
bool
use_auto_padding
=
(
val
.
contains
(
"padding_mode"
)
and
(
val
.
at
(
"padding_mode"
).
to
<
int
>
()
!=
migraphx
::
op
::
padding_mode_t
::
default_
));
if
(
not
use_auto_padding
)
{
auto
result
=
tune_pad_attribute
(
padding
);
val
[
"padding"
]
=
result
;
op
.
from_value
(
val
);
tuned
=
true
;
auto
padding
=
val
.
at
(
attrs
.
at
(
"normalize_padding"
).
to
<
std
::
string
>
());
auto
padding_size
=
padding
.
size
();
auto
padding_start
=
2
;
if
(
padding_size
==
2
*
(
input_shape
.
ndim
()
-
padding_start
))
tuned
=
true
;
else
if
(
padding_size
!=
(
input_shape
.
ndim
()
-
padding_start
))
{
MIGRAPHX_THROW
(
"normalize_attributes: inconsistent padding vector size "
);
}
else
{
auto
result
=
tune_pad_attribute
(
padding
);
val
[
"padding"
]
=
result
;
op
.
from_value
(
val
);
tuned
=
true
;
}
}
}
if
(
not
attrs
.
contains
(
"normalize_axes"
))
...
...
@@ -251,5 +262,22 @@ bool normalize_attributes(operation& op, const shape& input_shape)
return
tuned
;
}
std
::
vector
<
int64_t
>
normalize_axes
(
const
std
::
vector
<
int64_t
>&
axes
,
const
shape
&
input_shape
,
const
value
&
attr_val
,
const
std
::
string
&
prefix
)
{
return
tune_attribute
(
axes
,
{},
attr_val
,
input_shape
,
[
&
]
{
return
prefix
;
});
}
std
::
vector
<
int64_t
>
normalize_indices
(
const
std
::
vector
<
int64_t
>&
indices
,
const
std
::
vector
<
int64_t
>&
axes
,
const
shape
&
input_shape
,
const
value
&
attr_val
,
const
std
::
string
&
prefix
)
{
return
tune_attribute
(
indices
,
axes
,
attr_val
,
input_shape
,
[
&
]
{
return
prefix
;
});
}
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/onnx/include/migraphx/onnx/onnx_parser.hpp
View file @
dcb98a60
...
...
@@ -117,6 +117,7 @@ struct onnx_parser
parse_graph
(
module
*
mod
,
const
onnx
::
GraphProto
&
graph
,
bool
inlining
=
false
);
literal
parse_value
(
const
onnx
::
AttributeProto
&
attr
)
const
;
literal
parse_tensor
(
const
onnx
::
TensorProto
&
t
)
const
;
shape
parse_type
(
const
onnx
::
TypeProto
&
t
)
const
;
shape
parse_type
(
const
onnx
::
TypeProto
&
t
,
const
std
::
vector
<
std
::
size_t
>&
input_dims
)
const
;
};
...
...
src/onnx/onnx_parser.cpp
View file @
dcb98a60
...
...
@@ -357,10 +357,9 @@ parse_inputs(const onnx_parser& parser,
}
shape
s
;
std
::
vector
<
std
::
size_t
>
dims
;
if
(
parser
.
map_input_dims
.
count
(
name
)
>
0
)
{
dims
=
parser
.
map_input_dims
.
at
(
name
);
std
::
vector
<
std
::
size_t
>
dims
=
parser
.
map_input_dims
.
at
(
name
);
s
=
parser
.
parse_type
(
input
.
type
(),
dims
);
}
else
if
(
parser
.
map_dyn_input_dims
.
count
(
name
)
>
0
)
...
...
@@ -370,7 +369,7 @@ parse_inputs(const onnx_parser& parser,
}
else
{
s
=
parser
.
parse_type
(
input
.
type
()
,
dims
);
s
=
parser
.
parse_type
(
input
.
type
());
}
mod_insts
[
name
]
=
mod
->
add_parameter
(
name
,
s
);
}
...
...
@@ -553,14 +552,9 @@ literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
}
MIGRAPHX_THROW
(
"PARSE_TENSOR: Invalid tensor type"
);
}
shape
onnx_parser
::
parse_type
(
const
onnx
::
TypeProto
&
t
,
const
std
::
vector
<
std
::
size_t
>&
input_dims
)
const
shape
onnx_parser
::
parse_type
(
const
onnx
::
TypeProto
&
t
)
const
{
shape
::
type_t
shape_type
=
get_type
(
t
.
tensor_type
().
elem_type
());
if
(
not
input_dims
.
empty
())
{
return
{
shape_type
,
input_dims
};
}
std
::
vector
<
shape
::
dynamic_dimension
>
dynamic_dims
;
auto
&&
tensor_dims
=
t
.
tensor_type
().
shape
().
dim
();
...
...
@@ -590,6 +584,15 @@ shape onnx_parser::parse_type(const onnx::TypeProto& t,
return
shape_from_dyn_dims
(
shape_type
,
dynamic_dims
);
}
shape
onnx_parser
::
parse_type
(
const
onnx
::
TypeProto
&
t
,
const
std
::
vector
<
std
::
size_t
>&
input_dims
)
const
{
shape
::
type_t
shape_type
=
get_type
(
t
.
tensor_type
().
elem_type
());
if
(
input_dims
.
empty
())
return
{
shape_type
};
return
{
shape_type
,
input_dims
};
}
shape
::
type_t
get_type
(
int
dtype
)
{
switch
(
dtype
)
...
...
src/onnx/parse_constant_of_shape.cpp
View file @
dcb98a60
...
...
@@ -55,9 +55,6 @@ struct parse_constant_of_shape : op_parser<parse_constant_of_shape>
l_val
=
literal
({
shape
::
float_type
,
{
1
},
{
0
}},
{
0.0
f
});
}
// input is empty, output is a scalar
auto
type
=
l_val
.
get_shape
().
type
();
if
(
args
.
empty
())
{
MIGRAPHX_THROW
(
"ConstantOfShape : must have 1 input!"
);
...
...
@@ -65,6 +62,8 @@ struct parse_constant_of_shape : op_parser<parse_constant_of_shape>
else
{
migraphx
::
shape
s
;
// input is empty, output is a scalar
auto
type
=
l_val
.
get_shape
().
type
();
// empty input tensor, output is a scalar
if
(
args
[
0
]
->
get_shape
().
elements
()
==
0
)
{
...
...
src/onnx/parse_pooling.cpp
View file @
dcb98a60
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -151,26 +151,6 @@ struct parse_pooling : op_parser<parse_pooling>
kdims
,
paddings
.
size
()
/
2
,
"PARSE_POOLING: inconsistent explicit paddings"
);
}
if
(
contains
(
info
.
attributes
,
"auto_pad"
))
{
if
(
in_shape
.
dynamic
())
{
MIGRAPHX_THROW
(
"PARSE_POOLING: Auto padding pooling with dynamic input shape not supported"
);
}
else
{
values
[
"padding"
].
clear
();
// return paddings could be empty, then setting to 0 for no padding
cal_auto_padding_size
(
info
,
values
,
values
[
"lengths"
].
to_vector
<
std
::
size_t
>
(),
{
1
,
1
},
in_shape
.
lens
(),
paddings
);
}
}
if
(
paddings
.
size
()
!=
2
*
kdims
)
{
paddings
.
resize
(
kdims
*
2
);
...
...
@@ -192,6 +172,36 @@ struct parse_pooling : op_parser<parse_pooling>
// used to calculate the supposed output shape
std
::
vector
<
int64_t
>
orig_padding
=
paddings
;
// TODO: add parsing for dilations
if
(
contains
(
info
.
attributes
,
"auto_pad"
)
and
to_upper
(
info
.
attributes
[
"auto_pad"
].
s
())
!=
"NOTSET"
)
{
auto
auto_pad
=
to_upper
(
info
.
attributes
[
"auto_pad"
].
s
());
// don't use the given padding sizes, if any
// values["padding"].clear();
if
(
in_shape
.
dynamic
())
{
// set padding_mode to trigger auto padding at runtime
bool
is_same_upper
=
(
auto_pad
.
find
(
"SAME_UPPER"
)
!=
std
::
string
::
npos
);
values
[
"padding_mode"
]
=
is_same_upper
?
to_value
(
op
::
padding_mode_t
::
same_upper
)
:
to_value
(
op
::
padding_mode_t
::
same_lower
);
}
else
{
// Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size
(
info
,
values
,
values
[
"lengths"
].
to_vector
<
std
::
size_t
>
(),
std
::
vector
<
size_t
>
(
in_shape
.
ndim
()
-
2
,
1
),
in_shape
.
lens
(),
paddings
);
values
[
"padding"
]
=
paddings
;
// default padding_mode indicates that padding sizes are not calculated dynamically
values
[
"padding_mode"
]
=
migraphx
::
op
::
padding_mode_t
::
default_
;
}
}
std
::
vector
<
int64_t
>
slice_start
;
std
::
vector
<
int64_t
>
slice_end
;
tune_padding_size
(
values
,
paddings
,
count_include_pad
,
slice_start
);
...
...
@@ -208,8 +218,9 @@ struct parse_pooling : op_parser<parse_pooling>
orig_padding
.
insert
(
orig_padding
.
begin
(),
2
,
0
);
op
::
pad
pad
{
orig_padding
,
0.0
f
};
shape
padded_shape
=
pad
.
compute_shape
({
l0
->
get_shape
()});
auto
out_lens
=
make_op
(
"pooling"
,
values
).
compute_shape
({
padded_shape
}).
lens
();
// make an op just to get its output shape
auto
out_lens
=
make_op
(
"pooling"
,
values
).
compute_shape
({
padded_shape
}).
lens
();
// compute slice_end information
slice_end
.
resize
(
slice_start
.
size
());
std
::
transform
(
out_lens
.
begin
()
+
2
,
...
...
src/onnx/parse_randomuniform_ops.cpp
View file @
dcb98a60
...
...
@@ -96,7 +96,7 @@ struct parse_randomuniform_ops : op_parser<parse_randomuniform_ops>
if
(
contains
(
info
.
attributes
,
"seed"
))
gen
.
seed
(
info
.
attributes
.
at
(
"seed"
).
f
());
std
::
uniform_real_distribution
<>
d
(
high
,
low
);
std
::
uniform_real_distribution
<>
d
(
low
,
high
);
std
::
vector
<
double
>
rand_vals
(
out_shape
.
elements
());
std
::
generate
(
rand_vals
.
begin
(),
rand_vals
.
end
(),
[
&
]()
{
return
d
(
gen
);
});
...
...
src/onnx/parse_slice.cpp
View file @
dcb98a60
...
...
@@ -34,16 +34,65 @@ namespace onnx {
struct
parse_slice
:
op_parser
<
parse_slice
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"Slice"
}};
}
struct
slice_desc
{
op
::
slice
op
;
std
::
vector
<
instruction_ref
>
op_args
;
std
::
vector
<
int64_t
>
steps
;
std
::
vector
<
int64_t
>
raxes
;
void
always_insert
(
instruction_ref
arg
)
{
op_args
.
insert
(
op_args
.
begin
(),
arg
);
}
std
::
vector
<
int64_t
>
insert
(
instruction_ref
arg
)
{
std
::
vector
<
int64_t
>
result
;
migraphx
::
argument
arg_value
=
arg
->
eval
();
if
(
arg_value
.
empty
())
{
op_args
.
insert
(
op_args
.
begin
(),
arg
);
}
else
{
arg_value
.
visit
([
&
](
auto
s
)
{
result
.
assign
(
s
.
begin
(),
s
.
end
());
});
}
return
result
;
}
};
instruction_ref
parse
(
const
op_desc
&
/*opd*/
,
const
onnx_parser
&
parser
,
onnx_parser
::
node_info
info
,
std
::
vector
<
instruction_ref
>
args
)
const
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>
&
args
)
const
{
op
::
slice
op
;
auto
sd
=
construct_slice_desc
(
parser
,
info
,
args
);
auto
ins
=
info
.
add_instruction
(
sd
.
op
,
sd
.
op_args
);
if
(
not
sd
.
raxes
.
empty
())
{
ins
=
info
.
add_instruction
(
make_op
(
"reverse"
,
{{
"axes"
,
sd
.
raxes
}}),
ins
);
}
// If any steps are other than default 1, add a "steps" op
if
(
std
::
any_of
(
sd
.
steps
.
begin
(),
sd
.
steps
.
end
(),
[](
auto
s
)
{
return
std
::
abs
(
s
)
!=
1
;
}))
{
std
::
vector
<
int64_t
>
nsteps
;
std
::
transform
(
sd
.
steps
.
begin
(),
sd
.
steps
.
end
(),
std
::
back_inserter
(
nsteps
),
[](
auto
s
)
{
return
std
::
abs
(
s
);
});
return
ins
=
info
.
add_instruction
(
make_op
(
"step"
,
{{
"axes"
,
sd
.
op
.
axes
},
{
"steps"
,
nsteps
}}),
ins
);
}
else
return
ins
;
}
std
::
vector
<
int64_t
>
steps
;
slice_desc
construct_slice_desc
(
const
onnx_parser
&
parser
,
onnx_parser
::
node_info
info
,
std
::
vector
<
instruction_ref
>
args
)
const
{
slice_desc
sd
;
// slice can have up to 5 inputs, we first check the 5th one
// to decide whether MIGRAPHX can handle this slice.
...
...
@@ -51,89 +100,73 @@ struct parse_slice : op_parser<parse_slice>
{
migraphx
::
argument
step_arg
=
args
.
back
()
->
eval
();
check_arg_empty
(
step_arg
,
"PARSE_SLICE: cannot handle variable steps for slice"
);
step_arg
.
visit
([
&
](
auto
s
)
{
steps
.
assign
(
s
.
begin
(),
s
.
end
());
});
step_arg
.
visit
([
&
](
auto
s
)
{
sd
.
steps
.
assign
(
s
.
begin
(),
s
.
end
());
});
}
if
(
args
.
size
()
>=
4
)
{
migraphx
::
argument
axes_arg
=
args
.
at
(
3
)
->
eval
();
check_arg_empty
(
axes_arg
,
"PARSE_SLICE: cannot handle variable axes for slice"
);
axes_arg
.
visit
([
&
](
auto
s
)
{
op
.
axes
.
assign
(
s
.
begin
(),
s
.
end
());
});
sd
.
op
.
axes
=
sd
.
insert
(
args
.
at
(
3
));
}
else
if
(
contains
(
info
.
attributes
,
"axes"
))
{
literal
s
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"axes"
));
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
op
.
axes
));
});
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
sd
.
op
.
axes
));
});
}
if
(
args
.
size
()
>=
3
)
{
migraphx
::
argument
end_arg
=
args
.
at
(
2
)
->
eval
();
check_arg_empty
(
end_arg
,
"PARSE_SLICE: cannot handle variable ends for slice"
);
end_arg
.
visit
([
&
](
auto
s
)
{
op
.
ends
.
assign
(
s
.
begin
(),
s
.
end
());
});
sd
.
op
.
ends
=
sd
.
insert
(
args
.
at
(
2
));
}
else
if
(
contains
(
info
.
attributes
,
"ends"
))
{
literal
s
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"ends"
));
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
op
.
ends
));
});
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
sd
.
op
.
ends
));
});
}
if
(
args
.
size
()
>=
2
)
{
migraphx
::
argument
start_arg
=
args
.
at
(
1
)
->
eval
();
check_arg_empty
(
start_arg
,
"PARSE_SLICE: cannot handle variable starts for slice"
);
start_arg
.
visit
([
&
](
auto
s
)
{
op
.
starts
.
assign
(
s
.
begin
(),
s
.
end
());
});
sd
.
op
.
starts
=
sd
.
insert
(
args
.
at
(
1
));
}
else
if
(
contains
(
info
.
attributes
,
"starts"
))
{
literal
s
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"starts"
));
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
op
.
starts
));
});
s
.
visit
([
&
](
auto
v
)
{
copy
(
v
,
std
::
back_inserter
(
sd
.
op
.
starts
));
});
}
// data input argument
sd
.
always_insert
(
args
.
at
(
0
));
// If axes arg is not given, the default is all of them.
if
(
op
.
axes
.
empty
())
if
(
sd
.
op
.
axes
.
empty
()
and
sd
.
op_args
.
size
()
<
3
)
{
std
::
vector
<
int64_t
>
axes
(
args
[
0
]
->
get_shape
().
ndim
());
std
::
iota
(
axes
.
begin
(),
axes
.
end
(),
int64_t
{
0
});
op
.
axes
=
axes
;
sd
.
op
.
axes
=
axes
;
}
std
::
vector
<
int64_t
>
raxes
;
if
(
not
sd
.
steps
.
empty
())
{
if
(
sd
.
op
.
starts
.
empty
()
or
sd
.
op
.
ends
.
empty
())
MIGRAPHX_THROW
(
"PARSE_SLICE: steps and variable starts and ends is not supported"
);
if
(
sd
.
op
.
axes
.
empty
())
MIGRAPHX_THROW
(
"PARSE_SLICE: steps and variable axes is not supported"
);
}
assert
(
steps
.
empty
()
or
steps
.
size
()
==
op
.
axes
.
size
());
assert
(
op
.
axes
.
size
()
==
op
.
starts
.
size
());
assert
(
op
.
axes
.
size
()
==
op
.
ends
.
size
());
assert
(
sd
.
steps
.
empty
()
or
sd
.
steps
.
size
()
==
sd
.
op
.
axes
.
size
());
// If any axes have negative step, prepare to add a "reverse" op
for
(
auto
i
:
range
(
steps
.
size
()))
for
(
auto
i
:
range
(
sd
.
steps
.
size
()))
{
if
(
steps
[
i
]
>=
0
)
if
(
sd
.
steps
[
i
]
>=
0
)
continue
;
op
.
starts
[
i
]
+=
1
;
if
(
op
.
starts
[
i
]
==
0
)
op
.
starts
[
i
]
=
INT_MAX
;
op
.
ends
[
i
]
+=
1
;
raxes
.
push_back
(
op
.
axes
[
i
]);
std
::
swap
(
op
.
starts
[
i
],
op
.
ends
[
i
]);
}
auto
ins
=
info
.
add_instruction
(
op
,
args
[
0
]);
if
(
not
raxes
.
empty
())
{
ins
=
info
.
add_instruction
(
make_op
(
"reverse"
,
{{
"axes"
,
raxes
}}),
ins
);
sd
.
op
.
starts
[
i
]
+=
1
;
if
(
sd
.
op
.
starts
[
i
]
==
0
)
sd
.
op
.
starts
[
i
]
=
INT_MAX
;
sd
.
op
.
ends
[
i
]
+=
1
;
sd
.
raxes
.
push_back
(
sd
.
op
.
axes
[
i
]);
std
::
swap
(
sd
.
op
.
starts
[
i
],
sd
.
op
.
ends
[
i
]);
}
// If any steps are other than default 1, add a "steps" op
if
(
std
::
any_of
(
steps
.
begin
(),
steps
.
end
(),
[](
auto
s
)
{
return
std
::
abs
(
s
)
!=
1
;
}))
{
std
::
vector
<
int64_t
>
nsteps
;
std
::
transform
(
steps
.
begin
(),
steps
.
end
(),
std
::
back_inserter
(
nsteps
),
[](
auto
s
)
{
return
std
::
abs
(
s
);
});
return
ins
=
info
.
add_instruction
(
make_op
(
"step"
,
{{
"axes"
,
op
.
axes
},
{
"steps"
,
nsteps
}}),
ins
);
}
else
return
ins
;
return
sd
;
}
};
...
...
src/pad_calc.cpp
View file @
dcb98a60
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -52,6 +52,11 @@ void calculate_padding(int64_t idx,
}
}
/**
* Given the input array dimensions; kernel (wei_lens); strides; and dilations,
* calculate the padding value in each dimension.
*
*/
std
::
vector
<
std
::
size_t
>
calc_dyn_auto_pad
(
const
std
::
vector
<
std
::
size_t
>&
input_lens
,
const
std
::
vector
<
std
::
size_t
>&
wei_lens
,
const
std
::
vector
<
std
::
size_t
>&
strides
,
...
...
@@ -60,6 +65,7 @@ std::vector<std::size_t> calc_dyn_auto_pad(const std::vector<std::size_t>& input
{
std
::
vector
<
std
::
size_t
>
padding
;
assert
(
input_lens
.
size
()
>=
3
);
assert
(
input_lens
.
size
()
==
wei_lens
.
size
());
std
::
size_t
num_spatial_dims
=
input_lens
.
size
()
-
2
;
padding
.
resize
(
2
*
num_spatial_dims
);
for
(
std
::
size_t
i
=
0
;
i
<
num_spatial_dims
;
i
++
)
...
...
@@ -88,6 +94,11 @@ std::vector<std::size_t> calc_dyn_auto_pad(const std::vector<std::size_t>& input
return
padding
;
}
/**
* Calculate the correct output shape for a convolution with
* a given input size and other parameters.
*
*/
shape
compute_padded_shape
(
const
shape
&
input
,
const
shape
&
weights
,
const
std
::
vector
<
std
::
size_t
>&
padding
,
...
...
@@ -111,5 +122,33 @@ shape compute_padded_shape(const shape& input,
return
input
.
with_lens
(
output_lens
);
}
/**
* Calculate the correct output shape for a pooling with
* a given input size and other parameters. This uses
* the same formula for pooling that compute_padded_shape() uses
* for convolutions, but takes slightly different inputs.
*
*/
shape
compute_padded_pool_shape
(
const
shape
&
input
,
const
shape
&
kernel
,
const
std
::
vector
<
std
::
size_t
>&
padding
,
const
std
::
vector
<
std
::
size_t
>&
stride
,
const
std
::
vector
<
std
::
size_t
>&
dilation
)
{
const
size_t
num_spatial_dims
=
input
.
lens
().
size
()
-
2
;
std
::
vector
<
size_t
>
output_lens
{
input
.
lens
()[
0
],
input
.
lens
()[
1
]};
// calculate the output shape of the pooling: ((W - K + 2P) / S) + 1
for
(
size_t
i
=
0
;
i
<
num_spatial_dims
;
++
i
)
{
auto
padding_factor
=
padding
[
i
]
+
padding
[
i
+
num_spatial_dims
];
output_lens
.
push_back
(
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
(
input
.
lens
()[
i
+
2
]
-
(
1
+
dilation
[
i
]
*
(
kernel
.
lens
()[
i
]
-
1
))
+
padding_factor
)
/
stride
[
i
]
+
1
)));
}
return
input
.
with_lens
(
output_lens
);
}
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/program.cpp
View file @
dcb98a60
...
...
@@ -40,13 +40,14 @@
#include <migraphx/make_op.hpp>
#include <migraphx/marker.hpp>
#include <migraphx/supported_segments.hpp>
#include <iostream>
#include <queue>
#include <sstream>
#include <algorithm>
#include <set>
#include <unordered_map>
#include <utility>
#include <unordered_set>
#include <map>
#include <cassert>
...
...
@@ -222,7 +223,7 @@ void program::compile(const std::vector<target>& targets, std::vector<compile_op
// Gather all the target roots
std
::
unordered_multimap
<
std
::
size_t
,
module_ref
>
roots
;
auto
mods
=
this
->
get_modules
();
for
(
auto
*
mod
:
mods
)
for
(
const
auto
*
mod
:
mods
)
{
for
(
const
auto
&
ins
:
*
mod
)
{
...
...
@@ -547,7 +548,7 @@ std::vector<argument> program::eval(parameter_map params, execution_environment
ins_out
[
x
]
=
ss
.
str
();
});
ret
=
generic_eval
(
*
this
,
contexts
,
std
::
move
(
params
),
[
&
](
instruction_ref
ins
,
auto
f
)
{
auto
&
ctx
=
contexts
[
ins
->
get_target_id
()];
const
auto
&
ctx
=
contexts
[
ins
->
get_target_id
()];
ctx
.
finish
();
std
::
cout
<<
"Run instruction: "
<<
ins_out
.
at
(
ins
)
<<
std
::
endl
;
timer
t
{};
...
...
@@ -727,7 +728,7 @@ static void mod_from_val(module_ref mod,
std
::
back_inserter
(
module_inputs
),
[
&
](
const
value
&
i
)
{
return
map_mods
.
at
(
i
.
to
<
std
::
string
>
());
});
for
(
auto
&
smod
:
module_inputs
)
for
(
const
auto
&
smod
:
module_inputs
)
{
mod_from_val
(
smod
,
v
,
instructions
,
map_mods
);
}
...
...
@@ -1185,17 +1186,25 @@ void program::remove_unused_modules()
std
::
vector
<
module
*>
unused
;
generic_get_unused_modules
(
impl
->
modules
,
generic_get_modules
(
this
->
get_main_module
()),
std
::
back_inserter
(
unused
));
for
(
auto
*
m
:
unused
)
for
(
const
auto
*
m
:
unused
)
this
->
remove_module
(
m
->
name
());
}
program
&
program
::
sort
()
{
for
(
auto
&
pp
:
this
->
impl
->
modules
)
std
::
queue
<
migraphx
::
module_ref
>
mqueue
;
mqueue
.
push
(
get_main_module
());
while
(
not
mqueue
.
empty
())
{
pp
.
second
.
sort
();
module_ref
current_mod
=
mqueue
.
front
();
current_mod
->
sort
();
mqueue
.
pop
();
auto
child_mods
=
current_mod
->
get_sub_modules
(
true
);
for
(
auto
&
sub_mod
:
child_mods
)
{
mqueue
.
push
(
sub_mod
);
}
}
return
*
this
;
}
...
...
src/py/CMakeLists.txt
View file @
dcb98a60
...
...
@@ -24,6 +24,7 @@
option
(
MIGRAPHX_ENABLE_PYTHON
"Enable python bindings"
ON
)
add_library
(
migraphx_py py_loader.cpp
)
migraphx_generate_export_header
(
migraphx_py
)
target_include_directories
(
migraphx_py PRIVATE include
)
target_link_libraries
(
migraphx_py PUBLIC migraphx
)
rocm_install_targets
(
TARGETS migraphx_py INCLUDE include
)
...
...
src/py/include/migraphx/py.hpp
View file @
dcb98a60
...
...
@@ -26,11 +26,12 @@
#include <migraphx/config.hpp>
#include <migraphx/program.hpp>
#include <migraphx/py/export.h>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
program
load_py
(
const
std
::
string
&
filename
);
MIGRAPHX_PY_EXPORT
program
load_py
(
const
std
::
string
&
filename
);
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
...
...
src/py/py_loader.cpp
View file @
dcb98a60
...
...
@@ -35,9 +35,9 @@ static std::vector<fs::path> find_available_python_versions()
auto
path
=
dynamic_loader
::
path
(
&
load_py
).
parent_path
();
for
(
const
auto
&
entry
:
fs
::
directory_iterator
{
path
})
{
if
(
not
entry
.
is_regular_file
())
continue
;
auto
p
=
entry
.
path
();
if
(
not
fs
::
is_regular_file
(
p
))
continue
;
if
(
not
contains
(
p
.
stem
().
string
(),
"migraphx_py_"
))
continue
;
result
.
push_back
(
p
);
...
...
@@ -64,7 +64,7 @@ static dynamic_loader py_lib()
return
lib
;
}
program
load_py
(
const
std
::
string
&
filename
)
MIGRAPHX_PY_EXPORT
program
load_py
(
const
std
::
string
&
filename
)
{
static
auto
f
=
py_lib
().
get_function
<
program
(
const
std
::
string
&
)
>
(
"migraphx_load_py"
);
return
f
(
filename
);
...
...
src/rewrite_quantization.cpp
View file @
dcb98a60
...
...
@@ -28,6 +28,7 @@
#include <migraphx/tune_axis.hpp>
#include <migraphx/program.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/common.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -61,13 +62,10 @@ void apply_quantizelinear(module& m, instruction_ref ins)
max_quant
=
qt
.
max
();
min_quant
=
qt
.
min
();
});
auto
s
=
add_zero_point
->
get_shape
();
std
::
vector
<
int
>
min_data
(
s
.
elements
(),
min_quant
);
std
::
vector
<
int
>
max_data
(
s
.
elements
(),
max_quant
);
auto
min_arg
=
m
.
add_literal
(
literal
(
s
,
min_data
));
auto
max_arg
=
m
.
add_literal
(
literal
(
s
,
max_data
));
auto
saturate
=
m
.
insert_instruction
(
ins
,
make_op
(
"clip"
),
add_zero_point
,
min_arg
,
max_arg
);
auto
s
=
add_zero_point
->
get_shape
();
auto
min_arg
=
m
.
add_literal
(
literal
{
shape
{
s
.
type
()},
{
min_quant
}});
auto
max_arg
=
m
.
add_literal
(
literal
{
shape
{
s
.
type
()},
{
max_quant
}});
auto
saturate
=
insert_common_op
(
m
,
ins
,
make_op
(
"clip"
),
{
add_zero_point
,
min_arg
,
max_arg
});
m
.
replace_instruction
(
ins
,
make_op
(
"convert"
,
{{
"target_type"
,
ins
->
get_shape
().
type
()}}),
saturate
);
}
...
...
src/simplify_algebra.cpp
View file @
dcb98a60
...
...
@@ -1095,8 +1095,9 @@ MIGRAPHX_PRED_MATCHER(horiz_conv_dot, instruction_ref ins)
};
};
auto
dots
=
std
::
count_if
(
ins
->
outputs
().
begin
(),
ins
->
outputs
().
end
(),
pred
(
"dot"
));
auto
qdots
=
std
::
count_if
(
ins
->
outputs
().
begin
(),
ins
->
outputs
().
end
(),
pred
(
"quant_dot"
));
auto
convs
=
std
::
count_if
(
ins
->
outputs
().
begin
(),
ins
->
outputs
().
end
(),
pred
(
"convolution"
));
return
(
dots
>=
2
or
convs
>=
2
);
return
(
dots
>=
2
or
convs
>=
2
or
qdots
>=
2
);
}
struct
find_conv_dot_horiz_fusion
...
...
@@ -1110,7 +1111,7 @@ struct find_conv_dot_horiz_fusion
auto
pred
=
[](
auto
i
,
auto
j
)
{
if
(
i
->
get_operator
()
!=
j
->
get_operator
())
return
false
;
if
(
not
contains
({
"dot"
,
"convolution"
},
i
->
name
()))
if
(
not
contains
({
"quant_dot"
,
"dot"
,
"convolution"
},
i
->
name
()))
return
true
;
auto
x
=
i
->
inputs
()[
1
]
->
get_shape
().
lens
();
auto
y
=
j
->
inputs
()[
1
]
->
get_shape
().
lens
();
...
...
@@ -1118,7 +1119,7 @@ struct find_conv_dot_horiz_fusion
return
false
;
// Check that non-axes match
int
axis
=
1
;
if
(
i
->
name
()
==
"dot"
)
if
(
i
->
name
()
==
"dot"
or
i
->
name
()
==
"quant_dot"
)
{
axis
=
x
.
size
()
-
1
;
}
...
...
@@ -1129,7 +1130,7 @@ struct find_conv_dot_horiz_fusion
if
(
std
::
distance
(
start
,
last
)
<
2
)
return
;
auto
&&
name
=
(
*
start
)
->
name
();
if
(
not
contains
({
"dot"
,
"convolution"
},
name
))
if
(
not
contains
({
"quant_dot"
,
"dot"
,
"convolution"
},
name
))
return
;
auto
op
=
(
*
start
)
->
get_operator
();
int
group
=
1
;
...
...
@@ -1144,7 +1145,7 @@ struct find_conv_dot_horiz_fusion
start
,
last
,
std
::
back_inserter
(
args
),
[
&
](
auto
x
)
{
return
x
->
inputs
().
at
(
1
);
});
int
axis
=
1
;
int
concat_axis
=
0
;
if
(
name
==
"dot"
)
if
(
name
==
"dot"
or
name
==
"quant_dot"
)
{
axis
=
int
(
args
.
front
()
->
get_shape
().
lens
().
size
()
-
1
);
concat_axis
=
axis
;
...
...
src/sqlite.cpp
View file @
dcb98a60
...
...
@@ -48,6 +48,7 @@ struct sqlite_impl
template
<
class
F
>
void
exec
(
const
char
*
sql
,
F
f
)
{
// cppcheck-suppress constParameterPointer
auto
callback
=
[](
void
*
obj
,
auto
...
xs
)
->
int
{
try
{
...
...
src/targets/cpu/gemm.cpp
View file @
dcb98a60
...
...
@@ -43,7 +43,11 @@ struct dnnl_gemm : dnnl_extend_op<dnnl_gemm, dnnl::matmul, op::dot>
MIGRAPHX_DNNL_PREFIX
(
ARG_BIAS
)};
}
void
required
(
const
check_shapes
&
cs
)
const
{
cs
.
not_broadcasted
();
}
template
<
class
T
>
void
required
(
const
check_shapes
<
T
>&
cs
)
const
{
cs
.
not_broadcasted
();
}
dnnl
::
matmul
::
desc
get_desc
(
const
std
::
unordered_map
<
int
,
dnnl
::
memory
::
desc
>&
m
)
const
{
...
...
src/targets/cpu/include/migraphx/cpu/dnnl.hpp
View file @
dcb98a60
...
...
@@ -400,7 +400,11 @@ struct dnnl_extend_op : dnnl_op<Derived, Primitive>
}
// dnnl has some issues with non-packed inputs
void
required
(
const
check_shapes
&
cs
)
const
{
cs
.
packed_or_broadcasted
();
}
template
<
class
T
>
void
required
(
const
check_shapes
<
T
>&
cs
)
const
{
cs
.
packed_or_broadcasted
();
}
std
::
string
name
()
const
{
return
"dnnl::"
+
op
.
name
();
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
...
...
src/targets/cpu/target.cpp
View file @
dcb98a60
...
...
@@ -61,7 +61,7 @@ namespace cpu {
std
::
string
target
::
name
()
const
{
return
"cpu"
;
}
// cppcheck-suppress constParameter
// cppcheck-suppress constParameter
Reference
std
::
vector
<
pass
>
target
::
get_passes
(
migraphx
::
context
&
gctx
,
const
compile_options
&
)
const
{
auto
&
ctx
=
any_cast
<
context
>
(
gctx
);
...
...
src/targets/gpu/CMakeLists.txt
View file @
dcb98a60
...
...
@@ -123,6 +123,7 @@ add_library(migraphx_gpu
lrn.cpp
mlir.cpp
multinomial.cpp
no_device.cpp
nonzero.cpp
pack_args.cpp
pack_int8_args.cpp
...
...
Prev
1
2
3
4
5
6
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment