Unverified Commit dae94657 authored by Chris Austen's avatar Chris Austen Committed by GitHub
Browse files

Merge branch 'develop' into jit-reduce-reg

parents b013d991 56c43445
......@@ -26,7 +26,9 @@
#include <ostream>
#include <algorithm>
#include <migraphx/reflect.hpp>
#include <migraphx/rank.hpp>
#include <migraphx/requires.hpp>
#include <migraphx/config.hpp>
#include <vector>
......@@ -83,6 +85,20 @@ auto stream_write_value_impl(rank<0>, std::ostream& os, const Range& r)
os << "}";
}
template <class T, MIGRAPHX_REQUIRES(is_reflectable<T>{})>
void stream_write_value_impl(rank<0>, std::ostream& os, const T& x)
{
char delim = '{';
reflect_each(x, [&](auto&& y, auto name) {
os << delim;
os << name << "=";
stream_write_value_impl(rank<2>{}, os, y);
delim = ',';
});
if(delim == ',')
os << "}";
}
} // namespace detail
template <class T>
......
......@@ -77,14 +77,14 @@ static void update_pooling(const instruction_ref& input, const instruction_ref&
{
return;
}
auto kdims = input->get_shape().lens().size() - 2;
auto kdims = input->get_shape().ndim() - 2;
if(std::equal(op.padding.begin(),
op.padding.begin() + kdims,
op.padding.begin() + kdims,
op.padding.end()))
return;
std::vector<int64_t> padding(input->get_shape().lens().size() * 2, 0);
std::vector<int64_t> padding(input->get_shape().ndim() * 2, 0);
std::vector<size_t> pads_l(op.padding.begin(), op.padding.begin() + kdims);
std::vector<size_t> pads_r(op.padding.begin() + kdims, op.padding.end());
op.padding = std::vector<size_t>(kdims * 2, 0);
......
......@@ -302,6 +302,24 @@ void instruction::replace_mod_argument(module_ref old, module_ref new_mod)
std::replace(module_args.begin(), module_args.end(), old, new_mod);
}
bool instruction::is_undefined() const
{
if(op.name() == "undefined")
{
return true;
}
else if(this->inputs().empty())
{
return false;
}
else
{
return std::all_of(this->inputs().begin(), this->inputs().end(), [](auto arg) {
return arg->is_undefined();
});
}
}
bool instruction::can_eval() const
{
if(op.name() == "@literal")
......
......@@ -21,63 +21,98 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/rewrite_batchnorm.hpp>
#include <migraphx/program.hpp>
#include <migraphx/layout_nhwc.hpp>
#include <migraphx/module.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
#include <migraphx/op/broadcast.hpp>
#include <migraphx/op/add.hpp>
#include <migraphx/op/mul.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/permutation.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/eliminate_contiguous.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/pass_manager.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
void rewrite_batchnorm::apply(module& m) const
template <class Predicate>
std::vector<instruction_ref> find_lasts(const module& m, Predicate pred)
{
std::vector<instruction_ref> result;
fix([&](auto self, auto ins) {
if(pred(ins))
{
result.push_back(ins);
return;
}
for(auto input : ins->inputs())
self(input);
})(std::prev(m.end()));
return result;
}
std::unordered_set<instruction_ref> preserve_output_layout(module& m)
{
std::unordered_set<instruction_ref> result;
std::vector<instruction_ref> outputs = find_lasts(m, [](auto ins) {
return ins->name() == "convolution" and ins->get_shape().lens().size() == 4;
});
for(auto output : outputs)
{
auto permutation = find_permutation(output->get_shape());
auto layout = m.insert_instruction(
std::next(output), make_op("layout", {{"permutation", permutation}}), output);
result.insert(m.replace_instruction(output, layout));
}
return result;
}
void transform_convolutions(module& m)
{
for(auto ins : iterator_for(m))
{
if(ins->name() != "batch_norm_inference")
if(ins->name() != "convolution")
continue;
// Get scale, bias, mean, variance from inputs
auto gamma = ins->inputs()[1]->eval();
auto bias = ins->inputs()[2]->eval();
auto mean = ins->inputs()[3]->eval();
auto variance = ins->inputs()[4]->eval();
if(any_of({gamma, bias, mean, variance}, [](auto arg) { return arg.empty(); }))
if(ins->get_shape().lens().size() != 4)
continue;
auto v = ins->get_operator().to_value();
if(v.at("group").to<int>() > 1)
continue;
auto args = ins->inputs();
std::transform(args.begin(), args.end(), args.begin(), [&](const auto& i) {
return m.insert_instruction(ins, make_op("layout", {{"permutation", {0, 2, 3, 1}}}), i);
});
auto conv = m.insert_instruction(ins, ins->get_operator(), args);
auto c = m.insert_instruction(ins, make_op("contiguous"), conv);
m.replace_instruction(ins, c);
}
}
std::vector<std::size_t> lens = ins->inputs()[1]->get_shape().lens();
shape s{ins->get_shape().type(), lens};
// Get epsilon
auto bn_op = any_cast<op::batch_norm_inference>(ins->get_operator());
auto epsilon = bn_op.epsilon;
argument a{s};
argument b{s};
visit_all(gamma, bias, mean, variance, a, b)(
[&](auto gamma2, auto bias2, auto mean2, auto variance2, auto a2, auto b2) {
dfor(a.get_shape().elements())(
[&](std::size_t c) { a2[c] = gamma2[c] / std::sqrt(variance2[c] + epsilon); });
dfor(b.get_shape().elements())([&](std::size_t c) {
b2[c] = bias2[c] - (gamma2[c] * mean2[c] / std::sqrt(variance2[c] + epsilon));
});
});
auto broadcast = op::broadcast{1, ins->get_shape().lens()};
auto a_ins = m.add_literal({a.get_shape(), a.data()});
auto a_broadcast = m.insert_instruction(ins, broadcast, a_ins);
auto mul = m.insert_instruction(ins, make_op("mul"), ins->inputs().front(), a_broadcast);
auto b_ins = m.add_literal({b.get_shape(), b.data()});
auto b_broadcast = m.insert_instruction(ins, broadcast, b_ins);
auto add = m.insert_instruction(ins, make_op("add"), mul, b_broadcast);
m.replace_instruction(ins, add);
void remove_layout(module& m, const std::unordered_set<instruction_ref>& output_layouts)
{
for(auto ins : iterator_for(m))
{
if(ins->name() != "layout")
continue;
if(ins->get_shape() != ins->inputs().front()->get_shape())
continue;
if(contains(output_layouts, ins))
continue;
m.replace_instruction(ins, ins->inputs().front());
}
}
void layout_nhwc::apply(module_pass_manager& mpm) const
{
std::unordered_set<instruction_ref> output_layouts = preserve_output_layout(mpm.get_module());
transform_convolutions(mpm.get_module());
mpm.run_pass(dead_code_elimination{});
mpm.run_pass(eliminate_contiguous{"contiguous"});
mpm.run_pass(dead_code_elimination{});
remove_layout(mpm.get_module(), output_layouts);
mpm.run_pass(dead_code_elimination{});
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -25,7 +25,6 @@
#include <migraphx/file_buffer.hpp>
#include <migraphx/json.hpp>
#include <migraphx/msgpack.hpp>
#include <migraphx/file_buffer.hpp>
#include <fstream>
namespace migraphx {
......
......@@ -34,7 +34,6 @@
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_target.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/json.hpp>
#include <iostream>
#include <sstream>
......@@ -790,6 +789,22 @@ static std::string cpp_var_name(const std::string& name)
return to_c_id("x_" + replace_string(name, ":", "_module_"));
}
static void print_py_op(std::ostream& os, const operation& op)
{
auto v = op.to_value();
os << "migraphx.op(" << enclose_name(op.name());
auto default_values = make_op(op.name()).to_value();
for(auto&& x : v)
{
auto name = x.get_key();
if(default_values[name] == x)
continue;
os << ", " << name << "=" << to_json_string(x.without_key());
}
os << ")";
}
static void print_make_op(std::ostream& os, const operation& op)
{
auto v = op.to_value();
......@@ -805,6 +820,14 @@ static void print_make_op(std::ostream& os, const operation& op)
os << ")";
}
static void print_py_shape(std::ostream& os, const migraphx::shape& s)
{
os << "migraphx.shape(" << s.type_string() << ", lens=" << to_json_string(s.lens());
if(not s.standard())
os << ", strides=" << to_json_string(s.strides());
os << ")";
}
static void print_cpp_shape(std::ostream& os, const migraphx::shape& s)
{
os << "migraphx::shape{migraphx::shape::" << s.type_string();
......@@ -814,6 +837,68 @@ static void print_cpp_shape(std::ostream& os, const migraphx::shape& s)
os << "}";
}
std::unordered_map<instruction_ref, std::string>
module::print_py(std::ostream& os,
const std::string& mname,
std::unordered_map<instruction_ref, std::string> names) const
{
// cppcheck-suppress variableScope
unsigned long seed = names.size();
auto last = std::prev(this->end());
names = this->print(
[&](auto ins, auto ins_names) {
std::vector<std::string> input_vars;
std::transform(ins->inputs().begin(),
ins->inputs().end(),
std::back_inserter(input_vars),
[&](auto input) { return cpp_var_name(ins_names.at(input)); });
if(ins != last)
os << cpp_var_name(ins_names.at(ins)) << " = ";
if(ins->name() == "@literal")
{
os << mname << ".add_literal(";
bool use_abs = false;
ins->get_literal().visit([&](auto v) {
use_abs = std::none_of(v.begin(), v.end(), [](auto x) { return x < 0; });
});
// Disable abs for now
use_abs = false;
if(use_abs)
os << "migraphx.abs_literal(";
os << "migraphx.generate_literal(";
print_py_shape(os, ins->get_shape());
os << ", " << seed << ")";
if(use_abs)
os << ")";
os << ")" << std::endl;
seed++;
}
else if(ins->name() == "@param")
{
std::string name = any_cast<builtin::param>(ins->get_operator()).parameter;
os << mname << ".add_parameter(" << enclose_name(name) << ",";
print_py_shape(os, ins->get_shape());
os << ")" << std::endl;
}
else if(ins->name() == "@return")
{
os << mname << ".add_return([" << join_strings(input_vars, ", ") << "])"
<< std::endl;
}
else
{
assert(ins->name().front() != '@');
os << mname << ".add_instruction(";
print_py_op(os, ins->get_operator());
os << ", [" << join_strings(input_vars, ", ") << "]";
os << ")" << std::endl;
}
},
names);
return names;
}
std::unordered_map<instruction_ref, std::string>
module::print_cpp(std::ostream& os,
const std::string& mname,
......@@ -875,6 +960,8 @@ module::print_cpp(std::ostream& os,
return names;
}
void module::print_py(std::ostream& os) const { this->print_py(os, this->name(), {}); }
void module::print_cpp(std::ostream& os) const { this->print_cpp(os, this->name(), {}); }
void module::annotate(std::ostream& os, std::function<void(instruction_ref)> a) const
......
......@@ -30,7 +30,7 @@ namespace onnx {
void recalc_conv_attributes(value& v, size_t kdims)
{
if(not(v["padding"].size() == kdims or v["padding"].size() == kdims * 2))
if(v["padding"].size() != kdims and v["padding"].size() != kdims * 2)
{
v["padding"].resize(kdims);
std::fill_n(v["padding"].begin(), kdims, 0);
......
......@@ -393,18 +393,31 @@ literal onnx_parser::parse_value(const onnx::AttributeProto& attr) const
literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
{
std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
if(not t.external_data().empty())
auto type = get_type(t.data_type());
shape tensor_shape(type, dims);
auto external_data = t.external_data();
if(not external_data.empty())
{
const std::string& data_file = t.external_data().at(0).value();
auto raw_buffer = read_buffer(path + "/" + data_file);
const std::string& data_file = external_data.at(0).value();
size_t num_data_fields = external_data.size();
size_t offset = 0;
size_t nbytes = tensor_shape.bytes();
if(num_data_fields > 1) // if offset field is present
{
offset = std::stoul(t.external_data().at(1).value());
}
if(num_data_fields > 2) // if nbytes field is present
{
nbytes = std::stoul(t.external_data().at(2).value());
}
auto raw_buffer = read_buffer(path + "/" + data_file, offset, nbytes);
std::string s(raw_buffer.begin(), raw_buffer.end());
auto type = get_type(t.data_type());
return create_literal(type, dims, s.data());
}
if(t.has_raw_data())
{
const std::string& s = t.raw_data();
auto type = get_type(t.data_type());
return create_literal(type, dims, s.data());
}
......
......@@ -44,7 +44,7 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
{
epsilon = parser.parse_value(info.attributes.at("epsilon")).at<float>();
}
auto x_lens = args[0]->get_shape().lens();
auto x_lens = args[0]->get_shape().max_lens();
auto x_type = args[0]->get_shape().type();
if(std::any_of(args.cbegin() + 1, args.cend(), [](auto a) {
......@@ -54,18 +54,19 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
MIGRAPHX_THROW("PARSE_BATCHNORM: argument scale, bias, mean, or var rank != 1");
}
if(x_lens.size() == 1)
auto x_rank = x_lens.size();
if(x_rank == 1 or x_rank == 2)
{
auto rt = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {0.5}});
auto eps = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {epsilon}});
auto n0 = info.add_broadcastable_binary_op("sub", args[0], args[3]);
auto d0 = info.add_broadcastable_binary_op("add", args[4], eps);
auto d1 = info.add_broadcastable_binary_op("pow", d0, rt);
auto div0 = info.add_broadcastable_binary_op("div", n0, d1);
auto r0 = info.add_broadcastable_binary_op("mul", div0, args[1]);
auto rt = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {0.5}});
auto eps = info.add_literal(migraphx::literal{migraphx::shape{x_type}, {epsilon}});
auto numer = info.add_broadcastable_binary_op("sub", args[0], args[3]);
auto var_eps = info.add_broadcastable_binary_op("add", args[4], eps);
auto denom = info.add_broadcastable_binary_op("pow", var_eps, rt);
auto div0 = info.add_broadcastable_binary_op("div", numer, denom);
auto r0 = info.add_broadcastable_binary_op("mul", div0, args[1]);
return info.add_broadcastable_binary_op("add", r0, args[2]);
}
else if(x_lens.size() > 2)
else if(x_rank > 2)
{
// unsqueeze tensors of shape (C) to broadcast correctly
std::vector<int64_t> unsqueeze_axes(x_lens.size() - 2);
......@@ -89,7 +90,7 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
}
else
{
// num dims either 0 or 2
// rank == 0
MIGRAPHX_THROW("PARSE_BATCHNORM: rank " + std::to_string(x_lens.size()) +
" input tensor, unhandled data format");
}
......
......@@ -57,6 +57,12 @@ struct parse_binary_op : op_parser<parse_binary_op>
parser.parse_value(info.attributes.at("broadcast")).at<uint64_t>();
if(broadcasted != 0)
{
if(std::any_of(
args.cbegin(), args.cend(), [](auto a) { return a->get_shape().dynamic(); }))
{
MIGRAPHX_THROW(
"Binary op broadcast attribute not supported for dynamic input shapes");
}
uint64_t axis = parser.parse_value(info.attributes.at("axis")).at<uint64_t>();
auto l = info.add_instruction(
make_op("broadcast",
......
......@@ -125,11 +125,9 @@ struct parse_convolution : op_parser<parse_convolution>
values["padding_mode"] = is_same_upper
? to_value(op::padding_mode_t::same_upper)
: to_value(op::padding_mode_t::same_lower);
values["use_dynamic_same_auto_pad"] = true;
}
else
{
values["padding_mode"] = to_value(op::padding_mode_t::same);
// kernel shape will be fixed, so max_lens() == min_len() for kernel lengths
auto weight_lens = weights->get_shape().max_lens();
std::vector<std::size_t> k_lens(weight_lens.begin() + 2, weight_lens.end());
......
......@@ -95,6 +95,8 @@ struct parse_deconvolution : op_parser<parse_deconvolution>
check_attr_sizes(
kdims, values["dilation"].size(), "PARSE_CONV_TRANSPOSE: inconsistent dilations");
}
// TODO: auto padding needs to be implemented for this parser and operator
if(contains(info.attributes, "auto_pad"))
{
auto s = info.attributes["auto_pad"].s();
......@@ -106,7 +108,9 @@ struct parse_deconvolution : op_parser<parse_deconvolution>
if(s.find("SAME") != std::string::npos)
{
values["padding_mode"] = to_value(op::padding_mode_t::same);
bool is_same_upper = (s.find("SAME_UPPER") != std::string::npos);
values["padding_mode"] = is_same_upper ? to_value(op::padding_mode_t::same_upper)
: to_value(op::padding_mode_t::same_lower);
}
}
......
......@@ -47,52 +47,42 @@ struct parse_pooling : op_parser<parse_pooling>
{"GlobalLpPool", "lpnorm"}};
}
instruction_ref parse(const op_desc& opd,
const onnx_parser& /*parser*/,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
value handle_values(const op_desc& opd,
onnx_parser::node_info info,
const shape& in_shape,
value values) const
{
const std::unordered_map<std::string, op::pooling_mode> mode_map = {
{"max", op::pooling_mode::max},
{"average", op::pooling_mode::average},
{"lpnorm", op::pooling_mode::lpnorm}};
std::string mode = opd.op_name;
if(not contains(mode_map, mode))
{
MIGRAPHX_THROW("onnx pooling mode must be [\"max\", \"average\", \"lpnorm\"]");
}
operation op = make_op("pooling", {{"mode", mode_map.at(mode)}});
value values = op.to_value();
auto l0 = args[0];
auto in_lens = l0->get_shape().lens();
assert(in_lens.size() > 2);
auto kdims = in_lens.size() - 2;
auto kdims = in_shape.ndim() - 2;
if(starts_with(opd.onnx_name, "Global"))
{
values["lengths"] = std::vector<size_t>(in_lens.begin() + 2, in_lens.end());
// if spatial dimensions are dynamic use dyn_global flag
if(in_shape.dynamic() and std::any_of(in_shape.dyn_dims().cbegin() + 2,
in_shape.dyn_dims().cend(),
[](auto dd) { return not dd.is_fixed(); }))
{
values["dyn_global"] = true;
values["lengths"] = std::vector<size_t>();
}
else
{
// works with static and fixed dynamic shape
auto m_lens = in_shape.max_lens();
values["lengths"] = std::vector<size_t>(m_lens.begin() + 2, m_lens.end());
}
}
// does not support ceil_mode
if(contains(info.attributes, "ceil_mode"))
{
values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
}
// count include padding, if count include pad is 1, we always use
// explicit pad
int count_include_pad = 0;
if(contains(info.attributes, "count_include_pad"))
{
count_include_pad = info.attributes.at("count_include_pad").i();
}
if(contains(info.attributes, "strides"))
{
values["stride"].clear();
copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
}
if(contains(info.attributes, "kernel_shape"))
{
values["lengths"].clear();
......@@ -110,6 +100,46 @@ struct parse_pooling : op_parser<parse_pooling>
// ensure pads availabe only when auto_pad is "NOT_SET"
check_padding_mode(info, "POOLING");
return values;
}
instruction_ref parse(const op_desc& opd,
const onnx_parser& /*parser*/,
onnx_parser::node_info info,
std::vector<instruction_ref> args) const
{
std::string mode = opd.op_name;
const std::unordered_map<std::string, op::pooling_mode> mode_map = {
{"max", op::pooling_mode::max},
{"average", op::pooling_mode::average},
{"lpnorm", op::pooling_mode::lpnorm}};
if(not contains(mode_map, mode))
{
MIGRAPHX_THROW(
"PARSE_POOLING: onnx pooling mode must be [\"max\", \"average\", \"lpnorm\"]");
}
operation op = make_op("pooling", {{"mode", mode_map.at(mode)}});
value values = op.to_value();
auto l0 = args[0];
auto in_shape = l0->get_shape();
assert(in_shape.ndim() > 2);
auto kdims = in_shape.ndim() - 2;
values = handle_values(opd, info, in_shape, values);
// count include padding, if count include pad is 1, we always use
// explicit pad
int count_include_pad = 0;
if(contains(info.attributes, "count_include_pad"))
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW("PARSE_POOLING: count_include_pad attribute is not supported for "
"dynamic input shape");
}
count_include_pad = info.attributes.at("count_include_pad").i();
}
std::vector<int64_t> paddings;
float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
......@@ -123,14 +153,22 @@ struct parse_pooling : op_parser<parse_pooling>
if(contains(info.attributes, "auto_pad"))
{
values["padding"].clear();
// return paddings could be empty, then setting to 0 for no padding
cal_auto_padding_size(info,
values,
values["lengths"].to_vector<std::size_t>(),
{1, 1},
in_lens,
paddings);
if(in_shape.dynamic())
{
MIGRAPHX_THROW(
"PARSE_POOLING: Auto padding pooling with dynamic input shape not supported");
}
else
{
values["padding"].clear();
// return paddings could be empty, then setting to 0 for no padding
cal_auto_padding_size(info,
values,
values["lengths"].to_vector<std::size_t>(),
{1, 1},
in_shape.lens(),
paddings);
}
}
if(paddings.size() != 2 * kdims)
......@@ -150,6 +188,7 @@ struct parse_pooling : op_parser<parse_pooling>
values["stride"].resize(kdims);
std::fill_n(values["stride"].begin(), kdims, 1);
}
// used to calculate the supposed output shape
std::vector<int64_t> orig_padding = paddings;
......@@ -159,6 +198,11 @@ struct parse_pooling : op_parser<parse_pooling>
if(not slice_start.empty())
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW(
"PARSE_POOLING: asymmetric padding not supported for dynamic input shape");
}
// calculate expected output shape
orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
orig_padding.insert(orig_padding.begin(), 2, 0);
......
......@@ -26,6 +26,9 @@
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/tune_axis.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/stringutils.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -55,12 +58,12 @@ struct parse_split : op_parser<parse_split>
{
literal s = parser.parse_value(info.attributes.at("split"));
s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });
if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
static_cast<int64_t>(lens[tuned_axis]))
{
MIGRAPHX_THROW("PARSE_SPLIT: sum of split attribute unequal to dim size of axis!");
}
}
else if(args.size() == 2)
{
auto s = args[1]->eval();
check_arg_empty(s, "Split: dynamic shape is not supported");
s.visit([&](auto v) { vec_splits.assign(v.begin(), v.end()); });
}
// no split attribute, input is equally divided
else
......@@ -74,6 +77,15 @@ struct parse_split : op_parser<parse_split>
vec_splits.resize(info.num_outputs, dl);
}
if(std::accumulate(vec_splits.begin(), vec_splits.end(), int64_t(0)) !=
static_cast<int64_t>(lens[tuned_axis]))
{
MIGRAPHX_THROW(
"PARSE_SPLIT: sum of split attribute unequal to dim size of axis! tuned axis:" +
std::to_string(lens[tuned_axis]) + " Output " + to_string_range(vec_splits) +
" Rank " + std::to_string(n_rank) + " Len outs " + to_string_range(lens));
}
std::vector<instruction_ref> ret_ins;
int64_t start = 0;
for(auto sl : vec_splits)
......
......@@ -47,7 +47,7 @@ struct parse_transpose : op_parser<parse_transpose>
}
// if perm is empty, use the default value
auto n_dim = args.front()->get_shape().lens().size();
auto n_dim = args.front()->get_shape().ndim();
if(perm.empty())
{
perm.resize(n_dim);
......
......@@ -52,19 +52,21 @@ void calculate_padding(int64_t idx,
}
}
std::vector<std::size_t> calc_dyn_auto_pad(std::vector<std::size_t> tensor_lens,
std::vector<std::size_t> k_lens,
std::vector<std::size_t> strides,
std::vector<std::size_t> dilations,
std::vector<std::size_t> calc_dyn_auto_pad(const std::vector<std::size_t>& input_lens,
const std::vector<std::size_t>& wei_lens,
const std::vector<std::size_t>& strides,
const std::vector<std::size_t>& dilations,
bool use_upper)
{
std::vector<std::size_t> padding;
padding.resize(2 * k_lens.size());
for(std::size_t i = 0; i < padding.size() / 2; i++)
assert(input_lens.size() >= 3);
std::size_t num_spatial_dims = input_lens.size() - 2;
padding.resize(2 * num_spatial_dims);
for(std::size_t i = 0; i < num_spatial_dims; i++)
{
std::ptrdiff_t input_dim = tensor_lens[i];
std::ptrdiff_t input_dim = input_lens[i + 2];
std::ptrdiff_t stride = strides[i];
std::ptrdiff_t weight_dim = k_lens[i];
std::ptrdiff_t weight_dim = wei_lens[i + 2];
std::ptrdiff_t dilation = dilations[i];
std::ptrdiff_t output_dim = (input_dim + stride - 1) / stride; // round up result
std::ptrdiff_t new_weight_dim = weight_dim + (weight_dim - 1) * (dilation - 1);
......@@ -86,5 +88,28 @@ std::vector<std::size_t> calc_dyn_auto_pad(std::vector<std::size_t> tensor_lens,
return padding;
}
shape compute_padded_shape(const shape& input,
const shape& weights,
const std::vector<std::size_t>& padding,
const std::vector<std::size_t>& stride,
const std::vector<std::size_t>& dilation)
{
const size_t num_spatial_dims = input.lens().size() - 2;
std::vector<size_t> output_lens{input.lens()[0], weights.lens()[0]};
// calculate the output shape of the convolution: ((W - K + 2P) / S) + 1
for(size_t i = 0; i < num_spatial_dims; ++i)
{
auto padding_factor = padding[i] + padding[i + num_spatial_dims];
output_lens.push_back(std::size_t(std::max<std::ptrdiff_t>(
1,
(input.lens()[i + 2] - (1 + dilation[i] * (weights.lens()[i + 2] - 1)) +
padding_factor) /
stride[i] +
1)));
}
return input.with_lens(output_lens);
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -94,11 +94,19 @@ struct module_pm : module_pass_manager
virtual void run_pass(const pass& p) override
{
assert(mod);
timer ts{};
using seconds = std::chrono::duration<double>;
trace("Module: ", mod->name(), ", Pass: ", p.name());
const double t1 = ts.record<seconds>();
assert(mod->validate() == mod->end());
p.apply(*this);
trace(*mod);
validate_pass(*mod, p, *t);
const double t2 = ts.record<seconds>();
trace("Pass: ", p.name(), " completed in (s): ", (t2 - t1));
}
};
......
......@@ -854,6 +854,25 @@ void program::print_graph(std::ostream& os, bool brief) const
mm->print_graph(os, brief);
}
void program::print_py(std::ostream& os) const
{
auto vec_modules = this->get_modules();
std::unordered_map<instruction_ref, std::string> names;
os << "p = migraphx.program()\n";
for(auto& mod : vec_modules)
{
std::string var_name = "m" + mod->name();
os << var_name << " = ";
if(mod->name() == "main")
os << "p.get_main_module()";
else
os << "p.create_module(\"" << mod->name() << "\");";
os << std::endl;
names = mod->print_py(os, var_name, names);
os << std::endl;
}
}
void program::print_cpp(std::ostream& os) const
{
auto vec_modules = this->get_modules();
......
......@@ -46,9 +46,6 @@
#include <migraphx/iterator_for.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/op/rnn_var_sl_last_output.hpp>
#include <migraphx/op/rnn_variable_seq_lens.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -95,7 +92,7 @@ void rewrite_rnn::apply_vanilla_rnn(module& m, instruction_ref ins) const
// process sequence length
instruction_ref seq_lens = m.end();
if((args.size() >= 5) && args[4]->name() != "undefined")
if((args.size() >= 5) and not args[4]->is_undefined())
{
seq_lens = args[4];
}
......@@ -120,7 +117,7 @@ void rewrite_rnn::apply_vanilla_rnn(module& m, instruction_ref ins) const
// process bias
instruction_ref bias_forward = m.end();
instruction_ref bias_reverse = m.end();
if(args.size() >= 4 && args[3]->name() != "undefined")
if(args.size() >= 4 and not args[3]->is_undefined())
{
bias_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[3]);
......@@ -132,7 +129,7 @@ void rewrite_rnn::apply_vanilla_rnn(module& m, instruction_ref ins) const
// or the 5th one (if the sequence len argument is ignored)
instruction_ref ih_forward{};
instruction_ref ih_reverse{};
if(args.size() == 6 && args[5]->name() != "undefined")
if(args.size() == 6 and not args[5]->is_undefined())
{
ih_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[5]);
......@@ -198,14 +195,14 @@ void rewrite_rnn::apply_vanilla_rnn(module& m, instruction_ref ins) const
// process bias and initial hidden state
instruction_ref bias = m.end();
if(args.size() >= 4 && args[3]->name() != "undefined")
if(args.size() >= 4 and not args[3]->is_undefined())
{
bias = args[3];
}
// process intial hidden state
instruction_ref ih;
if(args.size() == 6 && args[5]->name() != "undefined")
if(args.size() == 6 and not args[5]->is_undefined())
{
ih = args[5];
}
......@@ -401,7 +398,7 @@ void rewrite_rnn::apply_gru(module& m, instruction_ref ins) const
// process sequence length
instruction_ref seq_lens = m.end();
if((args.size() >= 5) && args[4]->name() != "undefined")
if((args.size() >= 5) and not args[4]->is_undefined())
{
seq_lens = args[4];
}
......@@ -426,7 +423,7 @@ void rewrite_rnn::apply_gru(module& m, instruction_ref ins) const
// bias
instruction_ref bias_forward = m.end();
instruction_ref bias_reverse = m.end();
if(args.size() >= 4 && args[3]->name() != "undefined")
if(args.size() >= 4 and not args[3]->is_undefined())
{
bias_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[3]);
......@@ -437,7 +434,7 @@ void rewrite_rnn::apply_gru(module& m, instruction_ref ins) const
// intial hidden state
instruction_ref ih_forward{};
instruction_ref ih_reverse{};
if(args.size() == 6 && args[5]->name() != "undefined")
if(args.size() == 6 and not args[5]->is_undefined())
{
ih_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[5]);
......@@ -504,14 +501,14 @@ void rewrite_rnn::apply_gru(module& m, instruction_ref ins) const
// bias
instruction_ref bias = m.end();
if(args.size() >= 4 && args[3]->name() != "undefined")
if(args.size() >= 4 and not args[3]->is_undefined())
{
bias = args[3];
}
// intial hidden state
instruction_ref ih{};
if(args.size() == 6 && args[5]->name() != "undefined")
if(args.size() == 6 and not args[5]->is_undefined())
{
ih = args[5];
}
......@@ -787,7 +784,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// process sequence length
instruction_ref seq_lens = m.end();
if((args.size() >= 5) && args[4]->name() != "undefined")
if((args.size() >= 5) and not args[4]->is_undefined())
{
seq_lens = args[4];
}
......@@ -816,7 +813,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// process bias
instruction_ref bias_forward = m.end();
instruction_ref bias_reverse = m.end();
if(args.size() >= 4 && args[3]->name() != "undefined")
if(args.size() >= 4 and not args[3]->is_undefined())
{
bias_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[3]);
......@@ -827,7 +824,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// process intial hidden state, it is the 6th argument
instruction_ref ih_forward{};
instruction_ref ih_reverse{};
if(args.size() >= 6 && args[5]->name() != "undefined")
if(args.size() >= 6 and not args[5]->is_undefined())
{
ih_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[5]);
......@@ -843,7 +840,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// process initial cell value
instruction_ref ic_forward{};
instruction_ref ic_reverse{};
if(args.size() >= 7 && args[6]->name() != "undefined")
if(args.size() >= 7 and not args[6]->is_undefined())
{
ic_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[6]);
......@@ -859,7 +856,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// process weight of the peephole
instruction_ref pph_forward = m.end();
instruction_ref pph_reverse = m.end();
if(args.size() == 8 && args[7]->name() != "undefined")
if(args.size() == 8 and not args[7]->is_undefined())
{
pph_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[7]);
......@@ -943,14 +940,14 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// bias
instruction_ref bias = m.end();
if(args.size() >= 4 && args[3]->name() != "undefined")
if(args.size() >= 4 and not args[3]->is_undefined())
{
bias = args[3];
}
// initial hidden state
instruction_ref ih{};
if(args.size() >= 6 && args[5]->name() != "undefined")
if(args.size() >= 6 and not args[5]->is_undefined())
{
ih = args[5];
}
......@@ -961,7 +958,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// initial cell value
instruction_ref ic{};
if(args.size() >= 7 && args[6]->name() != "undefined")
if(args.size() >= 7 and not args[6]->is_undefined())
{
ic = args[6];
}
......@@ -972,7 +969,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// process weight of the peephole
instruction_ref pph = m.end();
if(args.size() == 8 && args[7]->name() != "undefined")
if(args.size() == 8 and not args[7]->is_undefined())
{
pph = args[7];
}
......
......@@ -71,6 +71,19 @@ struct shape_impl
{
}
shape_impl(shape::type_t t,
std::vector<std::size_t> mins,
std::vector<std::size_t> maxes,
std::vector<std::size_t> opts)
: m_type(t)
{
assert(mins.size() == maxes.size() and maxes.size() == opts.size());
for(size_t i = 0; i < mins.size(); ++i)
{
m_dyn_dims.push_back(shape::dynamic_dimension{mins[i], maxes[i], opts[i]});
}
}
shape_impl(const std::vector<shape>& subs) : m_type(shape::tuple_type), m_shapes(subs) {}
shape::type_t m_type;
......@@ -224,6 +237,14 @@ shape::shape(type_t t, std::vector<shape::dynamic_dimension> dims)
{
}
shape::shape(type_t t,
std::vector<std::size_t> mins,
std::vector<std::size_t> maxes,
std::vector<std::size_t> opts)
: impl(std::make_shared<shape_impl>(t, std::move(mins), std::move(maxes), std::move(opts)))
{
}
shape::shape(const std::vector<shape>& subs) : impl(std::make_shared<shape_impl>(subs)) {}
shape::shape(std::shared_ptr<shape_impl> pimpl) : impl(std::move(pimpl)) {}
......@@ -244,6 +265,15 @@ const std::vector<std::size_t>& shape::lens() const { return impl->m_lens; }
const std::vector<std::size_t>& shape::strides() const { return impl->m_strides; }
std::size_t shape::ndim() const
{
if(this->dynamic())
{
return dyn_dims().size();
}
return lens().size();
}
std::size_t shape::elements() const { return impl->elements(); }
std::size_t shape::bytes() const
......@@ -437,6 +467,16 @@ shape shape::with_type(type_t t) const
return {c};
}
shape shape::to_dynamic() const
{
if(this->dynamic())
{
return *this;
}
std::vector<std::size_t> zeroes(this->ndim(), 0);
return {type(), lens(), lens(), zeroes};
}
std::size_t shape::element_space() const { return impl->element_space(); }
std::string shape::type_string() const { return name(this->type()); }
......@@ -464,15 +504,11 @@ bool shape::dynamic_dimension::is_fixed() const { return this->min == this->max;
bool shape::dynamic_dimension::has_optimal() const { return opt != 0; }
template <class Self, class F>
auto shape::dynamic_dimension::reflect(Self& self, F f)
{
return pack(f(self.min, "min"), f(self.max, "max"), f(self.opt, "opt"));
}
bool operator==(const shape::dynamic_dimension& x, const shape::dynamic_dimension& y)
{
return (x.min == y.min and x.max == y.max and x.opt == y.opt);
// don't check opt if both are fixed
return (x.min == y.min and x.max == y.max and
((x.is_fixed() and y.is_fixed()) or (x.opt == y.opt)));
}
bool operator!=(const shape::dynamic_dimension& x, const shape::dynamic_dimension& y)
......@@ -485,6 +521,14 @@ std::ostream& operator<<(std::ostream& os, const shape::dynamic_dimension& x)
return os;
}
bool operator==(const shape::dynamic_dimension& x, const std::size_t& y)
{
return x.min == y and x.max == y;
}
bool operator==(const std::size_t& x, const shape::dynamic_dimension& y) { return y == x; }
bool operator!=(const shape::dynamic_dimension& x, const std::size_t& y) { return not(x == y); }
bool operator!=(const std::size_t& x, const shape::dynamic_dimension& y) { return not(x == y); }
bool operator==(const shape& x, const shape& y)
{
if(x.dynamic() and y.dynamic())
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment