Commit d1d48bdc authored by Alan Turner's avatar Alan Turner
Browse files

Cleanup

parent 59993d98
...@@ -65,9 +65,9 @@ __device__ void ck_gemm_softmax_gemm_matrix(C c, A a, B b, B1 b1, Settings s) ...@@ -65,9 +65,9 @@ __device__ void ck_gemm_softmax_gemm_matrix(C c, A a, B b, B1 b1, Settings s)
to_ck_tensor<C>()); to_ck_tensor<C>());
static_assert(desc.IsValid(), "Invalid ck gemm."); static_assert(desc.IsValid(), "Invalid ck gemm.");
const float scale = s.scale;
G::Run(desc, G::Run(desc,
scale, s.scale,
to_ck_const_pointer(a.data()), to_ck_const_pointer(a.data()),
to_ck_const_pointer(b.data()), to_ck_const_pointer(b.data()),
to_ck_const_pointer(b1.data()), to_ck_const_pointer(b1.data()),
......
...@@ -7799,82 +7799,3 @@ def where_mixed_test(): ...@@ -7799,82 +7799,3 @@ def where_mixed_test():
outputs=['z']) outputs=['z'])
return ([node], [c, x, y], [z]) return ([node], [c, x, y], [z])
@onnx_test()
def gemm_softmax_gemm_test():
a = helper.make_tensor_value_info('a', TensorProto.FLOAT16, [1, 1])
b = helper.make_tensor_value_info('b', TensorProto.FLOAT16, [1, 1])
# c = helper.make_tensor_value_info('c', TensorProto.FLOAT16, [1, 1])
b1 = helper.make_tensor_value_info('b1', TensorProto.FLOAT16, [1, 1])
# bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT16, [1, 1])
out = helper.make_tensor_value_info('out', TensorProto.FLOAT16, [1, 1])
scale_array = np.array([1])
bias_array = np.array([0])
scale_tensor = helper.make_tensor(name='scale',
data_type=TensorProto.FLOAT16,
dims=[1, 1],
vals=[1])
bias_tensor = helper.make_tensor(name='bias',
data_type=TensorProto.FLOAT16,
dims=[1, 1],
vals=[0])
gemm1 = onnx.helper.make_node('MatMul',
inputs=['a', 'b'],
outputs=['gemm1_out'])
mul1 = onnx.helper.make_node('Mul',
inputs=['gemm1_out', 'scale'],
outputs=['mul1_out'])
add1 = onnx.helper.make_node('Add',
inputs=['mul1_out', 'bias'],
outputs=['add1_out'])
softmax = onnx.helper.make_node('Softmax',
inputs=['add1_out'],
outputs=['softmax_out'])
gemm2 = onnx.helper.make_node('MatMul',
inputs=['softmax_out', 'b1'],
outputs=['out'])
return ([gemm1, mul1, add1, softmax, gemm2], [a, b, b1], [out], [scale_tensor, bias_tensor])
@onnx_test()
def old_gemm_softmax_gemm_test():
a = helper.make_tensor_value_info('a', TensorProto.FLOAT16, [1, 1])
b = helper.make_tensor_value_info('b', TensorProto.FLOAT16, [1, 1])
c = helper.make_tensor_value_info('c', TensorProto.FLOAT16, [1, 1])
b1 = helper.make_tensor_value_info('b1', TensorProto.FLOAT16, [1, 1])
bias = helper.make_tensor_value_info('bias', TensorProto.FLOAT16, [1, 1])
out = helper.make_tensor_value_info('out', TensorProto.FLOAT16, [1, 1])
scale_array = np.array([(1/8)])
scale_tensor = helper.make_tensor('scale',
TensorProto.FLOAT16,
[1, 1],
[1])
gemm1 = onnx.helper.make_node('MatMul',
inputs=['a', 'b'],
outputs=['gemm1_out'])
mul1 = onnx.helper.make_node('Mul',
inputs=['gemm1_out', 'scale'],
outputs=['mul1_out'])
add1 = onnx.helper.make_node('Add',
inputs=['mul1_out', 'c'],
outputs=['add1_out'])
softmax = onnx.helper.make_node('Softmax',
inputs=['add1_out'],
outputs=['softmax_out'])
gemm2 = onnx.helper.make_node('MatMul',
inputs=['softmax_out', 'b1'],
outputs=['out'])
return ([gemm1, mul1, add1, softmax, gemm2], [a, b, c, b1, bias], [out], [scale_tensor])
old_gemm_softmax_gemm_test:

a
b gemm1_out"MatMul
!
gemm1_out
scalemul1_out"Mul

mul1_out
cadd1_out"Add
add1_out softmax_out"Softmax

softmax_out
b1out"MatMulold_gemm_softmax_gemm_test*
*BscaleZ
a



Z
b



Z
c



Z
b1



Z
bias



b
out



B
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment