Commit c5402b18 authored by Paul's avatar Paul
Browse files

Merge branch 'add-nonstandard'

parents e9b33f76 1ad95e66
...@@ -3,6 +3,7 @@ add_library(migraph ...@@ -3,6 +3,7 @@ add_library(migraph
auto_contiguous.cpp auto_contiguous.cpp
dead_code_elimination.cpp dead_code_elimination.cpp
eliminate_contiguous.cpp eliminate_contiguous.cpp
fwd_conv_batchnorm_rewrite.cpp
env.cpp env.cpp
generate.cpp generate.cpp
program.cpp program.cpp
......
#include <migraph/fwd_conv_batchnorm_rewrite.hpp>
#include <migraph/program.hpp>
#include <migraph/instruction.hpp>
#include <migraph/operators.hpp>
#include <migraph/iterator_for.hpp>
#include <migraph/dfor.hpp>
namespace migraph {
void fwd_conv_batchnorm_rewrite::apply(program& p) const
{
for(auto ins : iterator_for(p))
{
if(ins->op.name() != "batch_norm_inference")
continue;
if(not std::all_of(ins->arguments.begin() + 1, ins->arguments.end(), [](auto arg) {
return arg->op.name() == "@literal";
}))
continue;
auto conv_ins = ins->arguments[0];
if(conv_ins->op.name() != "convolution")
continue;
if(conv_ins->arguments[1]->op.name() != "@literal")
continue;
// Get scale, bias, mean, variance from instruction_ref
const auto& gamma = ins->arguments[1]->get_literal();
const auto& bias = ins->arguments[2]->get_literal();
const auto& mean = ins->arguments[3]->get_literal();
const auto& variance = ins->arguments[4]->get_literal();
// Get epsilon
auto bn_op = any_cast<batch_norm_inference>(ins->op);
auto epsilon = bn_op.epsilon;
// Get convolution weights
const auto& weights = conv_ins->arguments[1]->get_literal();
// Get convolution op
auto conv_op = conv_ins->op;
auto weights_lens = weights.get_shape().lens();
auto conv_lens = conv_ins->get_shape().lens();
argument new_weights{weights.get_shape()};
argument new_bias{bias.get_shape()};
visit_all(weights, gamma, bias, mean, variance, new_weights, new_bias)(
[&](auto weights2,
auto gamma2,
auto bias2,
auto mean2,
auto variance2,
auto new_weights2,
auto new_bias2) {
dfor(weights_lens[0], weights_lens[1], weights_lens[2], weights_lens[3])(
[&](std::size_t k, std::size_t c, std::size_t h, std::size_t w) {
new_weights2(k, c, h, w) =
gamma2(k) / std::sqrt(variance2(k) + epsilon) * weights2(k, c, h, w);
});
dfor(new_bias.get_shape().elements())([&](std::size_t c) {
new_bias2(c) = bias2(c) - (mean2(c) / std::sqrt(variance2(c) + epsilon));
});
});
// Replace convolution instruction with updated weights
auto l_weights = p.add_literal({weights.get_shape(), new_weights.data()});
auto l_bias = p.add_literal({new_bias.get_shape(), new_bias.data()});
auto c = p.replace_instruction(conv_ins, conv_op, {conv_ins->arguments[0], l_weights});
auto b = p.insert_instruction(ins, broadcast{1}, c, l_bias);
p.replace_instruction(ins, add{}, {c, b});
}
}
} // namespace migraph
...@@ -5,6 +5,14 @@ ...@@ -5,6 +5,14 @@
namespace migraph { namespace migraph {
struct swallow
{
template <class... Ts>
constexpr swallow(Ts&&...)
{
}
};
namespace detail { namespace detail {
template <class R, class F> template <class R, class F>
...@@ -19,8 +27,48 @@ struct fix_f ...@@ -19,8 +27,48 @@ struct fix_f
} }
}; };
template <std::size_t...>
struct seq
{
using type = seq;
};
template <class, class>
struct merge_seq;
template <std::size_t... Xs, std::size_t... Ys>
struct merge_seq<seq<Xs...>, seq<Ys...>> : seq<Xs..., (sizeof...(Xs) + Ys)...>
{
};
template <std::size_t N>
struct gens : merge_seq<typename gens<N / 2>::type, typename gens<N - N / 2>::type>
{
};
template <>
struct gens<0> : seq<>
{
};
template <>
struct gens<1> : seq<0>
{
};
template <class F, std::size_t... Ns>
constexpr void repeat_c_impl(F f, seq<Ns...>)
{
swallow{(f(std::integral_constant<std::size_t, Ns>{}), 0)...};
}
} // namespace detail } // namespace detail
template <std::size_t N, class F>
constexpr void repeat_c(F f)
{
detail::repeat_c_impl(f, detail::gens<N>{});
}
/// Implements a fix-point combinator /// Implements a fix-point combinator
template <class R, class F> template <class R, class F>
detail::fix_f<R, F> fix(F f) detail::fix_f<R, F> fix(F f)
...@@ -35,7 +83,7 @@ auto fix(F f) ...@@ -35,7 +83,7 @@ auto fix(F f)
} }
template <class... Ts> template <class... Ts>
auto make_sequence(Ts... xs) auto pack(Ts... xs)
{ {
return [=](auto f) { return f(xs...); }; return [=](auto f) { return f(xs...); };
} }
......
#ifndef MIGRAPH_GUARD_RTGLIB_FWD_CONV_BATCHNORM_REWRITE_HPP
#define MIGRAPH_GUARD_RTGLIB_FWD_CONV_BATCHNORM_REWRITE_HPP
#include <string>
#include <migraph/instruction_ref.hpp>
namespace migraph {
struct program;
struct fwd_conv_batchnorm_rewrite
{
std::string name() const { return "fwd_conv_batchnorm_rewrite"; }
void apply(program& p) const;
};
} // namespace migraph
#endif
...@@ -12,7 +12,11 @@ constexpr T normalize(unsigned long z) ...@@ -12,7 +12,11 @@ constexpr T normalize(unsigned long z)
{ {
if(z == 0) if(z == 0)
return 0; return 0;
return (2.0 / z) - 1.0; const auto max = 32768;
const double range = max / 2; // NOLINT
double result = (z % max) / range;
result -= 1;
return result;
} }
template <class T, MIGRAPH_REQUIRES(std::is_signed<T>{} and not std::is_floating_point<T>{})> template <class T, MIGRAPH_REQUIRES(std::is_signed<T>{} and not std::is_floating_point<T>{})>
...@@ -54,11 +58,29 @@ struct xorshf96_generator ...@@ -54,11 +58,29 @@ struct xorshf96_generator
} }
}; };
template <class T>
struct xorshift_generator
{
unsigned long x;
xorshift_generator(unsigned long seed = 0) : x(521288629ULL ^ seed) {}
constexpr T operator()() noexcept
{
x ^= x >> 12U;
x ^= x << 25U;
x ^= x >> 27U;
return normalize<T>(x * 0x2545F4914F6CDD1D);
}
};
template <class T> template <class T>
std::vector<T> generate_tensor_data(const migraph::shape& s, unsigned long seed = 0) std::vector<T> generate_tensor_data(const migraph::shape& s, unsigned long seed = 0)
{ {
std::vector<T> result(s.elements()); std::vector<T> result(s.elements());
std::generate(result.begin(), result.end(), xorshf96_generator<T>{seed}); std::generate(result.begin(), result.end(), xorshf96_generator<T>{seed});
// std::generate(result.begin(), result.end(), [&]{ return seed % 7; });
// std::generate(result.begin(), result.end(), []{ return 1; });
return result; return result;
} }
......
...@@ -115,6 +115,11 @@ struct instruction ...@@ -115,6 +115,11 @@ struct instruction
} }
shape get_shape() const { return result; } shape get_shape() const { return result; }
const literal& get_literal() const
{
assert(op.name() == "@literal");
return lit;
}
friend bool operator==(instruction_ref ref, const instruction& i) { return i == ref; } friend bool operator==(instruction_ref ref, const instruction& i) { return i == ref; }
......
...@@ -2,17 +2,10 @@ ...@@ -2,17 +2,10 @@
#define MIGRAPH_GUARD_RTGLIB_TRACER_HPP #define MIGRAPH_GUARD_RTGLIB_TRACER_HPP
#include <ostream> #include <ostream>
#include <migraph/functional.hpp>
namespace migraph { namespace migraph {
struct swallow
{
template <class... Ts>
swallow(Ts&&...)
{
}
};
struct tracer struct tracer
{ {
tracer() {} tracer() {}
......
...@@ -11,6 +11,7 @@ if(NOT TARGET MIOpen) ...@@ -11,6 +11,7 @@ if(NOT TARGET MIOpen)
endif() endif()
add_library(migraph_device add_library(migraph_device
device/add.cpp
device/add_relu.cpp device/add_relu.cpp
device/contiguous.cpp device/contiguous.cpp
) )
......
#include <migraph/gpu/device/add.hpp>
#include <migraph/gpu/device/nary.hpp>
namespace migraph {
namespace gpu {
namespace device {
void add(const argument& result, const argument& arg1, const argument& arg2)
{
nary(result, arg1, arg2)([](auto x, auto y) { return x + y; });
}
} // namespace device
} // namespace gpu
} // namespace migraph
...@@ -5,10 +5,9 @@ namespace migraph { ...@@ -5,10 +5,9 @@ namespace migraph {
namespace gpu { namespace gpu {
namespace device { namespace device {
void add_relu(argument result, argument arg1, argument arg2) void add_relu(const argument& result, const argument& arg1, const argument& arg2)
{ {
nary_standard(std::move(result), std::move(arg1), std::move(arg2))( nary(result, arg1, arg2)([](auto x, auto y) { return std::max<decltype(x + y)>(0, x + y); });
[](auto x, auto y) { return max(0, x + y); });
} }
} // namespace device } // namespace device
......
...@@ -33,10 +33,10 @@ inline auto launch(std::size_t global, std::size_t local) ...@@ -33,10 +33,10 @@ inline auto launch(std::size_t global, std::size_t local)
}; };
} }
inline auto gs_launch(std::size_t n, std::size_t local = 512) inline auto gs_launch(std::size_t n, std::size_t local = 1024)
{ {
std::size_t groups = 1 + n / local; std::size_t groups = 1 + n / local;
std::size_t nglobal = std::min<std::size_t>(512, groups) * local; std::size_t nglobal = std::min<std::size_t>(256, groups) * local;
return [=](auto f) { return [=](auto f) {
launch(nglobal, local)([=](auto idx) { launch(nglobal, local)([=](auto idx) {
...@@ -48,6 +48,14 @@ inline auto gs_launch(std::size_t n, std::size_t local = 512) ...@@ -48,6 +48,14 @@ inline auto gs_launch(std::size_t n, std::size_t local = 512)
}; };
} }
// Workaround hcc's broken tile_static macro
#ifdef tile_static
#undef tile_static
#define MIGRAPH_DEVICE_SHARED __attribute__((tile_static))
#else
#define MIGRAPH_DEVICE_SHARED __shared__
#endif
} // namespace device } // namespace device
} // namespace gpu } // namespace gpu
} // namespace migraph } // namespace migraph
......
...@@ -10,16 +10,25 @@ namespace migraph { ...@@ -10,16 +10,25 @@ namespace migraph {
namespace gpu { namespace gpu {
namespace device { namespace device {
template <class... Arguments> template <class T>
auto nary(argument result, Arguments... args) using vec4 = T __attribute__((ext_vector_type(4)));
template <class T>
__device__ __host__ vec4<T>* as_vec4(T* x)
{ {
return [=](auto f) { return reinterpret_cast<vec4<T>*>(x);
if(all_of({args...}, [](const shape& s) { return s.standard(); })) }
nary_standard(result, args...)(f);
else
nary_nonstandard(result, args...)(f);
}; template <class T>
__device__ __host__ T* as_pointer(vec4<T>* x)
{
return reinterpret_cast<T*>(x);
}
template <class... Ts>
auto pack_vec4(Ts... xs)
{
return [=](auto f, std::size_t n) { return f(as_vec4(xs)[n]...); };
} }
template <class F, class... Arguments> template <class F, class... Arguments>
...@@ -28,14 +37,12 @@ auto nary_nonstandard_impl(F f, argument result, Arguments... args) ...@@ -28,14 +37,12 @@ auto nary_nonstandard_impl(F f, argument result, Arguments... args)
const auto& output_shape = result.get_shape(); const auto& output_shape = result.get_shape();
visit_all(result, args...)([&](auto output, auto... inputs) { visit_all(result, args...)([&](auto output, auto... inputs) {
visit_tensor_size(output_shape.lens().size(), [&](auto ndim) { visit_tensor_size(output_shape.lens().size(), [&](auto ndim) {
auto data = make_sequence( auto data = pack(
std::make_pair(hip_tensor_descriptor<ndim>{inputs.get_shape().lens(), std::make_pair(hip_tensor_descriptor<ndim>{inputs.get_shape()}, inputs.data())...);
inputs.get_shape().strides()}, hip_tensor_descriptor<ndim> out_desc(output_shape);
inputs.data())...);
hip_tensor_descriptor<ndim> out_desc(output_shape.lens(), output_shape.strides());
auto* outp = output.data(); auto* outp = output.data();
gs_launch(output_shape.elements())([=](auto i) { gs_launch(output_shape.elements())([=](auto i) {
data([&](auto... ps) { data([&](auto&&... ps) {
auto outidx = out_desc.multi(i); auto outidx = out_desc.multi(i);
outp[i] = f(ps.second[ps.first.linear(outidx)]...); outp[i] = f(ps.second[ps.first.linear(outidx)]...);
}); });
...@@ -44,24 +51,199 @@ auto nary_nonstandard_impl(F f, argument result, Arguments... args) ...@@ -44,24 +51,199 @@ auto nary_nonstandard_impl(F f, argument result, Arguments... args)
}); });
} }
template <class F>
void binary_broadcast_vec_impl(F f,
const argument& result,
const argument& arg1,
const argument& arg2)
{
const auto& output_shape = result.get_shape();
const auto& b_shape = arg2.get_shape();
auto bdim =
std::distance(b_shape.strides().begin(),
std::find_if(b_shape.strides().begin(), b_shape.strides().end(), [](auto x) {
return x != 0;
}));
auto bdim_len = output_shape.lens()[bdim];
auto bdim_stride = output_shape.strides()[bdim];
auto bdim_next_stride = bdim_stride * bdim_len;
visit_all(result, arg1, arg2)([&](auto output, auto input1, auto input2) {
using type = std::remove_cv_t<typename decltype(output)::value_type>;
auto* xp = as_vec4(input1.data());
auto* yp = as_vec4(input2.data());
auto* outp = as_vec4(output.data());
const std::size_t vec_size = 4;
const std::size_t nlocal = 1024;
const std::size_t nglobal = 256 * nlocal;
const std::size_t n = output.size() / vec_size;
const std::size_t bdim_vec_len = bdim_len / vec_size;
launch(nglobal, nlocal)([=](auto idx) __device__ {
MIGRAPH_DEVICE_SHARED vec4<type> buffer[2048 / vec_size];
// Load bias into LDS
for(size_t i = idx.local; i < bdim_vec_len; i += nlocal)
{
buffer[i] = yp[i];
}
__syncthreads();
auto* bp = as_pointer(buffer);
// Process the data
for(size_t i = idx.global; i < n; i += nglobal)
{
auto bidx = ((i * vec_size) % bdim_next_stride) / bdim_stride;
auto b = bp[bidx];
vec4<type> x = xp[i];
vec4<type> out = outp[i];
for(std::size_t j = 0; j < vec_size; j++)
{
out[j] = f(x[j], b);
}
outp[i] = out;
}
});
});
}
template <class F>
void binary_broadcast_impl(F f, const argument& result, const argument& arg1, const argument& arg2)
{
const auto& output_shape = result.get_shape();
const auto& b_shape = arg2.get_shape();
auto bdim =
std::distance(b_shape.strides().begin(),
std::find_if(b_shape.strides().begin(), b_shape.strides().end(), [](auto x) {
return x != 0;
}));
auto bdim_len = output_shape.lens()[bdim];
auto bdim_stride = output_shape.strides()[bdim];
auto bdim_next_stride = bdim_stride * bdim_len;
visit_all(result, arg1, arg2)([&](auto output, auto input1, auto input2) {
using type = std::remove_cv_t<typename decltype(output)::value_type>;
auto* xp = input1.data();
auto* yp = input2.data();
auto* outp = output.data();
const std::size_t nlocal = 1024;
const std::size_t nglobal = 256 * nlocal;
const std::size_t n = output.size();
launch(nglobal, nlocal)([=](auto idx) __device__ {
MIGRAPH_DEVICE_SHARED type buffer[2048];
// Load bias into LDS
for(size_t i = idx.local; i < bdim_len; i += nlocal)
{
buffer[i] = yp[i];
}
__syncthreads();
// Process the data
for(size_t i = idx.global; i < n; i += nglobal)
{
auto bidx = (i % bdim_next_stride) / bdim_stride;
auto b = buffer[bidx];
type x = xp[i];
outp[i] = f(x, b);
}
});
});
}
template <class F, class... Arguments>
void nary_standard_vec_impl(F f, argument result, Arguments... args)
{
// assert(x.get_shape().elements() == y.get_shape().elements());
const auto& output_shape = result.get_shape();
visit_all(result, args...)([&](auto output, auto... inputs) {
using type = std::remove_cv_t<typename decltype(output)::value_type>;
const std::size_t vec_size = 4;
auto data = pack_vec4(inputs.data()...);
auto* outp = as_vec4(output.data());
gs_launch(output_shape.elements() / vec_size)([=](auto i) {
vec4<type> out = outp[i];
data(
[&](auto... xs) {
for(std::size_t j = 0; j < vec_size; j++)
{
out[j] = f(xs[j]...);
}
},
i);
outp[i] = out;
});
});
}
template <class F, class... Arguments>
void nary_standard_impl(F f, argument result, Arguments... args)
{
// assert(x.get_shape().elements() == y.get_shape().elements());
const auto& output_shape = result.get_shape();
visit_all(result, args...)([&](auto output, auto... inputs) {
auto data = pack(inputs.data()...);
auto* outp = output.data();
gs_launch(output_shape.elements())(
[=](auto i) { data([&](auto... xps) { outp[i] = f(xps[i]...); }); });
});
}
template <class F, class... Arguments>
void nary_impl(F f, argument result, Arguments... args)
{
bool standard = all_of({args.get_shape()...}, [](const shape& s) { return s.standard(); });
bool packed = all_of({args.get_shape()...}, [](const shape& s) { return s.packed(); });
bool same_shapes =
all_of({args.get_shape()...}, [&](const shape& s) { return s == result.get_shape(); });
if(standard or (packed and same_shapes))
nary_standard_impl(f, result, args...);
else
nary_nonstandard_impl(f, result, args...);
}
template <class... Arguments> template <class... Arguments>
auto nary_nonstandard(argument result, Arguments... args) auto nary_nonstandard(argument result, Arguments... args)
{ {
return [=](auto f) { return nary_nonstandard_impl(f, result, args...); }; return [=](auto f) { nary_nonstandard_impl(f, result, args...); };
} }
template <class... Arguments> template <class... Arguments>
auto nary_standard(argument result, Arguments... args) auto nary_standard(argument result, Arguments... args)
{
return [=](auto f) { nary_standard_impl(f, result, args...); };
}
template <class... Arguments>
auto nary(argument result, Arguments... args)
{
return [=](auto f) { nary_impl(f, result, args...); };
}
inline auto nary(const argument& result, const argument& arg1, const argument& arg2)
{ {
return [=](auto f) { return [=](auto f) {
// assert(x.get_shape().elements() == y.get_shape().elements()); // TODO: Check result and arg1 shape is the same
const auto& output_shape = result.get_shape(); if(arg1.get_shape().standard() and arg2.get_shape().broadcasted())
visit_all(result, args...)([&](auto output, auto... inputs) { {
auto data = make_sequence(inputs.data()...); auto not_zero = [](auto x) { return x != 0; };
auto* outp = output.data(); const auto& strides = arg2.get_shape().strides();
gs_launch(output_shape.elements())( auto b_it = std::find_if(strides.begin(), strides.end(), not_zero);
[=](auto i) { data([&](auto... xps) { outp[i] = f(xps[i]...); }); }); auto b_idx = std::distance(strides.begin(), b_it);
}); auto b_len = result.get_shape().lens()[b_idx];
auto b_stride = result.get_shape().strides()[b_idx];
assert(arg2.get_shape().lens()[b_idx] == b_len);
if(b_len <= 2048 and std::none_of(std::next(b_it), strides.end(), not_zero))
{
const bool divisible_by_4 = (b_len % 4 == 0) and (b_stride % 4 == 0) and
(arg1.get_shape().elements() % 4 == 0);
if(divisible_by_4)
binary_broadcast_vec_impl(f, result, arg1, arg2);
else
binary_broadcast_impl(f, result, arg1, arg2);
return;
}
}
nary_impl(f, result, arg1, arg2);
}; };
} }
......
...@@ -2,6 +2,7 @@ ...@@ -2,6 +2,7 @@
#define MIGRAPH_GUARD_RTGLIB_DEAVICE_TENSOR_HPP #define MIGRAPH_GUARD_RTGLIB_DEAVICE_TENSOR_HPP
#include <hip/hip_runtime.h> #include <hip/hip_runtime.h>
#include <migraph/functional.hpp>
namespace migraph { namespace migraph {
namespace gpu { namespace gpu {
...@@ -53,14 +54,13 @@ template <size_t NDim> ...@@ -53,14 +54,13 @@ template <size_t NDim>
struct hip_tensor_descriptor struct hip_tensor_descriptor
{ {
__device__ __host__ hip_tensor_descriptor() = default; __device__ __host__ hip_tensor_descriptor() = default;
template <typename T, typename V>
__device__ __host__ hip_tensor_descriptor(const T& lens_ext, const V& strides_ext) hip_tensor_descriptor(const shape& s)
{ {
for(size_t i = 0; i < NDim; i++) std::copy(s.lens().begin(), s.lens().end(), lens);
lens[i] = lens_ext[i]; std::copy(s.strides().begin(), s.strides().end(), strides);
for(size_t i = 0; i < NDim; i++)
strides[i] = strides_ext[i];
} }
__device__ __host__ hip_index<NDim> multi(size_t idx) const __device__ __host__ hip_index<NDim> multi(size_t idx) const
{ {
hip_index<NDim> result{}; hip_index<NDim> result{};
......
...@@ -20,7 +20,7 @@ void eliminate_allocation::apply(program& p) const ...@@ -20,7 +20,7 @@ void eliminate_allocation::apply(program& p) const
continue; continue;
allocs.emplace_back(ins, n); allocs.emplace_back(ins, n);
std::size_t size = ins->get_shape().bytes(); std::size_t size = ins->get_shape().bytes();
n += size + (size % 4); n += size + (size % 32);
} }
auto mem = p.add_parameter("memory", shape{shape::int8_type, {n}}); auto mem = p.add_parameter("memory", shape{shape::int8_type, {n}});
for(auto&& pp : allocs) for(auto&& pp : allocs)
......
...@@ -12,7 +12,7 @@ struct hip_add_relu ...@@ -12,7 +12,7 @@ struct hip_add_relu
std::string name() const { return "hip::add_relu"; } std::string name() const { return "hip::add_relu"; }
shape compute_shape(const std::vector<shape>& inputs) const shape compute_shape(const std::vector<shape>& inputs) const
{ {
check_shapes{inputs}.has(3).standard(); check_shapes{inputs, *this}.has(3);
return inputs.front(); return inputs.front();
} }
argument compute(context&, const shape&, const std::vector<argument>& args) const argument compute(context&, const shape&, const std::vector<argument>& args) const
......
#ifndef MIGRAPH_GUARD_RTGLIB_DEVICE_ADD_HPP
#define MIGRAPH_GUARD_RTGLIB_DEVICE_ADD_HPP
#include <migraph/argument.hpp>
namespace migraph {
namespace gpu {
namespace device {
void add(const argument& result, const argument& arg1, const argument& arg2);
} // namespace device
} // namespace gpu
} // namespace migraph
#endif
...@@ -8,7 +8,7 @@ namespace migraph { ...@@ -8,7 +8,7 @@ namespace migraph {
namespace gpu { namespace gpu {
namespace device { namespace device {
void add_relu(argument result, argument arg1, argument arg2); void add_relu(const argument& result, const argument& arg1, const argument& arg2);
} // namespace device } // namespace device
} // namespace gpu } // namespace gpu
......
...@@ -9,6 +9,7 @@ ...@@ -9,6 +9,7 @@
#include <migraph/gpu/hip.hpp> #include <migraph/gpu/hip.hpp>
#include <migraph/dfor.hpp> #include <migraph/dfor.hpp>
#include <migraph/gpu/device/contiguous.hpp> #include <migraph/gpu/device/contiguous.hpp>
#include <migraph/gpu/device/add.hpp>
#include <migraph/iterator_for.hpp> #include <migraph/iterator_for.hpp>
#include <migraph/gpu/rocblas.hpp> #include <migraph/gpu/rocblas.hpp>
#include <migraph/gpu/context.hpp> #include <migraph/gpu/context.hpp>
...@@ -168,6 +169,23 @@ struct miopen_pooling ...@@ -168,6 +169,23 @@ struct miopen_pooling
} }
}; };
struct hip_add
{
std::string name() const { return "gpu::add"; }
shape compute_shape(const std::vector<shape>& inputs) const
{
// check_shapes{inputs, *this}.has(3).standard();
check_shapes{inputs, *this}.has(3);
return inputs.at(0);
}
argument compute(context&, const shape&, const std::vector<argument>& args) const
{
device::add(args[2], args[0], args[1]);
return args[2];
}
};
struct miopen_add struct miopen_add
{ {
std::string name() const { return "gpu::add"; } std::string name() const { return "gpu::add"; }
...@@ -390,7 +408,7 @@ struct miopen_apply ...@@ -390,7 +408,7 @@ struct miopen_apply
{ {
auto output = insert_allocation(ins, ins->result); auto output = insert_allocation(ins, ins->result);
return prog->replace_instruction( return prog->replace_instruction(
ins, miopen_add{}, ins->arguments.at(0), ins->arguments.at(1), output); ins, hip_add{}, ins->arguments.at(0), ins->arguments.at(1), output);
} }
instruction_ref apply_gemm(instruction_ref ins) instruction_ref apply_gemm(instruction_ref ins)
......
...@@ -10,6 +10,7 @@ ...@@ -10,6 +10,7 @@
#include <migraph/dead_code_elimination.hpp> #include <migraph/dead_code_elimination.hpp>
#include <migraph/simplify_reshapes.hpp> #include <migraph/simplify_reshapes.hpp>
#include <migraph/eliminate_contiguous.hpp> #include <migraph/eliminate_contiguous.hpp>
#include <migraph/fwd_conv_batchnorm_rewrite.hpp>
namespace migraph { namespace migraph {
namespace gpu { namespace gpu {
...@@ -20,6 +21,8 @@ std::vector<pass> target::get_passes(migraph::context& gctx) const ...@@ -20,6 +21,8 @@ std::vector<pass> target::get_passes(migraph::context& gctx) const
// clang-format off // clang-format off
return return
{ {
dead_code_elimination{},
fwd_conv_batchnorm_rewrite{},
dead_code_elimination{}, dead_code_elimination{},
auto_contiguous{}, auto_contiguous{},
simplify_reshapes{}, simplify_reshapes{},
......
...@@ -77,6 +77,12 @@ struct auto_print ...@@ -77,6 +77,12 @@ struct auto_print
}; };
std::array<std::function<void()>, 2> auto_print::handlers = {}; std::array<std::function<void()>, 2> auto_print::handlers = {};
template <class T>
auto get_hash(const T& x)
{
return std::hash<T>{}(x);
}
void compile_check(migraph::program& p, const migraph::target& t) void compile_check(migraph::program& p, const migraph::target& t)
{ {
auto name = t.name(); auto name = t.name();
...@@ -100,7 +106,7 @@ migraph::argument run_cpu() ...@@ -100,7 +106,7 @@ migraph::argument run_cpu()
migraph::program::parameter_map m; migraph::program::parameter_map m;
for(auto&& x : p.get_parameter_shapes()) for(auto&& x : p.get_parameter_shapes())
{ {
m[x.first] = migraph::generate_argument(x.second); m[x.first] = migraph::generate_argument(x.second, get_hash(x.first));
} }
return p.eval(m); return p.eval(m);
} }
...@@ -112,11 +118,10 @@ migraph::argument run_gpu() ...@@ -112,11 +118,10 @@ migraph::argument run_gpu()
auto p = v.create_program(); auto p = v.create_program();
auto_print pp{p, 1}; auto_print pp{p, 1};
compile_check(p, migraph::gpu::target{}); compile_check(p, migraph::gpu::target{});
migraph::program::parameter_map m; migraph::program::parameter_map m;
for(auto&& x : p.get_parameter_shapes()) for(auto&& x : p.get_parameter_shapes())
{ {
m[x.first] = migraph::gpu::to_gpu(migraph::generate_argument(x.second)); m[x.first] = migraph::gpu::to_gpu(migraph::generate_argument(x.second, get_hash(x.first)));
} }
return migraph::gpu::from_gpu(p.eval(m)); return migraph::gpu::from_gpu(p.eval(m));
...@@ -131,8 +136,10 @@ void verify_args(const std::string& name, ...@@ -131,8 +136,10 @@ void verify_args(const std::string& name,
{ {
// TODO: Check for nans // TODO: Check for nans
std::cout << "FAILED: " << name << std::endl; std::cout << "FAILED: " << name << std::endl;
// std::cout << cpu << std::endl; if(cpu.size() < 32)
// std::cout << gpu << std::endl; std::cout << "cpu:" << cpu << std::endl;
if(gpu.size() < 32)
std::cout << "gpu:" << gpu << std::endl;
if(migraph::range_zero(cpu)) if(migraph::range_zero(cpu))
std::cout << "Cpu data is all zeros" << std::endl; std::cout << "Cpu data is all zeros" << std::endl;
if(migraph::range_zero(gpu)) if(migraph::range_zero(gpu))
...@@ -154,6 +161,7 @@ void verify_args(const std::string& name, ...@@ -154,6 +161,7 @@ void verify_args(const std::string& name,
if(gpu_nan_idx >= 0) if(gpu_nan_idx >= 0)
std::cout << "Non finite number found in gpu at " << gpu_nan_idx << ": " std::cout << "Non finite number found in gpu at " << gpu_nan_idx << ": "
<< gpu[gpu_nan_idx] << std::endl; << gpu[gpu_nan_idx] << std::endl;
std::cout << std::endl;
} }
}); });
} }
...@@ -210,6 +218,62 @@ struct test_add_broadcast ...@@ -210,6 +218,62 @@ struct test_add_broadcast
} }
}; };
struct test_add_broadcast2
{
migraph::program create_program() const
{
migraph::program p;
migraph::shape s{migraph::shape::float_type, {3}};
auto x = p.add_parameter("x", {migraph::shape::float_type, {2, 3, 4}});
auto y = p.add_parameter("y", {migraph::shape::float_type, {3}});
auto by = p.add_instruction(migraph::broadcast{1}, x, y);
p.add_instruction(migraph::add{}, x, by);
return p;
}
};
struct test_add_broadcast3
{
migraph::program create_program() const
{
migraph::program p;
migraph::shape s{migraph::shape::float_type, {3}};
auto x = p.add_parameter("x", {migraph::shape::float_type, {2, 4, 5}});
auto y = p.add_parameter("y", {migraph::shape::float_type, {4}});
auto by = p.add_instruction(migraph::broadcast{1}, x, y);
p.add_instruction(migraph::add{}, x, by);
return p;
}
};
struct test_add_broadcast4
{
migraph::program create_program() const
{
migraph::program p;
migraph::shape s{migraph::shape::float_type, {3}};
auto x = p.add_parameter("x", {migraph::shape::float_type, {2, 3, 5}});
auto y = p.add_parameter("y", {migraph::shape::float_type, {3}});
auto by = p.add_instruction(migraph::broadcast{1}, x, y);
p.add_instruction(migraph::add{}, x, by);
return p;
}
};
struct test_add_broadcast5
{
migraph::program create_program() const
{
migraph::program p;
migraph::shape s{migraph::shape::float_type, {3}};
auto x = p.add_parameter("x", {migraph::shape::float_type, {2, 4, 8}});
auto y = p.add_parameter("y", {migraph::shape::float_type, {4}});
auto by = p.add_instruction(migraph::broadcast{1}, x, y);
p.add_instruction(migraph::add{}, x, by);
return p;
}
};
struct test_conv_relu struct test_conv_relu
{ {
migraph::program create_program() const migraph::program create_program() const
...@@ -418,6 +482,10 @@ int main() ...@@ -418,6 +482,10 @@ int main()
{ {
verify_program<test_add>(); verify_program<test_add>();
verify_program<test_add_broadcast>(); verify_program<test_add_broadcast>();
verify_program<test_add_broadcast2>();
verify_program<test_add_broadcast3>();
verify_program<test_add_broadcast4>();
verify_program<test_add_broadcast5>();
verify_program<test_conv_relu>(); verify_program<test_conv_relu>();
verify_program<test_add_relu>(); verify_program<test_add_relu>();
verify_program<test_conv_pooling>(); verify_program<test_conv_pooling>();
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment