Unverified Commit c4cee345 authored by Umang Yadav's avatar Umang Yadav Committed by GitHub
Browse files

Merge branch 'develop' into rocblas_fp8

parents c40a39c3 eafd55de
...@@ -29,6 +29,7 @@ ...@@ -29,6 +29,7 @@
#include <migraphx/argument.hpp> #include <migraphx/argument.hpp>
#include <migraphx/value.hpp> #include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp> #include <migraphx/dyn_output.hpp>
#include <migraphx/par.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -95,7 +96,7 @@ struct binary : op_name<Derived> ...@@ -95,7 +96,7 @@ struct binary : op_name<Derived>
{ {
argument result{dyn_out.computed_shape}; argument result{dyn_out.computed_shape};
visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) { visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
std::transform(input1.begin(), par_transform(input1.begin(),
input1.end(), input1.end(),
input2.begin(), input2.begin(),
output.begin(), output.begin(),
......
...@@ -70,7 +70,8 @@ struct pooling ...@@ -70,7 +70,8 @@ struct pooling
// 2 smaller than the input tensor rank (NCHW layout) // 2 smaller than the input tensor rank (NCHW layout)
std::vector<std::size_t> lengths = {1, 1}; std::vector<std::size_t> lengths = {1, 1};
// Dilations are not supported at this time. // Spacing between the elements of the pooling kernel. Must be the same ndim as lengths.
std::vector<std::size_t> dilations = {1, 1};
// ceiling mode is a flag affecting output size // ceiling mode is a flag affecting output size
// or equivalently, placements of the pooling kernel. // or equivalently, placements of the pooling kernel.
...@@ -99,6 +100,7 @@ struct pooling ...@@ -99,6 +100,7 @@ struct pooling
f(self.padding_mode, "padding_mode"), f(self.padding_mode, "padding_mode"),
f(self.stride, "stride"), f(self.stride, "stride"),
f(self.lengths, "lengths"), f(self.lengths, "lengths"),
f(self.dilations, "dilations"),
f(self.ceil_mode, "ceil_mode"), f(self.ceil_mode, "ceil_mode"),
f(self.lp_order, "lp_order"), f(self.lp_order, "lp_order"),
f(self.dyn_global, "dyn_global")); f(self.dyn_global, "dyn_global"));
...@@ -112,14 +114,17 @@ struct pooling ...@@ -112,14 +114,17 @@ struct pooling
return; return;
if((padding_mode != default_ and padding.size() != stride.size() and if((padding_mode != default_ and padding.size() != stride.size() and
(padding.size()) != stride.size() * 2) or (padding.size()) != stride.size() * 2) or
stride.size() != lengths.size()) stride.size() != lengths.size() or dilations.size() != lengths.size())
{ {
MIGRAPHX_THROW("POOLING: inconsistent attribute sizes"); MIGRAPHX_THROW("POOLING: inconsistent attribute sizes");
} }
if(std::any_of(lengths.begin(), lengths.end(), [&](auto i) { return (i == 0); }) or
std::any_of(stride.begin(), stride.end(), [&](auto i) { return (i == 0); })) const auto is_zero = [](auto el) { return el == 0; };
if(std::any_of(lengths.begin(), lengths.end(), is_zero) or
std::any_of(stride.begin(), stride.end(), is_zero) or
std::any_of(dilations.begin(), dilations.end(), is_zero))
{ {
MIGRAPHX_THROW("POOLING: size 0 pooling kernel or stride"); MIGRAPHX_THROW("POOLING: size 0 pooling kernel or stride or dilations");
} }
// TODO: update lowering to run the reference // TODO: update lowering to run the reference
...@@ -142,6 +147,11 @@ struct pooling ...@@ -142,6 +147,11 @@ struct pooling
value attributes() const { return {{"normalize_padding", "padding"}}; } value attributes() const { return {{"normalize_padding", "padding"}}; }
inline std::size_t dilate_dim(std::size_t dim, std::size_t dilation) const
{
return 1 + dilation * (dim - 1);
}
std::vector<std::size_t> calc_spatial_dim_out(const std::vector<std::size_t>& input_lens, std::vector<std::size_t> calc_spatial_dim_out(const std::vector<std::size_t>& input_lens,
std::size_t kdims) const std::size_t kdims) const
{ {
...@@ -151,8 +161,9 @@ struct pooling ...@@ -151,8 +161,9 @@ struct pooling
std::size_t padding_factor = 2 * padding[i]; std::size_t padding_factor = 2 * padding[i];
if(padding.size() == 2 * kdims) if(padding.size() == 2 * kdims)
padding_factor = padding[i] + padding[i + kdims]; padding_factor = padding[i] + padding[i + kdims];
std::size_t dilated_length = dilate_dim(lengths[i], dilations[i]);
std::size_t dim_size; std::size_t dim_size;
if(input_lens[i + 2] + padding_factor < lengths[i]) if(input_lens[i + 2] + padding_factor < dilated_length)
{ {
if(padding_mode == default_) if(padding_mode == default_)
MIGRAPHX_THROW("POOLING: not enough padding for the given kernel size"); MIGRAPHX_THROW("POOLING: not enough padding for the given kernel size");
...@@ -162,7 +173,7 @@ struct pooling ...@@ -162,7 +173,7 @@ struct pooling
} }
else else
{ {
dim_size = input_lens[i + 2] + padding_factor - lengths[i]; dim_size = input_lens[i + 2] + padding_factor - dilated_length;
} }
std::size_t len = std::size_t len =
(ceil_mode) (ceil_mode)
...@@ -331,6 +342,7 @@ struct pooling ...@@ -331,6 +342,7 @@ struct pooling
int start = static_cast<int>(idx_o[dim] * stride[d_2]) - int start = static_cast<int>(idx_o[dim] * stride[d_2]) -
static_cast<int>(padding_vals[d_2]); static_cast<int>(padding_vals[d_2]);
int end; int end;
std::size_t dilated_kernel_dim = dilate_dim(kernel_dims[d_2], dilations[d_2]);
// NOLINT // NOLINT
if(count_include_pad and ceil_mode and (mode != pooling_mode::max)) if(count_include_pad and ceil_mode and (mode != pooling_mode::max))
{ {
...@@ -340,15 +352,14 @@ struct pooling ...@@ -340,15 +352,14 @@ struct pooling
// padding. Clip out-of-bounds indexes but not padding. // padding. Clip out-of-bounds indexes but not padding.
// Check if this kernel extends beyond the padding at end of dimension // Check if this kernel extends beyond the padding at end of dimension
end = std::min(start + kernel_dims[d_2], end = std::min(start + dilated_kernel_dim,
in_lens[dim] + static_cast<int>(padding_vals[d_2])); in_lens[dim] + static_cast<int>(padding_vals[d_2]));
} }
else else
{ {
// In non-ceiling mode, when // In non-ceiling mode, when
// count_include_pad is false, or for max pooling, clip off padding. // count_include_pad is false, or for max pooling, clip off padding.
end = std::min(start + kernel_dims[d_2], in_lens[dim]); end = std::min(start + dilated_kernel_dim, in_lens[dim]);
start = std::max(start, 0);
} }
win_start.push_back(start); win_start.push_back(start);
if(end < start) if(end < start)
...@@ -366,6 +377,16 @@ struct pooling ...@@ -366,6 +377,16 @@ struct pooling
// for each element in the window... // for each element in the window...
shape_for_each(win_shape, [&](const auto& idx_w) { shape_for_each(win_shape, [&](const auto& idx_w) {
// Skip elements that belong to the dilated area
for(size_t axis = 0; axis < idx_w.size(); ++axis)
{
if(idx_w[axis] % dilations[axis])
{
pool_size -= 1;
return;
}
}
// the coordinates of this element // the coordinates of this element
auto idx = idx_o; auto idx = idx_o;
...@@ -390,7 +411,15 @@ struct pooling ...@@ -390,7 +411,15 @@ struct pooling
// this is a padding element. Padding locations // this is a padding element. Padding locations
// don't contribute to average or max pooling total but can play in // don't contribute to average or max pooling total but can play in
// lpnorm pooling. // lpnorm pooling.
output_val = op(output_val, 0); if(mode == pooling_mode::lpnorm)
{
output_val = op(output_val, op.template init<Type>());
}
if(mode == pooling_mode::average)
{
// Ignore padding
pool_size -= 1;
}
} }
}); });
output[i] = Type(op.final(output_val, pool_size)); output[i] = Type(op.final(output_val, pool_size));
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_SCATTERND_MAX_HPP
#define MIGRAPHX_GUARD_OPERATORS_SCATTERND_MAX_HPP
#include <migraphx/op/scatternd_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct scatternd_max : scatternd_op<scatternd_max>
{
scatternd_max() {}
auto reduction() const
{
return [](auto& x, const auto& y) { x = std::max(x, y); };
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_SCATTERND_MIN_HPP
#define MIGRAPHX_GUARD_OPERATORS_SCATTERND_MIN_HPP
#include <migraphx/op/scatternd_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct scatternd_min : scatternd_op<scatternd_min>
{
scatternd_min() {}
auto reduction() const
{
return [](auto& x, const auto& y) { x = std::min(x, y); };
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
...@@ -121,7 +121,8 @@ struct scatternd_op : op_name<Derived> ...@@ -121,7 +121,8 @@ struct scatternd_op : op_name<Derived>
auto k = indices_shape.lens().back(); auto k = indices_shape.lens().back();
auto q = indices_shape.ndim(); auto q = indices_shape.ndim();
auto r = dyn_out.computed_shape.ndim(); auto r = dyn_out.computed_shape.ndim();
par_for(updates_shape.elements(), [&](const auto i) { for(auto i = 0u; i < updates_shape.elements(); ++i)
{
auto updates_idx = updates_std.multi(i); auto updates_idx = updates_std.multi(i);
std::vector<std::size_t> indices_idx(q, 0); std::vector<std::size_t> indices_idx(q, 0);
std::copy( std::copy(
...@@ -135,7 +136,7 @@ struct scatternd_op : op_name<Derived> ...@@ -135,7 +136,7 @@ struct scatternd_op : op_name<Derived>
std::copy(updates_idx.begin() + q - 1, updates_idx.end(), out_idx.begin() + k); std::copy(updates_idx.begin() + q - 1, updates_idx.end(), out_idx.begin() + k);
self.reduction()(output[dyn_out.computed_shape.index(out_idx)], updates[i]); self.reduction()(output[dyn_out.computed_shape.index(out_idx)], updates[i]);
}); }
}); });
}); });
......
...@@ -31,6 +31,7 @@ ...@@ -31,6 +31,7 @@
#include <migraphx/stringutils.hpp> #include <migraphx/stringutils.hpp>
#include <migraphx/value.hpp> #include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp> #include <migraphx/dyn_output.hpp>
#include <migraphx/par.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -84,7 +85,7 @@ struct unary : op_name<Derived> ...@@ -84,7 +85,7 @@ struct unary : op_name<Derived>
argument result{dyn_out.computed_shape}; argument result{dyn_out.computed_shape};
result.visit([&](auto output) { result.visit([&](auto output) {
args[0].visit([&](auto input) { args[0].visit([&](auto input) {
std::transform(input.begin(), par_transform(input.begin(),
input.end(), input.end(),
output.begin(), output.begin(),
static_cast<const Derived&>(*this).apply()); static_cast<const Derived&>(*this).apply());
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_UNIQUE_HPP
#define MIGRAPHX_GUARD_OPERATORS_UNIQUE_HPP
#include <migraphx/shape_for_each.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/config.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/tune_axis.hpp>
#include <utility>
#include <map>
#include <limits>
#include <optional>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
// https://onnx.ai/onnx/operators/onnx__Unique.html
// The Onnx spec refers to numpy specification, used as a reference:
// https://numpy.org/doc/stable/reference/generated/numpy.unique.html
// Input : Given an array of elements : X.
// Output(s) :
// 1. Find the unique elements (Y) of input (X).
//
// There are three outputs in addition to the unique elements in Y:
// 2. the indices of the input array that give the unique values
// 3. the indices of the unique array that reconstruct the input array
// 4. the number of times each unique value comes up in the input array
// Optional Attribute: 'Sorted' = 1 for sorted; = 0 for unsorted.
// Onnx specification makes 'sorted' a default, while Numpy always sorts.
//
// Optional Attribute: 'Axis' is 'None' (default) or a valid int < rank(X).
// Negative values are allowed.
//
// Numpy has the following important note on Axis:
// ------------------------------------------------------------------
// When an axis is specified the subarrays indexed by the axis are
// sorted. This is done by making the specified axis the first
// dimension of the array (move the axis to the first dimension to
// keep the order of the other axes) and then flattening the subarrays
// in C order. The flattened subarrays are then viewed as a structured
// type with each element given a label, with the effect that we end
// up with a 1-D array of structured types that can be treated in the
// same way as any other 1-D array. The result is that the flattened
// subarrays are sorted in lexicographic order starting with the first
// element.
// ------------------------------------------------------------------
struct unique
{
template <class T>
auto make_idx_less_fn(const T& data, size_t chunk_sz) const
{
return [&data, chunk_sz](auto idx1, auto idx2) {
return std::lexicographical_compare(data.begin() + idx1,
data.begin() + idx1 + chunk_sz,
data.begin() + idx2,
data.begin() + idx2 + chunk_sz);
};
}
// CASE SORTED:
//
// To process into a sorted unique series of elements/chunks:
// Chunk size == 1 means a simple element; >1 means a flat representation.
// Steps: first go through the input elements/chunks for uniqueness.
// At the end of this processing, per the sorted sequence of unique elements:
// update/create data structures: y, y_indices, x_rev_indices, y_count
//
// INPUT x: [2, 1, 1, 3, 4, 3], attr_sorted = 1;
// OUTPUT(s): indices..
// y_indices: [1, 0, 3, 4] --- first incidence, in terms of index in sequence x
// x_rev_indices: [1, 0, 0, 2, 3, 2] --- x seen in terms of indices of unique sequence y
// y_count: [2, 1, 2, 1] -- count at each y_index. sum = len(x)
// NOTE: y [1, 2, 3, 4] --- the unique output is constructed from x[y_indices[...]]
template <class T>
auto sorted_uniq_indices(const T& input_data, size_t chunk_sz) const
{
struct y_info
{
size_t y_idx;
size_t x_idx;
size_t ct = 0;
};
auto idx_less_fn = make_idx_less_fn(input_data, chunk_sz);
std::map<size_t, y_info, decltype(idx_less_fn)> uniq_val_map(idx_less_fn);
std::tuple<std::vector<std::size_t>, std::vector<std::size_t>, std::vector<std::size_t>> rv;
auto& [y_indices, x_rev_indices, y_count] = rv;
// go through all the elements and find the unique elements..
size_t count_x = input_data.size();
for(size_t f_idx = 0, x_idx = 0; f_idx < count_x; f_idx += chunk_sz, x_idx++)
{
y_info entry = {.y_idx = uniq_val_map.size(), .x_idx = x_idx};
auto [itr, added_new] = uniq_val_map.insert({f_idx, entry});
itr->second.ct++;
x_rev_indices.push_back(itr->second.y_idx);
}
std::vector<std::size_t> y2x_indices(uniq_val_map.size());
y_indices.resize(uniq_val_map.size());
y_count.resize(uniq_val_map.size());
size_t idx = 0;
// the unique elements are now sorted:
// post-processing for all the return indices.
for(const auto& v : uniq_val_map)
{
y2x_indices[v.second.y_idx] = idx;
y_indices[idx] = v.second.x_idx;
y_count[idx] = v.second.ct;
idx++;
}
// update x_rev_indices as per the sorted order of y_indices
for(auto& i : x_rev_indices)
i = y2x_indices[i];
return rv;
}
// CASE UNSORTED:
//
// To process into an un-sorted unique series of elements/chunks:
// For chunk size = 1 is a simple element, else use a flat representation of a tensor obj
// Go through the input elements/chunks one by one with inline processing of indices..
// INPUT x: [2, 1, 1, 3, 4, 3], attr_sorted = 0;
// OUTPUT(s): indices..
// y_indices: [0, 1, 3, 4] --- first incidence, in terms of index in sequence x
// x_rev_indices: [0, 1, 1, 2, 3, 2] --- x seen in terms of indices of unique sequence y
// y_count: [1, 2, 2, 1] -- count at each y_index. sum = len(x)
// NOTE: y [2, 1, 3, 4] --- the unique output is constructed from x[y_indices[...]]
// Output data structures: y_indices, x_rev_indices, y_count are processed inline.
template <class T>
auto unsorted_uniq_indices(const T& input_data, size_t chunk_sz) const
{
auto idx_less_fn = make_idx_less_fn(input_data, chunk_sz);
std::map<size_t, size_t, decltype(idx_less_fn)> uniq_val_map(idx_less_fn);
// rv is used for NVRO below..
std::tuple<std::vector<std::size_t>, std::vector<std::size_t>, std::vector<std::size_t>> rv;
auto& [y_indices, x_rev_indices, y_count] = rv;
// go through all the elements and add the unique elements into the map..
// inline processing for outputs: y_indices, x_rev_indices, y_count
size_t count_x = input_data.size();
for(size_t f_idx = 0; f_idx < count_x; f_idx += chunk_sz)
{
auto [itr, added_new] = uniq_val_map.insert({f_idx, y_indices.size()});
if(added_new)
{
y_count.push_back(0);
y_indices.push_back(x_rev_indices.size());
}
y_count[itr->second]++;
x_rev_indices.push_back(itr->second);
}
return rv;
}
// Axis. Default: none. Range: [-rank, rank-1]
std::optional<int64_t> axis;
// Sorted, Default: 1= sorted. 0 = unsorted.
bool sorted = true;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.axis, "axis"), f(self.sorted, "sorted"));
}
std::string name() const { return "unique"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
auto& sh_x = inputs[0];
auto lens_x = sh_x.lens();
size_t dim_x = sh_x.ndim();
size_t max_uniq_ct = sh_x.elements();
std::vector<shape::dynamic_dimension> d_out;
if(axis)
{
int64_t t_axis = migraphx::tune_axis(dim_x, *axis, name());
if(t_axis != 0)
MIGRAPHX_THROW("Unique: Only supports axis = 0 or None");
d_out = sh_x.to_dynamic().dyn_dims();
// only axis = 0 is supported:
max_uniq_ct = lens_x[0];
// min = 1 unique element; max = full dimension along axis 0
d_out[0] = {1, max_uniq_ct};
}
else
{
d_out.push_back({1, max_uniq_ct});
}
shape sh_y = {sh_x.type(), d_out};
// The three outputted Indices are just 1-D:
shape sh_idx{shape::int64_type, {d_out[0]}};
return {{sh_y, sh_idx, sh_idx, sh_idx}};
}
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
auto sh_x = args.front().get_shape();
auto lens_x = sh_x.lens();
shape output_shape = dyn_out.computed_shape;
auto vec_ss = output_shape.sub_shapes();
auto ct_x = sh_x.elements();
shape sh_y = {vec_ss[0].type(), {ct_x}};
shape sh_idx = {vec_ss[1].type(), {ct_x}};
shape sh_x_idx = {vec_ss[1].type(), {ct_x}};
argument res_y{sh_y};
argument res_y_idx{sh_idx};
argument res_x_rev_idx{sh_idx};
argument res_y_ct_idx{sh_idx};
std::vector<size_t> out_y_idx;
std::vector<size_t> out_x_rev_idx;
std::vector<size_t> out_y_ct;
// If axis is not none, for >1D tensors, we have to consider
// then, the uniqueness of chunks of sub-tensors: a subsequence of built-ins..
// For a built-in type, chunk_sz is of course = 1
size_t chunk_sz = 1;
if(axis)
chunk_sz = ct_x / lens_x[0]; // axis = 0 is supported.
visit_all(args.front(), res_y)([&](auto x, auto y_flat) {
using o_type = typename decltype(x)::value_type;
std::vector<o_type> x_in(x.begin(), x.end());
std::tie(out_y_idx, out_x_rev_idx, out_y_ct) =
sorted ? sorted_uniq_indices(x_in, chunk_sz)
: unsorted_uniq_indices(x_in, chunk_sz);
const auto uniq_ct = out_y_idx.size();
// construct y from x[indices] in flattened form
// later we reshape y to the final shape..
auto y_dst = y_flat.begin();
for(size_t idx = 0; idx < uniq_ct; idx++)
y_dst = copy_n(x_in.begin() + out_y_idx[idx] * chunk_sz, chunk_sz, y_dst);
std::vector<size_t> lens_y;
// if axis is specified:
// the output shape keeps the n-1 dimensions of x
if(axis)
{
lens_y = lens_x;
lens_y[0] = uniq_ct;
}
else
{
lens_y = {uniq_ct};
}
sh_y = {sh_y.type(), lens_y};
sh_idx = {sh_idx.type(), {uniq_ct}};
});
visit_all(res_y_idx, res_x_rev_idx, res_y_ct_idx)(
[&](auto y_indices, auto x_rev_indices, auto y_count) {
std::copy(out_y_idx.begin(), out_y_idx.end(), y_indices.begin());
std::copy(out_x_rev_idx.begin(), out_x_rev_idx.end(), x_rev_indices.begin());
std::copy(out_y_ct.begin(), out_y_ct.end(), y_count.begin());
sh_x_idx = {sh_idx.type(), {out_x_rev_idx.size()}};
});
return {{res_y.reshape(sh_y),
res_y_idx.reshape(sh_idx),
res_x_rev_idx.reshape(sh_x_idx),
res_y_ct_idx.reshape(sh_idx)}};
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
...@@ -119,6 +119,8 @@ ...@@ -119,6 +119,8 @@
#include <migraphx/op/scatternd_add.hpp> #include <migraphx/op/scatternd_add.hpp>
#include <migraphx/op/scatternd_none.hpp> #include <migraphx/op/scatternd_none.hpp>
#include <migraphx/op/scatternd_mul.hpp> #include <migraphx/op/scatternd_mul.hpp>
#include <migraphx/op/scatternd_max.hpp>
#include <migraphx/op/scatternd_min.hpp>
#include <migraphx/op/sigmoid.hpp> #include <migraphx/op/sigmoid.hpp>
#include <migraphx/op/sign.hpp> #include <migraphx/op/sign.hpp>
#include <migraphx/op/sinh.hpp> #include <migraphx/op/sinh.hpp>
...@@ -137,6 +139,7 @@ ...@@ -137,6 +139,7 @@
#include <migraphx/op/unary.hpp> #include <migraphx/op/unary.hpp>
#include <migraphx/op/unary_not.hpp> #include <migraphx/op/unary_not.hpp>
#include <migraphx/op/undefined.hpp> #include <migraphx/op/undefined.hpp>
#include <migraphx/op/unique.hpp>
#include <migraphx/op/unknown.hpp> #include <migraphx/op/unknown.hpp>
#include <migraphx/op/unsqueeze.hpp> #include <migraphx/op/unsqueeze.hpp>
#include <migraphx/op/where.hpp> #include <migraphx/op/where.hpp>
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_MIGRAPHX_PAR_HPP
#define MIGRAPHX_GUARD_MIGRAPHX_PAR_HPP
#include <migraphx/config.hpp>
#if MIGRAPHX_HAS_EXECUTORS
#include <execution>
#else
#include <migraphx/simple_par_for.hpp>
#endif
#include <algorithm>
#include <mutex>
#include <vector>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace detail {
struct exception_list
{
std::vector<std::exception_ptr> exceptions;
std::mutex m;
void add_exception()
{
std::lock_guard<std::mutex> guard(m);
exceptions.push_back(std::current_exception());
}
template <class F>
auto collect(F f)
{
return [f, this](auto&&... xs) {
try
{
f(std::forward<decltype(xs)>(xs)...);
}
catch(...)
{
this->add_exception();
}
};
}
void throw_if_exception() const
{
if(not exceptions.empty())
std::rethrow_exception(exceptions.front());
}
};
} // namespace detail
template <class InputIt, class OutputIt, class UnaryOperation>
OutputIt par_transform(InputIt first1, InputIt last1, OutputIt d_first, UnaryOperation unary_op)
{
#if MIGRAPHX_HAS_EXECUTORS
return std::transform(std::execution::par, first1, last1, d_first, std::move(unary_op));
#else
simple_par_for(last1 - first1, [&](auto i) { d_first[i] = unary_op(first1[i]); });
return d_first + (last1 - first1);
#endif
}
template <class InputIt1, class InputIt2, class OutputIt, class BinaryOperation>
OutputIt par_transform(
InputIt1 first1, InputIt1 last1, InputIt2 first2, OutputIt d_first, BinaryOperation binary_op)
{
#if MIGRAPHX_HAS_EXECUTORS
return std::transform(
std::execution::par, first1, last1, first2, d_first, std::move(binary_op));
#else
simple_par_for(last1 - first1, [&](auto i) { d_first[i] = binary_op(first1[i], first2[i]); });
return d_first + (last1 - first1);
#endif
}
template <class InputIt, class UnaryFunction>
void par_for_each(InputIt first, InputIt last, UnaryFunction f)
{
#if MIGRAPHX_HAS_EXECUTORS
// Propagate the exception
detail::exception_list ex;
std::for_each(std::execution::par, first, last, ex.collect(std::move(f)));
ex.throw_if_exception();
#else
simple_par_for(last - first, [&](auto i) { f(first[i]); });
#endif
}
template <class... Ts>
auto par_copy_if(Ts&&... xs)
{
#if MIGRAPHX_HAS_EXECUTORS
return std::copy_if(std::execution::par, std::forward<Ts>(xs)...);
#else
return std::copy_if(std::forward<Ts>(xs)...);
#endif
}
template <class... Ts>
auto par_sort(Ts&&... xs)
{
#if MIGRAPHX_HAS_EXECUTORS
return std::sort(std::execution::par, std::forward<Ts>(xs)...);
#else
return std::sort(std::forward<Ts>(xs)...);
#endif
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif // MIGRAPHX_GUARD_MIGRAPHX_PAR_HPP
...@@ -24,93 +24,23 @@ ...@@ -24,93 +24,23 @@
#ifndef MIGRAPHX_GUARD_RTGLIB_PAR_FOR_HPP #ifndef MIGRAPHX_GUARD_RTGLIB_PAR_FOR_HPP
#define MIGRAPHX_GUARD_RTGLIB_PAR_FOR_HPP #define MIGRAPHX_GUARD_RTGLIB_PAR_FOR_HPP
#include <thread> #include <migraphx/par.hpp>
#include <cmath> #include <migraphx/ranges.hpp>
#include <algorithm>
#include <vector>
#include <cassert>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
struct joinable_thread : std::thread
{
template <class... Xs>
joinable_thread(Xs&&... xs) : std::thread(std::forward<Xs>(xs)...) // NOLINT
{
}
joinable_thread& operator=(joinable_thread&& other) = default;
joinable_thread(joinable_thread&& other) = default;
~joinable_thread()
{
if(this->joinable())
this->join();
}
};
template <class F>
auto thread_invoke(std::size_t i, std::size_t tid, F f) -> decltype(f(i, tid))
{
f(i, tid);
}
template <class F>
auto thread_invoke(std::size_t i, std::size_t, F f) -> decltype(f(i))
{
f(i);
}
template <class F>
void par_for_impl(std::size_t n, std::size_t threadsize, F f)
{
if(threadsize <= 1)
{
for(std::size_t i = 0; i < n; i++)
thread_invoke(i, 0, f);
}
else
{
std::vector<joinable_thread> threads(threadsize);
// Using const here causes gcc 5 to ICE
#if(!defined(__GNUC__) || __GNUC__ != 5)
const
#endif
std::size_t grainsize = std::ceil(static_cast<double>(n) / threads.size());
std::size_t work = 0;
std::size_t tid = 0;
std::generate(threads.begin(), threads.end(), [=, &work, &tid] {
auto result = joinable_thread([=] {
std::size_t start = work;
std::size_t last = std::min(n, work + grainsize);
for(std::size_t i = start; i < last; i++)
{
thread_invoke(i, tid, f);
}
});
work += grainsize;
++tid;
return result;
});
assert(work >= n);
}
}
template <class F> template <class F>
void par_for(std::size_t n, std::size_t min_grain, F f) void par_for(std::size_t n, F f)
{ {
const auto threadsize = std::min<std::size_t>(std::thread::hardware_concurrency(), using iterator = basic_iota_iterator<id, std::size_t>;
n / std::max<std::size_t>(1, min_grain)); par_for_each(iterator{0, {}}, iterator{n, {}}, f);
par_for_impl(n, threadsize, f);
} }
template <class F> template <class F>
void par_for(std::size_t n, F f) void par_for(std::size_t n, std::size_t, F f)
{ {
const int min_grain = 8; par_for(n, f);
par_for(n, min_grain, f);
} }
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
......
...@@ -26,6 +26,7 @@ ...@@ -26,6 +26,7 @@
#include <string> #include <string>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <migraphx/instruction_ref.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_SIMPLE_PAR_FOR_HPP
#define MIGRAPHX_GUARD_RTGLIB_SIMPLE_PAR_FOR_HPP
#include <thread>
#include <cmath>
#include <algorithm>
#include <vector>
#include <cassert>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct joinable_thread : std::thread
{
template <class... Xs>
joinable_thread(Xs&&... xs) : std::thread(std::forward<Xs>(xs)...) // NOLINT
{
}
joinable_thread& operator=(joinable_thread&& other) = default;
joinable_thread(joinable_thread&& other) = default;
~joinable_thread()
{
if(this->joinable())
this->join();
}
};
template <class F>
auto thread_invoke(std::size_t i, std::size_t tid, F f) -> decltype(f(i, tid))
{
f(i, tid);
}
template <class F>
auto thread_invoke(std::size_t i, std::size_t, F f) -> decltype(f(i))
{
f(i);
}
template <class F>
void simple_par_for_impl(std::size_t n, std::size_t threadsize, F f)
{
if(threadsize <= 1)
{
for(std::size_t i = 0; i < n; i++)
thread_invoke(i, 0, f);
}
else
{
std::vector<joinable_thread> threads(threadsize);
// Using const here causes gcc 5 to ICE
#if(!defined(__GNUC__) || __GNUC__ != 5)
const
#endif
std::size_t grainsize = std::ceil(static_cast<double>(n) / threads.size());
std::size_t work = 0;
std::size_t tid = 0;
std::generate(threads.begin(), threads.end(), [=, &work, &tid] {
auto result = joinable_thread([=] {
std::size_t start = work;
std::size_t last = std::min(n, work + grainsize);
for(std::size_t i = start; i < last; i++)
{
thread_invoke(i, tid, f);
}
});
work += grainsize;
++tid;
return result;
});
assert(work >= n);
}
}
template <class F>
void simple_par_for(std::size_t n, std::size_t min_grain, F f)
{
const auto threadsize = std::min<std::size_t>(std::thread::hardware_concurrency(),
n / std::max<std::size_t>(1, min_grain));
simple_par_for_impl(n, threadsize, f);
}
template <class F>
void simple_par_for(std::size_t n, F f)
{
const int min_grain = 8;
simple_par_for(n, min_grain, f);
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
/* /*
* The MIT License (MIT) * The MIT License (MIT)
* *
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved. * Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy * Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal * of this software and associated documentation files (the "Software"), to deal
...@@ -24,21 +24,21 @@ ...@@ -24,21 +24,21 @@
#ifndef MIGRAPHX_GUARD_OPERATORS_TUNE_AXIS_HPP #ifndef MIGRAPHX_GUARD_OPERATORS_TUNE_AXIS_HPP
#define MIGRAPHX_GUARD_OPERATORS_TUNE_AXIS_HPP #define MIGRAPHX_GUARD_OPERATORS_TUNE_AXIS_HPP
#include <utility>
#include <cstdint>
#include <migraphx/stringutils.hpp> #include <migraphx/stringutils.hpp>
#include <migraphx/errors.hpp> #include <migraphx/errors.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
inline int tune_axis(const int n_dim, const int axis, const std::string& op_name = "OPERATOR") inline int tune_axis(int n_dim, int axis, const std::string& op_name = "OPERATOR")
{ {
if(axis >= n_dim or std::abs(axis) > n_dim) if(axis < 0)
{ axis += n_dim;
if(axis < 0 or axis >= n_dim)
MIGRAPHX_THROW(to_upper(op_name) + ": axis is out of range."); MIGRAPHX_THROW(to_upper(op_name) + ": axis is out of range.");
}
return (axis < 0) ? axis + n_dim : axis; return axis;
} }
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
......
...@@ -26,7 +26,11 @@ find_package(Protobuf REQUIRED) ...@@ -26,7 +26,11 @@ find_package(Protobuf REQUIRED)
protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS onnx.proto) protobuf_generate_cpp(PROTO_SRCS PROTO_HDRS onnx.proto)
add_library(onnx-proto STATIC ${PROTO_SRCS}) add_library(onnx-proto STATIC ${PROTO_SRCS})
target_include_directories(onnx-proto SYSTEM PUBLIC ${CMAKE_CURRENT_BINARY_DIR} ${PROTOBUF_INCLUDE_DIR}) target_include_directories(onnx-proto SYSTEM PUBLIC ${CMAKE_CURRENT_BINARY_DIR} ${PROTOBUF_INCLUDE_DIR})
target_compile_options(onnx-proto PRIVATE -w) if(MSVC)
target_compile_options(onnx-proto PRIVATE /w)
else()
target_compile_options(onnx-proto PRIVATE -w)
endif()
target_link_libraries(onnx-proto PRIVATE ${PROTOBUF_LIBRARY}) target_link_libraries(onnx-proto PRIVATE ${PROTOBUF_LIBRARY})
set_target_properties(onnx-proto PROPERTIES POSITION_INDEPENDENT_CODE On) set_target_properties(onnx-proto PROPERTIES POSITION_INDEPENDENT_CODE On)
...@@ -37,7 +41,10 @@ set_target_properties(migraphx_onnx PROPERTIES EXPORT_NAME onnx) ...@@ -37,7 +41,10 @@ set_target_properties(migraphx_onnx PROPERTIES EXPORT_NAME onnx)
migraphx_generate_export_header(migraphx_onnx) migraphx_generate_export_header(migraphx_onnx)
rocm_set_soversion(migraphx_onnx ${MIGRAPHX_SO_VERSION}) rocm_set_soversion(migraphx_onnx ${MIGRAPHX_SO_VERSION})
rocm_clang_tidy_check(migraphx_onnx) rocm_clang_tidy_check(migraphx_onnx)
target_link_libraries(migraphx_onnx PRIVATE onnx-proto "-Wl,--exclude-libs,ALL") target_link_libraries(migraphx_onnx PRIVATE onnx-proto)
if(NOT WIN32)
target_link_libraries(migraphx_onnx PRIVATE "-Wl,--exclude-libs,ALL")
endif()
target_link_libraries(migraphx_onnx PUBLIC migraphx) target_link_libraries(migraphx_onnx PUBLIC migraphx)
rocm_install_targets( rocm_install_targets(
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_AMDMIGRAPHX_ONNX_POOLING_HPP
#define MIGRAPHX_GUARD_AMDMIGRAPHX_ONNX_POOLING_HPP
#include <migraphx/config.hpp>
#include <migraphx/onnx/onnx_parser.hpp>
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/instruction.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
value handle_pooling_values(const op_desc& opd,
onnx_parser::node_info info,
const shape& in_shape,
value values);
instruction_ref add_pooling_op(const op_desc& opd, onnx_parser::node_info info, instruction_ref l0);
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
...@@ -127,9 +127,9 @@ struct parse_multinomial : op_parser<parse_multinomial> ...@@ -127,9 +127,9 @@ struct parse_multinomial : op_parser<parse_multinomial>
// use literal. The array populated by random_uniform may have any shape, as long its // use literal. The array populated by random_uniform may have any shape, as long its
// number of elements is batch_size * sample_size . // number of elements is batch_size * sample_size .
size_t batch_size = s0.lens().front(); size_t batch_size = s0.lens().front();
auto rand_dummy = info.add_literal( auto rand_dummy = info.add_literal(migraphx::literal{
migraphx::literal{migraphx::shape::float_type, {batch_size * sample_size}}); migraphx::shape{migraphx::shape::float_type, {batch_size, sample_size}},
std::vector<float>(batch_size * sample_size)});
randoms = randoms =
info.add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy); info.add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy);
} }
......
...@@ -22,14 +22,8 @@ ...@@ -22,14 +22,8 @@
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#include <migraphx/onnx/op_parser.hpp> #include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/checks.hpp> #include <migraphx/onnx/pooling.hpp>
#include <migraphx/onnx/padding.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/instruction.hpp> #include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/make_op.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -39,68 +33,14 @@ struct parse_pooling : op_parser<parse_pooling> ...@@ -39,68 +33,14 @@ struct parse_pooling : op_parser<parse_pooling>
{ {
std::vector<op_desc> operators() const std::vector<op_desc> operators() const
{ {
return {{"AveragePool", "average"}, return {
{"AveragePool", "average"},
{"GlobalAveragePool", "average"}, {"GlobalAveragePool", "average"},
{"GlobalMaxPool", "max"}, {"GlobalMaxPool", "max"},
{"MaxPool", "max"}, {"MaxPool", "max"},
{"LpPool", "lpnorm"}, {"LpPool", "lpnorm"},
{"GlobalLpPool", "lpnorm"}}; {"GlobalLpPool", "lpnorm"},
} };
value handle_values(const op_desc& opd,
onnx_parser::node_info info,
const shape& in_shape,
value values) const
{
auto kdims = in_shape.ndim() - 2;
if(starts_with(opd.onnx_name, "Global"))
{
// if spatial dimensions are dynamic use dyn_global flag
if(in_shape.dynamic() and std::any_of(in_shape.dyn_dims().cbegin() + 2,
in_shape.dyn_dims().cend(),
[](auto dd) { return not dd.is_fixed(); }))
{
values["dyn_global"] = true;
values["lengths"] = std::vector<size_t>();
}
else
{
// works with static and fixed dynamic shape
auto m_lens = in_shape.max_lens();
values["lengths"] = std::vector<size_t>(m_lens.begin() + 2, m_lens.end());
}
}
if(contains(info.attributes, "ceil_mode"))
{
values["ceil_mode"] = static_cast<bool>(info.attributes.at("ceil_mode").i());
}
if(contains(info.attributes, "strides"))
{
values["stride"].clear();
copy(info.attributes["strides"].ints(), std::back_inserter(values["stride"]));
check_attr_sizes(kdims, values["stride"].size(), "PARSE_POOLING: inconsistent strides");
}
if(contains(info.attributes, "kernel_shape"))
{
values["lengths"].clear();
copy(info.attributes["kernel_shape"].ints(), std::back_inserter(values["lengths"]));
check_attr_sizes(
kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
}
// lp_order attribute
if(contains(info.attributes, "p"))
{
values["lp_order"] = info.attributes.at("p").i();
}
// ensure pads available only when auto_pad is "NOT_SET"
check_padding_mode(info, "POOLING");
return values;
} }
instruction_ref parse(const op_desc& opd, instruction_ref parse(const op_desc& opd,
...@@ -108,144 +48,8 @@ struct parse_pooling : op_parser<parse_pooling> ...@@ -108,144 +48,8 @@ struct parse_pooling : op_parser<parse_pooling>
onnx_parser::node_info info, onnx_parser::node_info info,
std::vector<instruction_ref> args) const std::vector<instruction_ref> args) const
{ {
std::string mode = opd.op_name; return add_pooling_op(opd, std::move(info), args[0]);
const std::unordered_map<std::string, op::pooling_mode> mode_map = { };
{"max", op::pooling_mode::max},
{"average", op::pooling_mode::average},
{"lpnorm", op::pooling_mode::lpnorm}};
if(not contains(mode_map, mode))
{
MIGRAPHX_THROW(
"PARSE_POOLING: onnx pooling mode must be [\"max\", \"average\", \"lpnorm\"]");
}
operation op = make_op("pooling", {{"mode", mode_map.at(mode)}});
value values = op.to_value();
auto l0 = args[0];
auto in_shape = l0->get_shape();
assert(in_shape.ndim() > 2);
auto kdims = in_shape.ndim() - 2;
values = handle_values(opd, info, in_shape, values);
// count include padding, if count include pad is 1, we always use
// explicit pad
int count_include_pad = 0;
if(contains(info.attributes, "count_include_pad"))
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW("PARSE_POOLING: count_include_pad attribute is not supported for "
"dynamic input shape");
}
count_include_pad = info.attributes.at("count_include_pad").i();
}
std::vector<int64_t> paddings;
float pad_val = ((mode == "max") ? std::numeric_limits<float>::lowest() : 0.0f);
if(contains(info.attributes, "pads"))
{
values["padding"].clear();
copy(info.attributes["pads"].ints(), std::back_inserter(paddings));
check_attr_sizes(
kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
}
if(paddings.size() != 2 * kdims)
{
paddings.resize(kdims * 2);
std::fill_n(paddings.begin(), 2 * kdims, 0);
}
if(values["padding"].size() != kdims)
{
values["padding"].resize(kdims);
std::fill_n(values["padding"].begin(), kdims, 0);
}
if(values["stride"].size() != kdims)
{
values["stride"].resize(kdims);
std::fill_n(values["stride"].begin(), kdims, 1);
}
// used to calculate the supposed output shape
std::vector<int64_t> orig_padding = paddings;
// TODO: add parsing for dilations
if(contains(info.attributes, "auto_pad") and
to_upper(info.attributes["auto_pad"].s()) != "NOTSET")
{
auto auto_pad = to_upper(info.attributes["auto_pad"].s());
// don't use the given padding sizes, if any
// values["padding"].clear();
if(in_shape.dynamic())
{
// set padding_mode to trigger auto padding at runtime
bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
values["padding_mode"] = is_same_upper ? to_value(op::padding_mode_t::same_upper)
: to_value(op::padding_mode_t::same_lower);
}
else
{
// Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size(info,
values,
values["lengths"].to_vector<std::size_t>(),
std::vector<size_t>(in_shape.ndim() - 2, 1),
in_shape.lens(),
paddings);
values["padding"] = paddings;
// default padding_mode indicates that padding sizes are not calculated dynamically
values["padding_mode"] = migraphx::op::padding_mode_t::default_;
}
}
std::vector<int64_t> slice_start;
std::vector<int64_t> slice_end;
tune_padding_size(values, paddings, count_include_pad, slice_start);
if(not slice_start.empty())
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW(
"PARSE_POOLING: asymmetric padding not supported for dynamic input shape");
}
// calculate expected output shape
orig_padding.insert(orig_padding.begin() + kdims, 2, 0);
orig_padding.insert(orig_padding.begin(), 2, 0);
op::pad pad{orig_padding, 0.0f};
shape padded_shape = pad.compute_shape({l0->get_shape()});
// make an op just to get its output shape
auto out_lens = make_op("pooling", values).compute_shape({padded_shape}).lens();
// compute slice_end information
slice_end.resize(slice_start.size());
std::transform(out_lens.begin() + 2,
out_lens.end(),
slice_start.begin(),
slice_end.begin(),
[](auto i, auto j) { return i + j; });
}
values["padding"] = std::vector<size_t>(paddings.begin(), paddings.end());
check_asym_padding(info, l0, paddings, values, count_include_pad, pad_val);
op.from_value(values);
auto l1 = info.add_instruction(op, l0);
if(not slice_start.empty())
{
std::vector<int64_t> axes(kdims);
std::iota(axes.begin(), axes.end(), 2);
l1 = info.add_instruction(
make_op("slice", {{"axes", axes}, {"starts", slice_start}, {"ends", slice_end}}),
l1);
}
return l1;
}
}; };
} // namespace onnx } // namespace onnx
......
...@@ -23,6 +23,7 @@ ...@@ -23,6 +23,7 @@
*/ */
#include <migraphx/onnx/op_parser.hpp> #include <migraphx/onnx/op_parser.hpp>
#include <migraphx/onnx/pooling.hpp>
#include <migraphx/ranges.hpp> #include <migraphx/ranges.hpp>
#include <migraphx/op/pooling.hpp> #include <migraphx/op/pooling.hpp>
#include <migraphx/make_op.hpp> #include <migraphx/make_op.hpp>
...@@ -36,90 +37,56 @@ namespace onnx { ...@@ -36,90 +37,56 @@ namespace onnx {
/* /*
********************************************************************************* *********************************************************************************
* Reference: see QLinearGlobalAveragePool in * * Reference: see QLinearAveragePool and QLinearGlobalAveragePool in *
* github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md * * github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
********************************************************************************* *********************************************************************************
*/
QLinearGlobalAveragePool consumes an input tensor X and applies struct parse_qlinearpooling : op_parser<parse_qlinearpooling>
Average pooling across the values in the same channel. This is
equivalent to AveragePool with kernel size equal to the spatial
dimension of input tensor. Input is of type uint8_t or int8_t.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
channels_last : int
Inputs
X : T
Input data tensor from the previous operator; According to channels_last, dimensions for image case
are (N x C x H x W), or (N x H x W x C) where N is the batch size, C is the number of channels, and
H and W are the height and the width of the data. For non image case, the dimensions are in the form
of (N x C x D1 x D2 ... Dn), or (N x D1 X D2 ... Dn x C) where N is the batch size.
x_scale : tensor(float)
Scale of quantized input 'X'. It must be a scalar.
x_zero_point : T
Zero point tensor for input 'X'. It must be a scalar.
y_scale : tensor(float)
Scale of quantized output 'Y'. It must be a scalar.
y_zero_point : T
Zero point tensor for output 'Y'. It must be a scalar.
Outputs
Y : T
Output data tensor from pooling across the input tensor. The output tensor has the same rank as the
input. with the N and C value keep it value, while the other dimensions are all 1. Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to signed/unsigned int8 tensors.
*/
struct parse_qlinearglobalaveragepool : op_parser<parse_qlinearglobalaveragepool>
{ {
std::vector<op_desc> operators() const { return {{"QLinearGlobalAveragePool"}}; } std::vector<op_desc> operators() const
// basic type checking for QLinearGlobalAveragePool Operator
void check_inputs(const std::vector<instruction_ref>& args) const
{ {
if(args.size() < 5) return {{"QLinearGlobalAveragePool", "average"}, {"QLinearAveragePool", "average"}};
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: missing inputs"); }
void check_inputs(const op_desc& opd, const std::vector<instruction_ref>& args) const
{
const auto& in_x = args[0]; const auto& in_x = args[0];
const auto& zero_pt_x = args[2]; const auto onnx_name = opd.onnx_name;
const auto& zero_pt_y = args[4];
if(in_x->get_shape().ndim() <= 2) if(in_x->get_shape().ndim() <= 2)
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: input dimensions too small"); MIGRAPHX_THROW(onnx_name + ": input dimensions too small");
auto type_x = in_x->get_shape().type(); auto type_x = in_x->get_shape().type();
if(type_x != migraphx::shape::int8_type and type_x != migraphx::shape::uint8_type) if(type_x != migraphx::shape::int8_type and type_x != migraphx::shape::uint8_type)
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: unsupported input type"); MIGRAPHX_THROW(onnx_name + ": unsupported input type");
const auto& zero_pt_x = args[2];
if(type_x != zero_pt_x->get_shape().type()) if(type_x != zero_pt_x->get_shape().type())
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: mismatched type: input zero point"); MIGRAPHX_THROW(onnx_name + ": mismatched type: input zero point");
if(args.size() == 5)
{
const auto& zero_pt_y = args[4];
if(type_x != zero_pt_y->get_shape().type()) if(type_x != zero_pt_y->get_shape().type())
MIGRAPHX_THROW("QLINEARGLOBALAVERAGEPOOL: mismatched type: output zero point"); MIGRAPHX_THROW(onnx_name + ": mismatched type: output zero point");
}
} }
instruction_ref parse(const op_desc& /* opd */, instruction_ref parse(const op_desc& opd,
const onnx_parser& parser, const onnx_parser& parser,
const onnx_parser::node_info& info, const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const const std::vector<instruction_ref>& args) const
{
if(contains(info.attributes, "channel_last"))
{ {
int channels_last = int channels_last =
parser.parse_value(info.attributes.at("channels_last")).template at<int>(); parser.parse_value(info.attributes.at("channels_last")).template at<int>();
if(channels_last != 0) if(channels_last != 0)
MIGRAPHX_THROW( MIGRAPHX_THROW(opd.onnx_name + ": channels_last (N x D1..Dn x C) is not supported");
"QLINEARGLOBALAVERAGEPOOL: channels_last (N x D1..Dn x C) is not supported"); }
check_inputs(args); check_inputs(opd, args);
// Input: X // Input: X
...@@ -128,21 +95,18 @@ struct parse_qlinearglobalaveragepool : op_parser<parse_qlinearglobalaveragepool ...@@ -128,21 +95,18 @@ struct parse_qlinearglobalaveragepool : op_parser<parse_qlinearglobalaveragepool
const auto& zero_pt_x = args[2]; const auto& zero_pt_x = args[2];
auto dquant_x = bcast_qdq_instr("dequantizelinear", in_x, scale_x, zero_pt_x, info); auto dquant_x = bcast_qdq_instr("dequantizelinear", in_x, scale_x, zero_pt_x, info);
// Output Y = globalaveragepool(X) // Output Y = pooling_op(X)
auto op = migraphx::op::pooling{migraphx::op::pooling_mode::average};
auto lens = in_x->get_shape().lens();
std::vector<size_t> lengths(lens.begin() + 2, lens.end());
op.lengths = lengths;
op.padding = std::vector<size_t>(lens.size());
auto out_y = info.add_instruction(op, dquant_x);
const auto& scale_y = args[3]; auto out_y = add_pooling_op(opd, info, dquant_x);
const auto& zero_pt_y = args[4];
auto out_quant_y = bcast_qdq_instr("quantizelinear", out_y, scale_y, zero_pt_y, info); const auto& in_scale_y = args[3];
// zero_pt for Y is supplied as the last optional argument..
if(args.size() == 5)
return (bcast_qdq_instr("quantizelinear", out_y, in_scale_y, args[4], info));
return out_quant_y; // if no zero_pt: just broadcast the scale..
auto bcast_scale_y = bcast_scalar_instr(out_y->get_shape(), in_scale_y, info);
return (info.add_instruction(migraphx::make_op("quantizelinear"), out_y, bcast_scale_y));
} }
}; };
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/common.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/instruction.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
/*
*********************************************************************************
* Reference: see QLinearSigmoid, QLinearLeakyRelu in *
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
com.microsoft.QLinearSigmoid
QLinearSigmoid takes quantized input data (Tensor), and quantize parameter for output, and produces
one output data (Tensor) where the function f(x) = quantize(Sigmoid(dequantize(x))), is applied to
the data tensor elementwise. Where the function Sigmoid(x) = 1 / (1 + exp(-x))
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
*****************************************************************************************************
com.microsoft.QLinearLeakyRelu
QLinearLeakyRelu takes quantized input data (Tensor), an argument alpha, and quantize parameter for
output, and produces one output data (Tensor) where the function f(x) = quantize(alpha *
dequantize(x)) for dequantize(x) < 0, f(x) = quantize(dequantize(x)) for dequantize(x) >= 0, is
applied to the data tensor elementwise.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
alpha : float
Coefficient of leakage.
******************************************************************************************************
Generic input layout of QLinear unary operators:
Inputs (4 - 5)
X : T
Input tensor
X_scale : tensor(float)
Input X's scale. It's a scalar, which means a per-tensor/layer quantization.
X_zero_point (optional) : T
Input X's zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
Y_scale : tensor(float) Output Y's scale. It's a scalar, which means
a per-tensor/layer quantization.
Y_zero_point (optional) : T Output Y's zero point. Default value is
0 if it's not specified. It's a scalar, which means a per-tensor/layer quantization.
Outputs
Y : T
Output tensor
Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to 8 bit tensors.
*/
struct parse_qlinearunary : op_parser<parse_qlinearunary>
{
std::vector<op_desc> operators() const
{
return {{"QLinearSigmoid", "sigmoid"}, {"QLinearLeakyRelu", "leaky_relu"}};
}
void check_inputs(const op_desc& opd, const std::vector<instruction_ref>& args) const
{
if(args.size() < 4)
MIGRAPHX_THROW(opd.op_name + ": missing inputs");
const auto& in_x = args[0];
auto sh_x = in_x->get_shape();
auto type_x = sh_x.type();
if(type_x != migraphx::shape::int8_type and type_x != migraphx::shape::uint8_type)
MIGRAPHX_THROW(opd.op_name + ": unsupported input type");
}
instruction_ref parse(const op_desc& opd,
const onnx_parser& parser,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
check_inputs(opd, args);
// X
const auto& in_x = args[0];
const auto& in_scale_x = args[1];
const auto& in_zero_pt_x = args[2];
auto dquant_x = bcast_qdq_instr("dequantizelinear", in_x, in_scale_x, in_zero_pt_x, info);
// Y = (op(dequantizelinear(x))
auto op = parser.load(opd.op_name, info);
auto y = info.add_instruction(op, dquant_x);
const auto& in_scale_y = args[3];
// zero_pt for Y is supplied as the last optional argument..
if(args.size() == 5)
return (bcast_qdq_instr("quantizelinear", y, in_scale_y, args[4], info));
// if no zero_pt: just broadcast the scale..
auto bcast_scale_sigm = bcast_scalar_instr(y->get_shape(), in_scale_y, info);
return (info.add_instruction(migraphx::make_op("quantizelinear"), y, bcast_scale_sigm));
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -39,15 +39,17 @@ struct parse_scatternd : op_parser<parse_scatternd> ...@@ -39,15 +39,17 @@ struct parse_scatternd : op_parser<parse_scatternd>
const onnx_parser::node_info& info, const onnx_parser::node_info& info,
std::vector<instruction_ref>& args) const std::vector<instruction_ref>& args) const
{ {
std::string reduction = "none";
if(contains(info.attributes, "reduction")) if(contains(info.attributes, "reduction"))
{ {
if(info.attributes.at("reduction").s() == "add") reduction = info.attributes.at("reduction").s();
return info.add_instruction(migraphx::make_op("scatternd_add"), args); if(not contains({"none", "add", "mul", "min", "max"}, reduction))
if(info.attributes.at("reduction").s() == "mul") {
return info.add_instruction(migraphx::make_op("scatternd_mul"), args); MIGRAPHX_THROW("PARSE_SCATTERND: unsupported reduction mode " + reduction);
}
} }
return info.add_instruction(migraphx::make_op("scatternd_none"), args); return info.add_instruction(migraphx::make_op("scatternd_" + reduction), args);
} }
}; };
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment