Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
b076d0f4
Commit
b076d0f4
authored
Aug 23, 2022
by
Paul
Browse files
Merge branch 'jit-layernorm-merge' into bert-opt-layernorm
parents
03c6967e
d705e483
Changes
30
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
462 additions
and
174 deletions
+462
-174
src/CMakeLists.txt
src/CMakeLists.txt
+0
-1
src/include/migraphx/onnx.hpp
src/include/migraphx/onnx.hpp
+6
-8
src/include/migraphx/op/convert.hpp
src/include/migraphx/op/convert.hpp
+9
-1
src/include/migraphx/op/nonmaxsuppression.hpp
src/include/migraphx/op/nonmaxsuppression.hpp
+103
-37
src/include/migraphx/supported_segments.hpp
src/include/migraphx/supported_segments.hpp
+12
-4
src/include/migraphx/target.hpp
src/include/migraphx/target.hpp
+33
-30
src/include/migraphx/target_assignments.hpp
src/include/migraphx/target_assignments.hpp
+13
-3
src/onnx/include/migraphx/onnx/onnx_parser.hpp
src/onnx/include/migraphx/onnx/onnx_parser.hpp
+1
-0
src/onnx/onnx.cpp
src/onnx/onnx.cpp
+7
-0
src/onnx/onnx_parser.cpp
src/onnx/onnx_parser.cpp
+0
-5
src/onnx/parse_generic_op.cpp
src/onnx/parse_generic_op.cpp
+1
-2
src/onnx/parse_nonmaxsuppression.cpp
src/onnx/parse_nonmaxsuppression.cpp
+49
-0
src/program.cpp
src/program.cpp
+31
-6
src/targets/fpga/include/migraphx/fpga/target.hpp
src/targets/fpga/include/migraphx/fpga/target.hpp
+2
-1
src/targets/fpga/target.cpp
src/targets/fpga/target.cpp
+10
-4
src/targets/gpu/kernels/include/migraphx/kernels/array.hpp
src/targets/gpu/kernels/include/migraphx/kernels/array.hpp
+63
-56
src/targets/gpu/kernels/include/migraphx/kernels/layernorm.hpp
...argets/gpu/kernels/include/migraphx/kernels/layernorm.hpp
+4
-3
src/targets/gpu/kernels/include/migraphx/kernels/reduce.hpp
src/targets/gpu/kernels/include/migraphx/kernels/reduce.hpp
+4
-4
test/fpga/get_target_assignments.cpp
test/fpga/get_target_assignments.cpp
+11
-8
test/onnx/gen_onnx.py
test/onnx/gen_onnx.py
+103
-1
No files found.
src/CMakeLists.txt
View file @
b076d0f4
...
@@ -90,7 +90,6 @@ add_library(migraphx
...
@@ -90,7 +90,6 @@ add_library(migraphx
shape.cpp
shape.cpp
simplify_algebra.cpp
simplify_algebra.cpp
simplify_reshapes.cpp
simplify_reshapes.cpp
target_assignments.cpp
tmp_dir.cpp
tmp_dir.cpp
value.cpp
value.cpp
verify_args.cpp
verify_args.cpp
...
...
src/include/migraphx/onnx.hpp
View file @
b076d0f4
...
@@ -35,17 +35,13 @@ struct onnx_options
...
@@ -35,17 +35,13 @@ struct onnx_options
{
{
/// Old way to set default fixed dimension size
/// Old way to set default fixed dimension size
std
::
size_t
default_dim_value
=
0
;
std
::
size_t
default_dim_value
=
0
;
/*!
/// Default dynamic dimension size (if both default_dim_value and default_dyn_dim_value set
* Default dynamic dimension size (if both default_dim_value and default_dyn_dim_value
/// parser throws)
* set parser throws)
*/
shape
::
dynamic_dimension
default_dyn_dim_value
=
{
1
,
1
,
0
};
shape
::
dynamic_dimension
default_dyn_dim_value
=
{
1
,
1
,
0
};
/// Explicitly specify the dims of an input
/// Explicitly specify the dims of an input
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
size_t
>>
map_input_dims
=
{};
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
size_t
>>
map_input_dims
=
{};
/*!
/// Explicitly specify dynamic dims of an input (if both map_input_dims and map_dyn_input_dims
* Explicitly specify dynamic dims of an input (if both map_input_dims and
/// set parser throws)
* map_dyn_input_dims set parser throws)
*/
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
shape
::
dynamic_dimension
>>
map_dyn_input_dims
=
{};
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
shape
::
dynamic_dimension
>>
map_dyn_input_dims
=
{};
/// Continue parsing onnx file if an unknown operator is found
/// Continue parsing onnx file if an unknown operator is found
bool
skip_unknown_operators
=
false
;
bool
skip_unknown_operators
=
false
;
...
@@ -53,6 +49,8 @@ struct onnx_options
...
@@ -53,6 +49,8 @@ struct onnx_options
bool
print_program_on_error
=
false
;
bool
print_program_on_error
=
false
;
/// Max iter num for the loop operator
/// Max iter num for the loop operator
int64_t
max_loop_iterations
=
10
;
int64_t
max_loop_iterations
=
10
;
/// Use dynamic output for operators when available
bool
use_dyn_output
=
false
;
};
};
/// Create a program from an onnx file
/// Create a program from an onnx file
...
...
src/include/migraphx/op/convert.hpp
View file @
b076d0f4
...
@@ -45,7 +45,15 @@ struct convert : unary<convert>
...
@@ -45,7 +45,15 @@ struct convert : unary<convert>
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
return
{
target_type
,
inputs
.
at
(
0
).
lens
(),
inputs
.
at
(
0
).
strides
()};
auto
input
=
inputs
.
at
(
0
);
if
(
input
.
dynamic
())
{
return
{
target_type
,
input
.
dyn_dims
()};
}
else
{
return
{
target_type
,
input
.
lens
(),
input
.
strides
()};
}
}
}
std
::
string
point_op
()
const
std
::
string
point_op
()
const
...
...
src/include/migraphx/op/nonmaxsuppression.hpp
View file @
b076d0f4
...
@@ -45,11 +45,13 @@ namespace op {
...
@@ -45,11 +45,13 @@ namespace op {
struct
nonmaxsuppression
struct
nonmaxsuppression
{
{
bool
center_point_box
=
false
;
bool
center_point_box
=
false
;
bool
use_dyn_output
=
false
;
template
<
class
Self
,
class
F
>
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
static
auto
reflect
(
Self
&
self
,
F
f
)
{
{
return
pack
(
f
(
self
.
center_point_box
,
"center_point_box"
));
return
pack
(
f
(
self
.
center_point_box
,
"center_point_box"
),
f
(
self
.
use_dyn_output
,
"use_dyn_output"
));
}
}
std
::
string
name
()
const
{
return
"nonmaxsuppression"
;
}
std
::
string
name
()
const
{
return
"nonmaxsuppression"
;
}
...
@@ -57,27 +59,81 @@ struct nonmaxsuppression
...
@@ -57,27 +59,81 @@ struct nonmaxsuppression
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
{
// requires at least 2 inputs
// requires at least 2 inputs
check_shapes
{{
inputs
.
at
(
0
),
inputs
.
at
(
1
)},
*
this
}.
only_dims
(
3
);
check_shapes
{{
inputs
.
at
(
0
),
inputs
.
at
(
1
)},
*
this
,
true
}.
only_dims
(
3
).
same_ndims
();
auto
lens
=
inputs
.
front
().
lens
();
auto
boxes_max_lens
=
inputs
.
at
(
0
).
max_lens
();
// num batches * num boxes
const
auto
max_num_boxes
=
boxes_max_lens
.
at
(
0
)
*
boxes_max_lens
.
at
(
1
);
// check input shape
auto
fixed_shape_error_check
=
[
&
]()
{
if
(
lens
[
1
]
!=
inputs
.
at
(
1
).
lens
()[
2
])
auto
lens
=
inputs
.
front
().
lens
();
if
(
lens
[
1
]
!=
inputs
.
at
(
1
).
lens
()[
2
])
{
MIGRAPHX_THROW
(
"NonMaxSuppression: spatial dimension mismatch between boxes and scores input"
);
}
if
(
lens
[
0
]
!=
inputs
.
at
(
1
).
lens
()[
0
])
{
MIGRAPHX_THROW
(
"NonMaxSuppression: number of batches mismatch between boxes and scores input"
);
}
};
if
(
use_dyn_output
)
{
{
MIGRAPHX_THROW
(
if
(
inputs
.
at
(
0
).
dynamic
())
"NonMaxSuppression: spatial dimension mismatch between boxes and scores input"
);
{
// both boxes and scores should be dynamic
// check dynamic dimensions are consistent
const
auto
boxes_dims
=
inputs
.
at
(
0
).
dyn_dims
();
const
auto
scores_dims
=
inputs
.
at
(
1
).
dyn_dims
();
if
(
boxes_dims
.
at
(
1
)
!=
scores_dims
.
at
(
2
))
{
MIGRAPHX_THROW
(
"NonMaxSuppression: dynamic spatial dimension mismatch between "
"boxes and scores input"
);
}
if
(
boxes_dims
.
at
(
0
)
!=
scores_dims
.
at
(
0
))
{
MIGRAPHX_THROW
(
"NonMaxSuppression: dynamic number of batches mismatch between "
"boxes and scores input"
);
}
}
else
if
(
inputs
.
at
(
1
).
dynamic
())
{
// scores has dynamic shape, boxes fixed shape
// check that it is only a dynamic number of classes
const
auto
scores_dims
=
inputs
.
at
(
1
).
dyn_dims
();
const
auto
boxes_lens
=
inputs
.
at
(
0
).
lens
();
if
(
not
scores_dims
.
at
(
0
).
is_fixed
()
or
scores_dims
.
at
(
0
).
max
!=
boxes_lens
.
at
(
0
))
{
MIGRAPHX_THROW
(
"NonMaxSuppression: scores dynamic num_classes; num_batches not "
"fixed or mismatched"
);
}
if
(
not
scores_dims
.
at
(
2
).
is_fixed
()
or
scores_dims
.
at
(
2
).
max
!=
boxes_lens
.
at
(
1
))
{
MIGRAPHX_THROW
(
"NonMaxSuppression: scores dynamic num_classes; "
"spatial_dimension not fixed or mismatches"
);
}
}
else
{
fixed_shape_error_check
();
}
std
::
vector
<
shape
::
dynamic_dimension
>
out_lens
=
{};
out_lens
.
push_back
({
0
,
max_num_boxes
,
0
});
out_lens
.
push_back
({
3
,
3
,
0
});
return
{
shape
::
int64_type
,
out_lens
};
}
}
else
// check batch sizes
if
(
lens
[
0
]
!=
inputs
.
at
(
1
).
lens
()[
0
])
{
{
MIGRAPHX_THROW
(
if
(
inputs
.
at
(
0
).
dynamic
()
or
inputs
.
at
(
1
).
dynamic
())
"NonMaxSuppression: number of batches mismatch between boxes and scores input"
);
{
MIGRAPHX_THROW
(
"NonMaxSuppression: dynamic input shape with use_dyn_output set to false"
);
}
fixed_shape_error_check
();
std
::
vector
<
std
::
size_t
>
out_lens
=
{
max_num_boxes
,
3
};
return
{
shape
::
int64_type
,
out_lens
};
}
}
std
::
vector
<
int64_t
>
out_lens
(
2
);
out_lens
.
at
(
0
)
=
lens
.
at
(
1
);
out_lens
.
at
(
1
)
=
3
;
return
{
shape
::
int64_type
,
out_lens
};
}
}
struct
box
struct
box
...
@@ -181,13 +237,13 @@ struct nonmaxsuppression
...
@@ -181,13 +237,13 @@ struct nonmaxsuppression
}
}
template
<
class
Output
,
class
Boxes
,
class
Scores
>
template
<
class
Output
,
class
Boxes
,
class
Scores
>
void
compute_nms
(
Output
output
,
std
::
size_t
compute_nms
(
Output
output
,
Boxes
boxes
,
Boxes
boxes
,
Scores
scores
,
Scores
scores
,
const
shape
&
output_shape
,
const
shape
&
max_
output_shape
,
std
::
size_t
max_output_boxes_per_class
,
std
::
size_t
max_output_boxes_per_class
,
double
iou_threshold
,
double
iou_threshold
,
double
score_threshold
)
const
double
score_threshold
)
const
{
{
std
::
fill
(
output
.
begin
(),
output
.
end
(),
0
);
std
::
fill
(
output
.
begin
(),
output
.
end
(),
0
);
const
auto
&
lens
=
scores
.
get_shape
().
lens
();
const
auto
&
lens
=
scores
.
get_shape
().
lens
();
...
@@ -197,7 +253,7 @@ struct nonmaxsuppression
...
@@ -197,7 +253,7 @@ struct nonmaxsuppression
// boxes of a class with NMS applied [score, index]
// boxes of a class with NMS applied [score, index]
std
::
vector
<
std
::
pair
<
double
,
int64_t
>>
selected_boxes_inside_class
;
std
::
vector
<
std
::
pair
<
double
,
int64_t
>>
selected_boxes_inside_class
;
std
::
vector
<
int64_t
>
selected_indices
;
std
::
vector
<
int64_t
>
selected_indices
;
selected_boxes_inside_class
.
reserve
(
output_shape
.
elements
());
selected_boxes_inside_class
.
reserve
(
max_
output_shape
.
elements
());
// iterate over batches and classes
// iterate over batches and classes
shape
comp_s
{
shape
::
double_type
,
{
num_batches
,
num_classes
}};
shape
comp_s
{
shape
::
double_type
,
{
num_batches
,
num_classes
}};
shape_for_each
(
comp_s
,
[
&
](
auto
idx
)
{
shape_for_each
(
comp_s
,
[
&
](
auto
idx
)
{
...
@@ -237,11 +293,14 @@ struct nonmaxsuppression
...
@@ -237,11 +293,14 @@ struct nonmaxsuppression
}
}
});
});
std
::
copy
(
selected_indices
.
begin
(),
selected_indices
.
end
(),
output
.
begin
());
std
::
copy
(
selected_indices
.
begin
(),
selected_indices
.
end
(),
output
.
begin
());
return
selected_indices
.
size
()
/
3
;
}
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
{
argument
result
{
output_shape
};
// make buffer of maximum size
shape
max_output_shape
=
{
output_shape
.
type
(),
output_shape
.
max_lens
()};
argument
result
{
max_output_shape
};
std
::
size_t
max_output_boxes_per_class
=
std
::
size_t
max_output_boxes_per_class
=
(
args
.
size
()
>
2
)
?
(
args
.
at
(
2
).
at
<
std
::
size_t
>
())
:
0
;
(
args
.
size
()
>
2
)
?
(
args
.
at
(
2
).
at
<
std
::
size_t
>
())
:
0
;
...
@@ -249,22 +308,29 @@ struct nonmaxsuppression
...
@@ -249,22 +308,29 @@ struct nonmaxsuppression
{
{
return
result
;
return
result
;
}
}
double
iou_threshold
=
(
args
.
size
()
>
3
)
?
(
args
.
at
(
3
).
at
<
double
>
())
:
0.0
f
;
double
iou_threshold
=
(
args
.
size
()
>
3
)
?
(
args
.
at
(
3
).
at
<
double
>
())
:
0.0
f
;
double
score_threshold
=
(
args
.
size
()
>
4
)
?
(
args
.
at
(
4
).
at
<
double
>
())
:
0.0
f
;
double
score_threshold
=
(
args
.
size
()
>
4
)
?
(
args
.
at
(
4
).
at
<
double
>
())
:
0.0
f
;
std
::
size_t
num_selected
=
0
;
result
.
visit
([
&
](
auto
output
)
{
result
.
visit
([
&
](
auto
output
)
{
visit_all
(
args
[
0
],
args
[
1
])([
&
](
auto
boxes
,
auto
scores
)
{
visit_all
(
args
[
0
],
args
[
1
])([
&
](
auto
boxes
,
auto
scores
)
{
compute_nms
(
output
,
num_selected
=
compute_nms
(
output
,
boxes
,
boxes
,
scores
,
scores
,
output_shape
,
max_
output_shape
,
max_output_boxes_per_class
,
max_output_boxes_per_class
,
iou_threshold
,
iou_threshold
,
score_threshold
);
score_threshold
);
});
});
});
});
if
(
use_dyn_output
)
return
result
;
{
return
result
.
reshape
({
output_shape
.
type
(),
{
num_selected
,
3
}});
}
else
{
return
result
;
}
}
}
};
};
...
...
src/
target_assign
ments.
c
pp
→
src/
include/migraphx/supported_seg
ments.
h
pp
View file @
b076d0f4
...
@@ -21,16 +21,24 @@
...
@@ -21,16 +21,24 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
* THE SOFTWARE.
*/
*/
#ifndef MIGRAPHX_GUARD_MIGRAPHX_SUPPORTED_SEGMENTS_HPP
#define MIGRAPHX_GUARD_MIGRAPHX_SUPPORTED_SEGMENTS_HPP
#include <migraphx/target_assignments.hpp>
#include <unordered_set>
#include <migraphx/instruction_ref.hpp>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
void
target_assignments
::
add_assignment
(
instruction_ref
ins
,
const
std
::
string
&
target
)
struct
supported_segment
{
{
assignments
.
emplace
(
ins
,
target
);
std
::
unordered_set
<
instruction_ref
>
instructions
;
}
float
metric
;
};
using
supported_segments
=
std
::
vector
<
supported_segment
>
;
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
}
// namespace migraphx
#endif // MIGRAPHX_GUARD_MIGRAPHX_SUPPORTED_SEGMENTS_HPP
src/include/migraphx/target.hpp
View file @
b076d0f4
...
@@ -37,8 +37,10 @@
...
@@ -37,8 +37,10 @@
#include <migraphx/compile_options.hpp>
#include <migraphx/compile_options.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/rank.hpp>
#include <migraphx/rank.hpp>
#include <migraphx/module_ref.hpp>
#include <migraphx/support_metric.hpp>
#include <migraphx/support_metric.hpp>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/instruction_ref.hpp>
#include <migraphx/supported_segments.hpp>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
@@ -64,12 +66,12 @@ struct target
...
@@ -64,12 +66,12 @@ struct target
*/
*/
context
get_context
()
const
;
context
get_context
()
const
;
/**
/**
* @brief
Check how well an
instruction
is
supported on a target
with the given metric
* @brief
Get the ranges of
instruction
s that are
supported on a target
* @param
ins Instruction
to check
if it's
supported
* @param
module Module
to check
for
supported
instructions
* @param metric Used to define how the
return value
should be
interpret
ed
* @param metric Used to define how the
quality of the support
should be
measur
ed
* @return
T
he
value based on the chosen metric. Negative numbers mean unsupported
* @return
t
he
supported segments of the graph
*/
*/
float
is_supported
(
T
&
,
i
nst
ruction
_ref
ins
,
support_metric
m
)
const
;
supported_segments
target_
is_supported
(
T
&
,
co
nst
_module
_ref
mod
,
support_metric
m
etric
)
const
;
/**
/**
* @brief copy an argument to the current target.
* @brief copy an argument to the current target.
*
*
...
@@ -115,9 +117,9 @@ argument copy_from_target(T&, const argument& arg)
...
@@ -115,9 +117,9 @@ argument copy_from_target(T&, const argument& arg)
}
}
template
<
class
T
>
template
<
class
T
>
float
target_
is
_supported
(
T
&
,
i
nst
ruction
_ref
,
support_metric
)
supported_segments
target_
find
_supported
(
T
&
,
co
nst
_module
_ref
,
support_metric
)
{
{
return
0
;
return
{}
;
}
}
#ifdef TYPE_ERASED_DECLARATION
#ifdef TYPE_ERASED_DECLARATION
...
@@ -132,7 +134,7 @@ struct target
...
@@ -132,7 +134,7 @@ struct target
//
//
context
get_context
()
const
;
context
get_context
()
const
;
// (optional)
// (optional)
float
is
_supported
(
i
nst
ruction
_ref
ins
,
support_metric
m
)
const
;
supported_segments
find
_supported
(
co
nst
_module
_ref
mod
,
support_metric
m
)
const
;
// (optional)
// (optional)
argument
copy_to
(
const
argument
&
input
)
const
;
argument
copy_to
(
const
argument
&
input
)
const
;
// (optional)
// (optional)
...
@@ -224,10 +226,10 @@ struct target
...
@@ -224,10 +226,10 @@ struct target
return
(
*
this
).
private_detail_te_get_handle
().
get_context
();
return
(
*
this
).
private_detail_te_get_handle
().
get_context
();
}
}
float
is
_supported
(
i
nst
ruction
_ref
ins
,
support_metric
m
)
const
supported_segments
find
_supported
(
co
nst
_module
_ref
mod
,
support_metric
m
)
const
{
{
assert
((
*
this
).
private_detail_te_handle_mem_var
);
assert
((
*
this
).
private_detail_te_handle_mem_var
);
return
(
*
this
).
private_detail_te_get_handle
().
is
_supported
(
ins
,
m
);
return
(
*
this
).
private_detail_te_get_handle
().
find
_supported
(
mod
,
m
);
}
}
argument
copy_to
(
const
argument
&
input
)
const
argument
copy_to
(
const
argument
&
input
)
const
...
@@ -261,33 +263,33 @@ struct target
...
@@ -261,33 +263,33 @@ struct target
virtual
std
::
shared_ptr
<
private_detail_te_handle_base_type
>
clone
()
const
=
0
;
virtual
std
::
shared_ptr
<
private_detail_te_handle_base_type
>
clone
()
const
=
0
;
virtual
const
std
::
type_info
&
type
()
const
=
0
;
virtual
const
std
::
type_info
&
type
()
const
=
0
;
virtual
std
::
string
name
()
const
=
0
;
virtual
std
::
string
name
()
const
=
0
;
virtual
std
::
vector
<
pass
>
get_passes
(
context
&
ctx
,
virtual
std
::
vector
<
pass
>
get_passes
(
context
&
ctx
,
const
compile_options
&
options
)
const
=
0
;
const
compile_options
&
options
)
const
=
0
;
virtual
context
get_context
()
const
=
0
;
virtual
context
get_context
()
const
=
0
;
virtual
float
is
_supported
(
i
nst
ruction
_ref
ins
,
support_metric
m
)
const
=
0
;
virtual
supported_segments
find
_supported
(
co
nst
_module
_ref
mod
,
support_metric
m
)
const
=
0
;
virtual
argument
copy_to
(
const
argument
&
input
)
const
=
0
;
virtual
argument
copy_to
(
const
argument
&
input
)
const
=
0
;
virtual
argument
copy_from
(
const
argument
&
input
)
const
=
0
;
virtual
argument
copy_from
(
const
argument
&
input
)
const
=
0
;
virtual
argument
allocate
(
const
shape
&
s
)
const
=
0
;
virtual
argument
allocate
(
const
shape
&
s
)
const
=
0
;
};
};
template
<
class
T
>
template
<
class
T
>
static
auto
private_detail_te_default_
is
_supported
(
char
,
static
auto
private_detail_te_default_
find
_supported
(
char
,
T
&&
private_detail_te_self
,
T
&&
private_detail_te_self
,
instruction
_ref
ins
,
const_module
_ref
mod
,
support_metric
m
)
support_metric
m
)
->
decltype
(
private_detail_te_self
.
is
_supported
(
ins
,
m
))
->
decltype
(
private_detail_te_self
.
find
_supported
(
mod
,
m
))
{
{
return
private_detail_te_self
.
is
_supported
(
ins
,
m
);
return
private_detail_te_self
.
find
_supported
(
mod
,
m
);
}
}
template
<
class
T
>
template
<
class
T
>
static
float
private_detail_te_default_
is
_supported
(
float
,
static
supported_segments
private_detail_te_default_
find
_supported
(
float
,
T
&&
private_detail_te_self
,
T
&&
private_detail_te_self
,
instruction
_ref
ins
,
const_module
_ref
mod
,
support_metric
m
)
support_metric
m
)
{
{
return
target_
is
_supported
(
private_detail_te_self
,
ins
,
m
);
return
target_
find
_supported
(
private_detail_te_self
,
mod
,
m
);
}
}
template
<
class
T
>
template
<
class
T
>
...
@@ -372,10 +374,11 @@ struct target
...
@@ -372,10 +374,11 @@ struct target
context
get_context
()
const
override
{
return
private_detail_te_value
.
get_context
();
}
context
get_context
()
const
override
{
return
private_detail_te_value
.
get_context
();
}
float
is
_supported
(
i
nst
ruction
_ref
ins
,
support_metric
m
)
const
override
supported_segments
find
_supported
(
co
nst
_module
_ref
mod
,
support_metric
m
)
const
override
{
{
return
private_detail_te_default_is_supported
(
char
(
0
),
private_detail_te_value
,
ins
,
m
);
return
private_detail_te_default_find_supported
(
char
(
0
),
private_detail_te_value
,
mod
,
m
);
}
}
argument
copy_to
(
const
argument
&
input
)
const
override
argument
copy_to
(
const
argument
&
input
)
const
override
...
...
src/include/migraphx/target_assignments.hpp
View file @
b076d0f4
...
@@ -33,10 +33,20 @@ inline namespace MIGRAPHX_INLINE_NS {
...
@@ -33,10 +33,20 @@ inline namespace MIGRAPHX_INLINE_NS {
struct
target_assignments
struct
target_assignments
{
{
void
add_assignment
(
instruction_ref
ins
,
const
std
::
string
&
target
);
using
iterator
=
std
::
unordered_map
<
instruction_ref
,
std
::
string
>::
const_iterator
;
using
value_type
=
std
::
pair
<
instruction_ref
,
std
::
string
>
;
auto
begin
()
const
{
return
assignments
.
cbegin
();
}
auto
size
()
const
{
return
assignments
.
size
();
}
auto
end
()
const
{
return
assignments
.
cend
();
}
auto
&
at
(
instruction_ref
ins
)
const
{
return
assignments
.
at
(
ins
);
}
auto
insert
(
iterator
it
,
const
std
::
pair
<
instruction_ref
,
std
::
string
>&
assignment
)
{
return
assignments
.
insert
(
it
,
assignment
);
}
auto
find
(
instruction_ref
ins
)
const
{
return
assignments
.
find
(
ins
);
}
auto
begin
()
const
{
return
assignments
.
begin
();
}
auto
end
()
const
{
return
assignments
.
end
();
}
private:
private:
std
::
unordered_map
<
instruction_ref
,
std
::
string
>
assignments
;
std
::
unordered_map
<
instruction_ref
,
std
::
string
>
assignments
;
...
...
src/onnx/include/migraphx/onnx/onnx_parser.hpp
View file @
b076d0f4
...
@@ -97,6 +97,7 @@ struct onnx_parser
...
@@ -97,6 +97,7 @@ struct onnx_parser
shape
::
dynamic_dimension
default_dyn_dim_value
=
{
1
,
1
,
0
};
shape
::
dynamic_dimension
default_dyn_dim_value
=
{
1
,
1
,
0
};
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
size_t
>>
map_input_dims
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
size_t
>>
map_input_dims
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
shape
::
dynamic_dimension
>>
map_dyn_input_dims
;
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
shape
::
dynamic_dimension
>>
map_dyn_input_dims
;
bool
use_dyn_output
=
false
;
bool
skip_unknown_operators
=
false
;
bool
skip_unknown_operators
=
false
;
int64_t
max_loop_iterations
=
10
;
int64_t
max_loop_iterations
=
10
;
int64_t
opset_version
=
13
;
int64_t
opset_version
=
13
;
...
...
src/onnx/onnx.cpp
View file @
b076d0f4
...
@@ -60,8 +60,14 @@ program parse_onnx_from(const onnx_options& options, Ts&&... xs)
...
@@ -60,8 +60,14 @@ program parse_onnx_from(const onnx_options& options, Ts&&... xs)
{
{
parser
.
default_dyn_dim_value
=
options
.
default_dyn_dim_value
;
parser
.
default_dyn_dim_value
=
options
.
default_dyn_dim_value
;
}
}
if
(
not
options
.
map_input_dims
.
empty
()
and
not
options
.
map_dyn_input_dims
.
empty
())
{
MIGRAPHX_THROW
(
"PARSE_ONNX_FROM: both map_input_dims and map_dyn_input_dims non-empty, only"
"one should be used"
);
}
parser
.
skip_unknown_operators
=
options
.
skip_unknown_operators
;
parser
.
skip_unknown_operators
=
options
.
skip_unknown_operators
;
parser
.
max_loop_iterations
=
options
.
max_loop_iterations
;
parser
.
max_loop_iterations
=
options
.
max_loop_iterations
;
parser
.
use_dyn_output
=
options
.
use_dyn_output
;
if
(
options
.
print_program_on_error
)
if
(
options
.
print_program_on_error
)
{
{
...
@@ -80,6 +86,7 @@ program parse_onnx_from(const onnx_options& options, Ts&&... xs)
...
@@ -80,6 +86,7 @@ program parse_onnx_from(const onnx_options& options, Ts&&... xs)
{
{
parser
.
parse_from
(
std
::
forward
<
Ts
>
(
xs
)...);
parser
.
parse_from
(
std
::
forward
<
Ts
>
(
xs
)...);
}
}
return
std
::
move
(
parser
.
prog
);
return
std
::
move
(
parser
.
prog
);
}
}
...
...
src/onnx/onnx_parser.cpp
View file @
b076d0f4
...
@@ -256,11 +256,6 @@ int64_t onnx_parser::get_opset_version(const onnx::ModelProto& model)
...
@@ -256,11 +256,6 @@ int64_t onnx_parser::get_opset_version(const onnx::ModelProto& model)
void
onnx_parser
::
parse_graph
(
module
*
mod
,
const
onnx
::
GraphProto
&
graph
)
void
onnx_parser
::
parse_graph
(
module
*
mod
,
const
onnx
::
GraphProto
&
graph
)
{
{
if
(
not
map_input_dims
.
empty
()
and
not
map_dyn_input_dims
.
empty
())
{
MIGRAPHX_THROW
(
"PARSE_GRAPH: both map_input_dims and map_dyn_input_dims non-empty, only"
"one should be used"
);
}
std
::
unordered_map
<
std
::
string
,
instruction_ref
>
mod_insts
;
std
::
unordered_map
<
std
::
string
,
instruction_ref
>
mod_insts
;
for
(
auto
&&
f
:
graph
.
initializer
())
for
(
auto
&&
f
:
graph
.
initializer
())
{
{
...
...
src/onnx/parse_generic_op.cpp
View file @
b076d0f4
...
@@ -58,7 +58,6 @@ struct parse_generic_op : op_parser<parse_generic_op>
...
@@ -58,7 +58,6 @@ struct parse_generic_op : op_parser<parse_generic_op>
{
"Log"
,
"log"
},
{
"Log"
,
"log"
},
{
"LRN"
,
"lrn"
},
{
"LRN"
,
"lrn"
},
{
"Neg"
,
"neg"
},
{
"Neg"
,
"neg"
},
{
"NonMaxSuppression"
,
"nonmaxsuppression"
},
{
"Reciprocal"
,
"recip"
},
{
"Reciprocal"
,
"recip"
},
{
"Relu"
,
"relu"
},
{
"Relu"
,
"relu"
},
{
"Round"
,
"round"
},
{
"Round"
,
"round"
},
...
@@ -75,7 +74,7 @@ struct parse_generic_op : op_parser<parse_generic_op>
...
@@ -75,7 +74,7 @@ struct parse_generic_op : op_parser<parse_generic_op>
bool
needs_contiguous
(
const
std
::
string
&
op_name
)
const
bool
needs_contiguous
(
const
std
::
string
&
op_name
)
const
{
{
return
contains
({
"flatten"
,
"gather"
,
"nonmaxsuppression"
,
"scatter"
},
op_name
);
return
contains
({
"flatten"
,
"gather"
,
"scatter"
},
op_name
);
}
}
instruction_ref
parse
(
const
op_desc
&
opd
,
instruction_ref
parse
(
const
op_desc
&
opd
,
...
...
src/onnx/parse_nonmaxsuppression.cpp
0 → 100644
View file @
b076d0f4
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
struct
parse_nonmaxsuppression
:
op_parser
<
parse_nonmaxsuppression
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"NonMaxSuppression"
,
"nonmaxsuppression"
}};
}
instruction_ref
parse
(
const
op_desc
&
opd
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
auto
op
=
parser
.
load
(
opd
.
op_name
,
info
);
op
.
from_value
({{
"use_dyn_output"
,
parser
.
use_dyn_output
}});
return
info
.
add_instruction
(
op
,
args
);
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/program.cpp
View file @
b076d0f4
...
@@ -37,6 +37,7 @@
...
@@ -37,6 +37,7 @@
#include <migraphx/output_iterator.hpp>
#include <migraphx/output_iterator.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/marker.hpp>
#include <migraphx/marker.hpp>
#include <migraphx/supported_segments.hpp>
#include <iostream>
#include <iostream>
#include <sstream>
#include <sstream>
#include <algorithm>
#include <algorithm>
...
@@ -167,13 +168,37 @@ target_assignments program::get_target_assignments(const std::vector<target>& ta
...
@@ -167,13 +168,37 @@ target_assignments program::get_target_assignments(const std::vector<target>& ta
target_assignments
p
;
target_assignments
p
;
const
auto
*
mod
=
get_main_module
();
const
auto
*
mod
=
get_main_module
();
for
(
auto
it
:
iterator_for
(
*
mod
))
std
::
vector
<
std
::
pair
<
target
,
supported_segments
>>
target_subgraphs
;
target_subgraphs
.
reserve
(
targets
.
size
());
std
::
transform
(
targets
.
begin
(),
targets
.
end
(),
std
::
back_inserter
(
target_subgraphs
),
[
&
](
const
auto
&
t
)
{
return
std
::
make_pair
(
t
,
t
.
find_supported
(
mod
,
m
));
});
for
(
const
auto
ins
:
iterator_for
(
*
mod
))
{
{
auto
t
=
std
::
max_element
(
if
(
contains
(
p
,
ins
))
targets
.
begin
(),
targets
.
end
(),
[
it
,
m
](
const
target
&
lhs
,
const
target
&
rhs
)
{
{
return
lhs
.
is_supported
(
it
,
m
)
<
rhs
.
is_supported
(
it
,
m
);
continue
;
});
}
p
.
add_assignment
(
it
,
t
->
name
());
for
(
const
auto
&
[
target
,
subgraph
]
:
target_subgraphs
)
{
// can't pass a structured binding into lambda in C++17 so create a variable for it
const
auto
&
t
=
target
;
for
(
const
auto
&
segment
:
subgraph
)
{
const
auto
&
instructions
=
segment
.
instructions
;
if
(
not
contains
(
instructions
,
ins
))
{
continue
;
}
std
::
transform
(
instructions
.
begin
(),
instructions
.
end
(),
std
::
inserter
(
p
,
p
.
end
()),
[
&
](
auto
instr
)
{
return
std
::
make_pair
(
instr
,
t
.
name
());
});
}
}
}
}
return
p
;
return
p
;
}
}
...
...
src/targets/fpga/include/migraphx/fpga/target.hpp
View file @
b076d0f4
...
@@ -30,6 +30,7 @@
...
@@ -30,6 +30,7 @@
#include <migraphx/compile_options.hpp>
#include <migraphx/compile_options.hpp>
#include <migraphx/fpga/context.hpp>
#include <migraphx/fpga/context.hpp>
#include <migraphx/config.hpp>
#include <migraphx/config.hpp>
#include <migraphx/supported_segments.hpp>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
@@ -41,7 +42,7 @@ struct target
...
@@ -41,7 +42,7 @@ struct target
std
::
string
name
()
const
;
std
::
string
name
()
const
;
std
::
vector
<
pass
>
get_passes
(
migraphx
::
context
&
ctx
,
const
compile_options
&
)
const
;
std
::
vector
<
pass
>
get_passes
(
migraphx
::
context
&
ctx
,
const
compile_options
&
)
const
;
migraphx
::
context
get_context
()
const
{
return
context
{};
}
migraphx
::
context
get_context
()
const
{
return
context
{};
}
float
is
_supported
(
i
nst
ruction
_ref
ins
,
support_metric
m
);
supported_segments
find
_supported
(
co
nst
_module
_ref
mod
,
support_metric
m
)
const
;
argument
copy_to
(
const
argument
&
arg
)
const
{
return
arg
;
}
argument
copy_to
(
const
argument
&
arg
)
const
{
return
arg
;
}
argument
copy_from
(
const
argument
&
arg
)
const
{
return
arg
;
}
argument
copy_from
(
const
argument
&
arg
)
const
{
return
arg
;
}
...
...
src/targets/fpga/target.cpp
View file @
b076d0f4
...
@@ -34,6 +34,7 @@
...
@@ -34,6 +34,7 @@
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/normalize_ops.hpp>
#include <migraphx/normalize_ops.hpp>
#include <migraphx/iterator_for.hpp>
namespace
migraphx
{
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
@@ -62,12 +63,17 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
...
@@ -62,12 +63,17 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
argument
target
::
allocate
(
const
shape
&
s
)
const
{
return
fill_argument
(
s
,
0
);
}
argument
target
::
allocate
(
const
shape
&
s
)
const
{
return
fill_argument
(
s
,
0
);
}
float
is
_supported
(
i
nst
ruction
_ref
ins
,
support_metric
m
)
supported_segments
target
::
find
_supported
(
co
nst
_module
_ref
mod
,
support_metric
m
)
const
{
{
// for now, not using the ins and metric to return a value
(
void
)
ins
;
(
void
)
m
;
(
void
)
m
;
return
1.0
;
supported_segment
instrs
;
for
(
const
auto
ins
:
iterator_for
(
*
mod
))
{
instrs
.
instructions
.
insert
(
ins
);
}
instrs
.
metric
=
1
;
// arbitrary value
return
{
instrs
};
}
}
MIGRAPHX_REGISTER_TARGET
(
target
);
MIGRAPHX_REGISTER_TARGET
(
target
);
...
...
src/targets/gpu/kernels/include/migraphx/kernels/array.hpp
View file @
b076d0f4
...
@@ -33,41 +33,43 @@
...
@@ -33,41 +33,43 @@
namespace
migraphx
{
namespace
migraphx
{
// NOLINTNEXTLINE
// NOLINTNEXTLINE
#define MIGRAPHX_DEVICE_ARRAY_OP(op, binary_op) \
#define MIGRAPHX_DEVICE_ARRAY_OP(op, binary_op) \
template <class U> \
template <class U> \
constexpr array& operator op(const array<U, N>& x) \
constexpr array& operator op(const array<U, N>& x) \
{ \
{ \
array_for_each(*this, x)([](auto& sy, auto sx) { sy op sx; }); \
array_detail::array_for_each(*this, x)([](auto& sy, auto sx) { sy op sx; }); \
return *this; \
return *this; \
} \
} \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
constexpr array& operator op(const U& x) \
constexpr array& operator op(const U& x) \
{ \
{ \
array_for_each (*this)([&](auto& sy) { sy op x; }); \
array_detail::array_for_each (*this)([&](auto& sy) { sy op x; }); \
return *this; \
return *this; \
} \
} \
template <class U> \
template <class U> \
friend constexpr auto operator binary_op(const array& x, const array<U, N>& y) \
friend constexpr auto operator binary_op(const array& x, const array<U, N>& y) \
{ \
{ \
array<decltype(T {} binary_op U{}), N> z{}; \
array<decltype(T {} binary_op U{}), N> z{}; \
array_for_each(z, x, y)([&](auto& sz, auto sx, auto sy) { sz = sx binary_op sy; }); \
array_detail::array_for_each(z, x, y)( \
return z; \
[&](auto& sz, auto sx, auto sy) { sz = sx binary_op sy; }); \
} \
return z; \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
} \
friend constexpr auto operator binary_op(const array& x, const U& y) \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
{ \
friend constexpr auto operator binary_op(const array& x, const U& y) \
array<decltype(T {} binary_op U{}), N> z{}; \
{ \
array_for_each(z, x)([&](auto& sz, auto sx) { sz = sx binary_op y; }); \
array<decltype(T {} binary_op U{}), N> z{}; \
return z; \
array_detail::array_for_each(z, x)([&](auto& sz, auto sx) { sz = sx binary_op y; }); \
} \
return z; \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
} \
friend constexpr auto operator binary_op(const U& x, const array& y) \
template <class U, MIGRAPHX_REQUIRES(is_convertible<U, T>{})> \
{ \
friend constexpr auto operator binary_op(const U& x, const array& y) \
array<decltype(T {} binary_op U{}), N> z{}; \
{ \
array_for_each(z, y)([&](auto& sz, auto sy) { sz = x binary_op sy; }); \
array<decltype(T {} binary_op U{}), N> z{}; \
return z; \
array_detail::array_for_each(z, y)([&](auto& sz, auto sy) { sz = x binary_op sy; }); \
return z; \
}
}
namespace
array_detail
{
template
<
class
T
>
template
<
class
T
>
constexpr
auto
is_vectorizable
()
constexpr
auto
is_vectorizable
()
{
{
...
@@ -75,20 +77,15 @@ constexpr auto is_vectorizable()
...
@@ -75,20 +77,15 @@ constexpr auto is_vectorizable()
}
}
template
<
class
T
>
template
<
class
T
>
constexpr
auto
array2vec
(
T
x
)
__device__
auto
&
array2vec
(
T
&
x
)
{
{
using
value_type
=
typename
T
::
value_type
;
using
value_type
=
typename
T
::
value_type
;
constexpr
auto
size
=
decltype
(
x
.
size
()){};
constexpr
auto
size
=
decltype
(
x
.
size
()){};
using
type
=
vec
<
value_type
,
size
>
;
using
type
=
vec
<
value_type
,
size
>
;
static_assert
(
size
!=
3
,
"Wrong size"
);
if
constexpr
(
is_const
<
T
>
{})
return
__builtin_bit_cast
(
type
,
x
);
return
reinterpret_cast
<
const
type
&>
(
x
);
}
else
return
reinterpret_cast
<
type
&>
(
x
);
template
<
class
T
,
class
U
,
index_int
N
>
constexpr
void
vec2array
(
T
&
x
,
vec
<
U
,
N
>
v
)
{
if
constexpr
(
not
is_const
<
T
>
{})
x
=
__builtin_bit_cast
(
T
,
v
);
}
}
template
<
class
T
,
class
...
Ts
>
template
<
class
T
,
class
...
Ts
>
...
@@ -101,11 +98,16 @@ constexpr auto array_for_each(T& x, Ts&... xs)
...
@@ -101,11 +98,16 @@ constexpr auto array_for_each(T& x, Ts&... xs)
(
is_vectorizable
<
typename
Ts
::
value_type
>
()
or
...))
and
(
is_vectorizable
<
typename
Ts
::
value_type
>
()
or
...))
and
size
<=
8
and
size
>
1
and
(
size
%
2
==
0
))
size
<=
8
and
size
>
1
and
(
size
%
2
==
0
))
{
{
[
&
](
auto
v
,
auto
...
vs
)
{
if
(
__builtin_is_constant_evaluated
())
f
(
v
,
vs
...);
{
vec2array
(
x
,
v
);
for
(
index_int
i
=
0
;
i
<
size
;
i
++
)
swallow
{(
vec2array
(
xs
,
vs
),
0
)...};
f
(
x
[
i
],
xs
[
i
]...);
}(
array2vec
(
x
),
array2vec
(
xs
)...);
}
else
{
using
vec_type
=
std
::
remove_reference_t
<
decltype
(
array2vec
(
x
))
>
;
f
(
array2vec
(
x
),
__builtin_convertvector
(
array2vec
(
xs
),
vec_type
)...);
}
}
}
else
else
{
{
...
@@ -114,6 +116,7 @@ constexpr auto array_for_each(T& x, Ts&... xs)
...
@@ -114,6 +116,7 @@ constexpr auto array_for_each(T& x, Ts&... xs)
}
}
};
};
}
}
}
// namespace array_detail
template
<
class
T
,
index_int
N
>
template
<
class
T
,
index_int
N
>
struct
array
struct
array
...
@@ -151,18 +154,13 @@ struct array
...
@@ -151,18 +154,13 @@ struct array
constexpr
T
dot
(
const
array
&
x
)
const
constexpr
T
dot
(
const
array
&
x
)
const
{
{
T
result
=
0
;
auto
r
=
x
*
(
*
this
);
for
(
index_int
i
=
0
;
i
<
N
;
i
++
)
return
r
.
reduce
([](
auto
a
,
auto
b
)
{
return
a
+
b
;
},
0
);
result
+=
x
[
i
]
*
d
[
i
];
return
result
;
}
}
constexpr
T
product
()
const
constexpr
T
product
()
const
{
{
T
result
=
1
;
return
reduce
([](
auto
x
,
auto
y
)
{
return
x
*
y
;
},
1
);
for
(
index_int
i
=
0
;
i
<
N
;
i
++
)
result
*=
d
[
i
];
return
result
;
}
}
constexpr
T
single
(
index_int
width
=
100
)
const
constexpr
T
single
(
index_int
width
=
100
)
const
...
@@ -186,6 +184,15 @@ struct array
...
@@ -186,6 +184,15 @@ struct array
return
result
;
return
result
;
}
}
template
<
class
F
>
constexpr
auto
reduce
(
F
f
,
T
init
)
const
{
T
result
=
init
;
for
(
index_int
i
=
0
;
i
<
N
;
i
++
)
result
=
f
(
result
,
d
[
i
]);
return
result
;
}
MIGRAPHX_DEVICE_ARRAY_OP
(
+=
,
+
)
MIGRAPHX_DEVICE_ARRAY_OP
(
+=
,
+
)
MIGRAPHX_DEVICE_ARRAY_OP
(
-=
,
-
)
MIGRAPHX_DEVICE_ARRAY_OP
(
-=
,
-
)
MIGRAPHX_DEVICE_ARRAY_OP
(
*=
,
*
)
MIGRAPHX_DEVICE_ARRAY_OP
(
*=
,
*
)
...
...
src/targets/gpu/kernels/include/migraphx/kernels/layernorm.hpp
View file @
b076d0f4
...
@@ -55,14 +55,15 @@ __device__ void generic_binary_layernorm(
...
@@ -55,14 +55,15 @@ __device__ void generic_binary_layernorm(
return
make_array
(
x
,
x
*
x
)
*
vec_type
<
value_type
>
{
1.0
/
relements
};
return
make_array
(
x
,
x
*
x
)
*
vec_type
<
value_type
>
{
1.0
/
relements
};
})(
input1
,
input2
);
})(
input1
,
input2
);
auto
mean_x
=
means
[
0
];
auto
mean_x
=
means
[
0
];
auto
mean_x2
=
means
[
1
];
auto
mean_x2
=
means
[
1
];
auto
variance
=
mean_x2
-
(
mean_x
*
mean_x
);
r
.
inner
([
&
](
auto
&
y
,
auto
x1
,
auto
x2
,
auto
...
xs
)
{
r
.
inner
([
&
](
auto
&
y
,
auto
x1
,
auto
x2
,
auto
...
xs
)
{
auto
x
=
op
(
x1
,
x2
);
auto
x
=
op
(
x1
,
x2
);
auto
m
=
x
-
mean_x
;
auto
m
=
x
-
mean_x
;
// m * rsqrt(mean(m ^ 2) + 1e-12)
// m * rsqrt(mean(m ^ 2) + 1e-12)
y
=
compute
(
m
*
rsqrt
(
mean_x2
-
mean_x
+
value_type
{
1e-12
}),
xs
...);
y
=
compute
(
m
*
rsqrt
(
variance
+
value_type
{
1e-12
}),
xs
...);
})(
output
,
input1
,
input2
,
inputs
...);
})(
output
,
input1
,
input2
,
inputs
...);
});
});
}
}
...
...
src/targets/gpu/kernels/include/migraphx/kernels/reduce.hpp
View file @
b076d0f4
...
@@ -94,8 +94,8 @@ MIGRAPHX_DPP_REDUCE(op::max, v_max)
...
@@ -94,8 +94,8 @@ MIGRAPHX_DPP_REDUCE(op::max, v_max)
MIGRAPHX_DPP_REDUCE
(
op
::
min
,
v_min
)
MIGRAPHX_DPP_REDUCE
(
op
::
min
,
v_min
)
MIGRAPHX_DPP_REDUCE
(
op
::
product
,
v_mul
)
MIGRAPHX_DPP_REDUCE
(
op
::
product
,
v_mul
)
template
<
class
Op
,
class
T
,
class
F
>
template
<
class
Op
,
class
T
,
class
Index
,
class
F
>
__device__
auto
block_reduce
(
index
idx
,
Op
op
,
T
init
,
i
ndex
_int
n
,
F
f
)
__device__
auto
block_reduce
(
index
idx
,
Op
op
,
T
init
,
I
ndex
n
,
F
f
)
{
{
#if __AMDGCN_WAVEFRONT_SIZE == 32
#if __AMDGCN_WAVEFRONT_SIZE == 32
constexpr
index_int
lanes_per_thread
=
16
;
constexpr
index_int
lanes_per_thread
=
16
;
...
@@ -123,8 +123,8 @@ __device__ auto block_reduce(index idx, Op op, T init, index_int n, F f)
...
@@ -123,8 +123,8 @@ __device__ auto block_reduce(index idx, Op op, T init, index_int n, F f)
return
y
;
return
y
;
}
}
#else
#else
template
<
class
Op
,
class
T
,
class
F
>
template
<
class
Op
,
class
T
,
class
Index
,
class
F
>
__device__
auto
block_reduce
(
index
idx
,
Op
op
,
T
init
,
i
ndex
_int
n
,
F
f
)
__device__
auto
block_reduce
(
index
idx
,
Op
op
,
T
init
,
I
ndex
n
,
F
f
)
{
{
using
type
=
decltype
(
f
(
0
));
using
type
=
decltype
(
f
(
0
));
...
...
test/get_target_assignments.cpp
→
test/
fpga/
get_target_assignments.cpp
View file @
b076d0f4
...
@@ -26,8 +26,9 @@
...
@@ -26,8 +26,9 @@
#include <migraphx/make_op.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/program.hpp>
#include <migraphx/program.hpp>
#include <migraphx/register_target.hpp>
#include <migraphx/register_target.hpp>
#include <migraphx/
ref
/target.hpp>
#include <migraphx/
fpga
/target.hpp>
#include <migraphx/target_assignments.hpp>
#include <migraphx/target_assignments.hpp>
#include <migraphx/iterator_for.hpp>
migraphx
::
program
create_program
()
migraphx
::
program
create_program
()
{
{
...
@@ -37,8 +38,8 @@ migraphx::program create_program()
...
@@ -37,8 +38,8 @@ migraphx::program create_program()
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
x
=
mm
->
add_parameter
(
"x"
,
s
);
auto
y
=
mm
->
add_parameter
(
"y"
,
s
);
auto
y
=
mm
->
add_parameter
(
"y"
,
s
);
auto
z
=
mm
->
add_parameter
(
"z"
,
s
);
auto
z
=
mm
->
add_parameter
(
"z"
,
s
);
auto
diff
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"
div
"
),
x
,
y
);
auto
diff
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"
add
"
),
x
,
y
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"
div
"
),
diff
,
z
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"
add
"
),
diff
,
z
);
return
p
;
return
p
;
}
}
...
@@ -47,14 +48,16 @@ TEST_CASE(is_supported)
...
@@ -47,14 +48,16 @@ TEST_CASE(is_supported)
auto
p
=
create_program
();
auto
p
=
create_program
();
auto
targets
=
migraphx
::
get_targets
();
auto
targets
=
migraphx
::
get_targets
();
EXPECT
(
!
targets
.
empty
());
EXPECT
(
!
targets
.
empty
());
auto
first_target
=
targets
[
0
];
auto
t
=
migraphx
::
make_target
(
"fpga"
);
auto
t
=
migraphx
::
make_target
(
first_target
);
const
auto
assignments
=
p
.
get_target_assignments
({
t
});
const
auto
assignments
=
p
.
get_target_assignments
({
t
});
for
(
const
auto
&
[
ins
,
target
]
:
assignments
)
const
auto
*
mod
=
p
.
get_main_module
();
EXPECT
(
mod
->
size
()
==
assignments
.
size
());
for
(
const
auto
ins
:
iterator_for
(
*
mod
))
{
{
(
void
)
ins
;
const
auto
&
target
=
assignments
.
at
(
ins
)
;
EXPECT
(
target
==
first_target
);
EXPECT
(
target
==
"fpga"
);
}
}
}
}
...
...
test/onnx/gen_onnx.py
View file @
b076d0f4
...
@@ -3589,7 +3589,7 @@ def nms_test():
...
@@ -3589,7 +3589,7 @@ def nms_test():
st
=
helper
.
make_tensor_value_info
(
'score_threshold'
,
TensorProto
.
FLOAT
,
st
=
helper
.
make_tensor_value_info
(
'score_threshold'
,
TensorProto
.
FLOAT
,
[
1
])
[
1
])
out
=
helper
.
make_tensor_value_info
(
'selected_indices'
,
TensorProto
.
INT64
,
out
=
helper
.
make_tensor_value_info
(
'selected_indices'
,
TensorProto
.
INT64
,
[
6
,
3
])
[
None
,
3
])
node
=
onnx
.
helper
.
make_node
(
'NonMaxSuppression'
,
node
=
onnx
.
helper
.
make_node
(
'NonMaxSuppression'
,
inputs
=
[
inputs
=
[
...
@@ -3603,6 +3603,108 @@ def nms_test():
...
@@ -3603,6 +3603,108 @@ def nms_test():
return
([
node
],
[
b
,
s
,
mo
,
iou
,
st
],
[
out
])
return
([
node
],
[
b
,
s
,
mo
,
iou
,
st
],
[
out
])
@
onnx_test
def
nms_use_dyn_output_false_test
():
b
=
helper
.
make_tensor_value_info
(
'boxes'
,
TensorProto
.
FLOAT
,
[
1
,
6
,
4
])
s
=
helper
.
make_tensor_value_info
(
'scores'
,
TensorProto
.
FLOAT
,
[
1
,
1
,
6
])
mo
=
helper
.
make_tensor_value_info
(
'max_output_boxes_per_class'
,
TensorProto
.
INT64
,
[
1
])
iou
=
helper
.
make_tensor_value_info
(
'iou_threshold'
,
TensorProto
.
FLOAT
,
[
1
])
st
=
helper
.
make_tensor_value_info
(
'score_threshold'
,
TensorProto
.
FLOAT
,
[
1
])
out
=
helper
.
make_tensor_value_info
(
'selected_indices'
,
TensorProto
.
INT64
,
[
None
,
3
])
node
=
onnx
.
helper
.
make_node
(
'NonMaxSuppression'
,
inputs
=
[
'boxes'
,
'scores'
,
'max_output_boxes_per_class'
,
'iou_threshold'
,
'score_threshold'
],
outputs
=
[
'selected_indices'
],
use_dyn_output
=
0
)
return
([
node
],
[
b
,
s
,
mo
,
iou
,
st
],
[
out
])
@
onnx_test
def
nms_dynamic_batch_test
():
b
=
helper
.
make_tensor_value_info
(
'boxes'
,
TensorProto
.
FLOAT
,
[
None
,
6
,
4
])
s
=
helper
.
make_tensor_value_info
(
'scores'
,
TensorProto
.
FLOAT
,
[
None
,
1
,
6
])
mo
=
helper
.
make_tensor_value_info
(
'max_output_boxes_per_class'
,
TensorProto
.
INT64
,
[
1
])
iou
=
helper
.
make_tensor_value_info
(
'iou_threshold'
,
TensorProto
.
FLOAT
,
[
1
])
st
=
helper
.
make_tensor_value_info
(
'score_threshold'
,
TensorProto
.
FLOAT
,
[
1
])
out
=
helper
.
make_tensor_value_info
(
'selected_indices'
,
TensorProto
.
INT64
,
[
None
,
3
])
node
=
onnx
.
helper
.
make_node
(
'NonMaxSuppression'
,
inputs
=
[
'boxes'
,
'scores'
,
'max_output_boxes_per_class'
,
'iou_threshold'
,
'score_threshold'
],
outputs
=
[
'selected_indices'
],
center_point_box
=
1
,
use_dyn_output
=
1
)
return
([
node
],
[
b
,
s
,
mo
,
iou
,
st
],
[
out
])
@
onnx_test
def
nms_dynamic_boxes_test
():
b
=
helper
.
make_tensor_value_info
(
'boxes'
,
TensorProto
.
FLOAT
,
[
1
,
None
,
4
])
s
=
helper
.
make_tensor_value_info
(
'scores'
,
TensorProto
.
FLOAT
,
[
1
,
1
,
None
])
mo
=
helper
.
make_tensor_value_info
(
'max_output_boxes_per_class'
,
TensorProto
.
INT64
,
[
1
])
iou
=
helper
.
make_tensor_value_info
(
'iou_threshold'
,
TensorProto
.
FLOAT
,
[
1
])
st
=
helper
.
make_tensor_value_info
(
'score_threshold'
,
TensorProto
.
FLOAT
,
[
1
])
out
=
helper
.
make_tensor_value_info
(
'selected_indices'
,
TensorProto
.
INT64
,
[
None
,
3
])
node
=
onnx
.
helper
.
make_node
(
'NonMaxSuppression'
,
inputs
=
[
'boxes'
,
'scores'
,
'max_output_boxes_per_class'
,
'iou_threshold'
,
'score_threshold'
],
outputs
=
[
'selected_indices'
])
return
([
node
],
[
b
,
s
,
mo
,
iou
,
st
],
[
out
])
@
onnx_test
def
nms_dynamic_classes_test
():
b
=
helper
.
make_tensor_value_info
(
'boxes'
,
TensorProto
.
FLOAT
,
[
1
,
6
,
4
])
s
=
helper
.
make_tensor_value_info
(
'scores'
,
TensorProto
.
FLOAT
,
[
1
,
None
,
6
])
mo
=
helper
.
make_tensor_value_info
(
'max_output_boxes_per_class'
,
TensorProto
.
INT64
,
[
1
])
iou
=
helper
.
make_tensor_value_info
(
'iou_threshold'
,
TensorProto
.
FLOAT
,
[
1
])
st
=
helper
.
make_tensor_value_info
(
'score_threshold'
,
TensorProto
.
FLOAT
,
[
1
])
out
=
helper
.
make_tensor_value_info
(
'selected_indices'
,
TensorProto
.
INT64
,
[
None
,
3
])
node
=
onnx
.
helper
.
make_node
(
'NonMaxSuppression'
,
inputs
=
[
'boxes'
,
'scores'
,
'max_output_boxes_per_class'
,
'iou_threshold'
,
'score_threshold'
],
outputs
=
[
'selected_indices'
])
return
([
node
],
[
b
,
s
,
mo
,
iou
,
st
],
[
out
])
@
onnx_test
@
onnx_test
def
not_test
():
def
not_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
INT32
,
[
4
])
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
INT32
,
[
4
])
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment