Unverified Commit ad73abbc authored by Charlie Lin's avatar Charlie Lin Committed by GitHub
Browse files

NMS refactor, enable nonstandard shape (#1257)

Allows PyTorch converted version of SSD-resnet34 to work
parent ad27d0d6
......@@ -81,8 +81,9 @@ struct basic_iota_iterator
index--;
return it;
}
// TODO: operator->
reference operator*() const { return f(index); }
pointer operator->() const { return &f(index); }
reference operator[](int n) const { return f(index + n); }
};
template <class T, class F>
......
......@@ -56,14 +56,21 @@ struct nonmaxsuppression
shape compute_shape(std::vector<shape> inputs) const
{
// requires at least 2 inputs
check_shapes{inputs, *this}.standard();
check_shapes{{inputs.at(0), inputs.at(1)}, *this}.only_dims(3);
auto lens = inputs.front().lens();
// check input shape
if(lens[1] != inputs.at(1).lens()[2])
{
MIGRAPHX_THROW("NonMaxSuppression: dimension mismatch between first and second input!");
MIGRAPHX_THROW(
"NonMaxSuppression: spatial dimension mismatch between boxes and scores input");
}
// check batch sizes
if(lens[0] != inputs.at(1).lens()[0])
{
MIGRAPHX_THROW(
"NonMaxSuppression: number of batches mismatch between boxes and scores input");
}
std::vector<int64_t> out_lens(2);
......@@ -74,8 +81,8 @@ struct nonmaxsuppression
struct box
{
std::array<float, 2> x;
std::array<float, 2> y;
std::array<double, 2> x;
std::array<double, 2> y;
void sort()
{
......@@ -83,9 +90,9 @@ struct nonmaxsuppression
std::sort(y.begin(), y.end());
}
std::array<float, 2>& operator[](std::size_t i) { return i == 0 ? x : y; }
std::array<double, 2>& operator[](std::size_t i) { return i == 0 ? x : y; }
float area() const
double area() const
{
assert(std::is_sorted(x.begin(), x.end()));
assert(std::is_sorted(y.begin(), y.end()));
......@@ -94,29 +101,29 @@ struct nonmaxsuppression
};
template <class T>
box batch_box(const T* boxes, std::size_t bidx) const
box batch_box(T boxes, std::size_t box_idx) const
{
box result{};
const T* start = boxes + 4 * bidx;
auto start = boxes + 4 * box_idx;
if(center_point_box)
{
float half_width = start[2] / 2.0f;
float half_height = start[3] / 2.0f;
float x_center = start[0];
float y_center = start[1];
result.x = {x_center - half_width, x_center + half_width};
result.y = {y_center - half_height, y_center + half_height};
double half_width = start[2] / 2.0;
double half_height = start[3] / 2.0;
double x_center = start[0];
double y_center = start[1];
result.x = {x_center - half_width, x_center + half_width};
result.y = {y_center - half_height, y_center + half_height};
}
else
{
result.x = {start[1], start[3]};
result.y = {start[0], start[2]};
result.x = {static_cast<double>(start[1]), static_cast<double>(start[3])};
result.y = {static_cast<double>(start[0]), static_cast<double>(start[2])};
}
return result;
}
inline bool suppress_by_iou(box b1, box b2, float iou_threshold) const
inline bool suppress_by_iou(box b1, box b2, double iou_threshold) const
{
b1.sort();
b2.sort();
......@@ -128,7 +135,7 @@ struct nonmaxsuppression
intersection[i][1] = std::min(b1[i][1], b2[i][1]);
}
std::vector<std::array<float, 2>> bbox = {intersection.x, intersection.y};
std::vector<std::array<double, 2>> bbox = {intersection.x, intersection.y};
if(std::any_of(bbox.begin(), bbox.end(), [](auto bx) {
return not std::is_sorted(bx.begin(), bx.end());
}))
......@@ -136,115 +143,124 @@ struct nonmaxsuppression
return false;
}
const float area1 = b1.area();
const float area2 = b2.area();
const float intersection_area = intersection.area();
const float union_area = area1 + area2 - intersection_area;
const double area1 = b1.area();
const double area2 = b2.area();
const double intersection_area = intersection.area();
const double union_area = area1 + area2 - intersection_area;
if(area1 <= .0f or area2 <= .0f or union_area <= .0f)
{
return false;
}
const float intersection_over_union = intersection_area / union_area;
const double intersection_over_union = intersection_area / union_area;
return intersection_over_union > iou_threshold;
}
argument compute(const shape& output_shape, std::vector<argument> args) const
// filter boxes below score_threshold
template <class T>
std::priority_queue<std::pair<double, int64_t>>
filter_boxes_by_score(T scores_start, std::size_t num_boxes, double score_threshold) const
{
argument result{output_shape};
result.visit([&](auto out) { std::fill(out.begin(), out.end(), 0); });
std::size_t max_output_boxes_per_class = 0;
float iou_threshold = 0.0f;
float score_threshold = 0.0f;
if(args.size() > 2)
{
max_output_boxes_per_class = args.at(2).at<std::size_t>();
}
// max_output_boxes_per_class is 0, no output
if(max_output_boxes_per_class == 0)
{
return result;
}
if(args.size() > 3)
{
iou_threshold = args.at(3).at<float>();
}
if(args.size() > 4)
{
score_threshold = args.at(4).at<float>();
}
const auto& lens = args.at(1).get_shape().lens();
auto batch_num = lens[0];
auto class_num = lens[1];
auto box_num = args.at(0).get_shape().lens()[1];
std::priority_queue<std::pair<double, int64_t>> boxes_heap;
auto insert_to_boxes_heap =
make_function_output_iterator([&](const auto& x) { boxes_heap.push(x); });
int64_t box_idx = 0;
transform_if(
scores_start,
scores_start + num_boxes,
insert_to_boxes_heap,
[&](auto sc) {
box_idx++;
return sc >= score_threshold;
},
[&](auto sc) { return std::make_pair(sc, box_idx - 1); });
return boxes_heap;
}
std::vector<std::pair<float, int64_t>> selected_boxes_inside_class;
template <class Output, class Boxes, class Scores>
void compute_nms(Output output,
Boxes boxes,
Scores scores,
const shape& output_shape,
std::size_t max_output_boxes_per_class,
double iou_threshold,
double score_threshold) const
{
std::fill(output.begin(), output.end(), 0);
const auto& lens = scores.get_shape().lens();
const auto num_batches = lens[0];
const auto num_classes = lens[1];
const auto num_boxes = lens[2];
// boxes of a class with NMS applied [score, index]
std::vector<std::pair<double, int64_t>> selected_boxes_inside_class;
std::vector<int64_t> selected_indices;
selected_boxes_inside_class.reserve(output_shape.elements());
auto scores = make_view<float>(args.at(1).get_shape(), args.at(1).cast<float>());
const float* boxes = args.at(0).cast<float>();
shape comp_s{shape::float_type, {batch_num, class_num}};
// iterate over batches and classes
shape comp_s{shape::double_type, {num_batches, num_classes}};
shape_for_each(comp_s, [&](auto idx) {
auto bidx = idx[0];
auto cidx = idx[1];
std::size_t score_offset = (bidx * class_num + cidx) * box_num;
const float* batch_boxes = boxes + bidx * box_num * 4;
std::priority_queue<std::pair<float, int64_t>> sorted_boxes;
auto insert_to_sorted_boxes =
make_function_output_iterator([&](const auto& x) { sorted_boxes.push(x); });
int64_t box_idx = 0;
transform_if(
scores.begin() + score_offset,
scores.begin() + score_offset + box_num,
insert_to_sorted_boxes,
[&](auto sc) {
box_idx++;
return sc >= score_threshold;
},
[&](auto sc) { return std::make_pair(sc, box_idx - 1); });
auto batch_idx = idx[0];
auto class_idx = idx[1];
// index offset for this class
auto scores_start = scores.begin() + (batch_idx * num_classes + class_idx) * num_boxes;
// iterator to first value of this batch
auto batch_boxes_start = boxes.begin() + batch_idx * num_boxes * 4;
auto boxes_heap = filter_boxes_by_score(scores_start, num_boxes, score_threshold);
selected_boxes_inside_class.clear();
// Get the next box with top score, filter by iou_threshold
while(!sorted_boxes.empty() &&
while(!boxes_heap.empty() &&
selected_boxes_inside_class.size() < max_output_boxes_per_class)
{
const std::pair<float, int64_t>& next_top_score = sorted_boxes.top();
// Check with existing selected boxes for this class, suppress if exceed the IOU
// (Intersection Over Union) threshold
bool not_selected = std::any_of(
selected_boxes_inside_class.begin(),
selected_boxes_inside_class.end(),
[&](auto selected_index) {
return this->suppress_by_iou(batch_box(batch_boxes, next_top_score.second),
batch_box(batch_boxes, selected_index.second),
iou_threshold);
});
// Check with existing selected boxes for this class, remove box if it
// exceeds the IOU (Intersection Over Union) threshold
const auto next_top_score = boxes_heap.top();
bool not_selected =
std::any_of(selected_boxes_inside_class.begin(),
selected_boxes_inside_class.end(),
[&](auto selected_index) {
return this->suppress_by_iou(
batch_box(batch_boxes_start, next_top_score.second),
batch_box(batch_boxes_start, selected_index.second),
iou_threshold);
});
if(not not_selected)
{
selected_boxes_inside_class.push_back(next_top_score);
selected_indices.push_back(bidx);
selected_indices.push_back(cidx);
selected_indices.push_back(batch_idx);
selected_indices.push_back(class_idx);
selected_indices.push_back(next_top_score.second);
}
sorted_boxes.pop();
boxes_heap.pop();
}
});
std::copy(selected_indices.begin(), selected_indices.end(), output.begin());
}
argument compute(const shape& output_shape, std::vector<argument> args) const
{
argument result{output_shape};
result.visit([&](auto out) {
std::copy(selected_indices.begin(), selected_indices.end(), out.begin());
std::size_t max_output_boxes_per_class =
(args.size() > 2) ? (args.at(2).at<std::size_t>()) : 0;
if(max_output_boxes_per_class == 0)
{
return result;
}
double iou_threshold = (args.size() > 3) ? (args.at(3).at<double>()) : 0.0f;
double score_threshold = (args.size() > 4) ? (args.at(4).at<double>()) : 0.0f;
result.visit([&](auto output) {
visit_all(args[0], args[1])([&](auto boxes, auto scores) {
compute_nms(output,
boxes,
scores,
output_shape,
max_output_boxes_per_class,
iou_threshold,
score_threshold);
});
});
return result;
......
......@@ -3187,6 +3187,80 @@ TEST_CASE(nms_test)
EXPECT(migraphx::verify_range(result, gold));
}
TEST_CASE(nms_transpose1_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape boxes_s{migraphx::shape::float_type, {1, 4, 6}};
std::vector<float> boxes_vec = {
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.6, 0.4, 10.5, 10.6, 100.5,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
};
migraphx::shape scores_s{migraphx::shape::float_type, {1, 1, 6}};
std::vector<float> scores_vec = {0.9, 0.75, 0.6, 0.95, 0.5, 0.3};
auto t_boxes_l = mm->add_literal(migraphx::literal(boxes_s, boxes_vec));
auto scores_l = mm->add_literal(migraphx::literal(scores_s, scores_vec));
auto max_out_l = mm->add_literal(int64_t{4});
auto iou_threshold = mm->add_literal(0.5f);
auto score_threshold = mm->add_literal(0.0f);
auto transpose_boxes = mm->add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 2, 1}}}), t_boxes_l);
auto r = mm->add_instruction(migraphx::make_op("nonmaxsuppression", {{"center_point_box", 1}}),
transpose_boxes,
scores_l,
max_out_l,
iou_threshold,
score_threshold);
mm->add_return({r});
p.compile(migraphx::ref::target{});
auto output = p.eval({}).back();
std::vector<int64_t> result;
output.visit([&](auto out) { result.assign(out.begin(), out.end()); });
std::vector<int64_t> gold = {0, 0, 3, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0};
EXPECT(migraphx::verify_range(result, gold));
}
TEST_CASE(nms_transpose2_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape boxes_s{migraphx::shape::float_type, {4, 1, 6}};
std::vector<float> boxes_vec = {
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.6, 0.4, 10.5, 10.6, 100.5,
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
};
migraphx::shape scores_s{migraphx::shape::float_type, {1, 1, 6}};
std::vector<float> scores_vec = {0.9, 0.75, 0.6, 0.95, 0.5, 0.3};
auto t_boxes_l = mm->add_literal(migraphx::literal(boxes_s, boxes_vec));
auto scores_l = mm->add_literal(migraphx::literal(scores_s, scores_vec));
auto max_out_l = mm->add_literal(int64_t{4});
auto iou_threshold = mm->add_literal(0.5f);
auto score_threshold = mm->add_literal(0.0f);
auto transpose_boxes = mm->add_instruction(
migraphx::make_op("transpose", {{"permutation", {1, 2, 0}}}), t_boxes_l);
auto r = mm->add_instruction(migraphx::make_op("nonmaxsuppression", {{"center_point_box", 1}}),
transpose_boxes,
scores_l,
max_out_l,
iou_threshold,
score_threshold);
mm->add_return({r});
p.compile(migraphx::ref::target{});
auto output = p.eval({}).back();
std::vector<int64_t> result;
output.visit([&](auto out) { result.assign(out.begin(), out.end()); });
std::vector<int64_t> gold = {0, 0, 3, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0};
EXPECT(migraphx::verify_range(result, gold));
}
TEST_CASE(nonzero_test)
{
migraphx::program p;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment