Unverified Commit a63ee2e0 authored by Charlie Lin's avatar Charlie Lin Committed by GitHub
Browse files

Select module op (#1569)

Creates the select_module operator that selects one of the submodules passed to it to run based on the submodule parameters.  The submodule is selected by having the exact same static shapes for the arguments to select_module as the parameters in the submodule
parent 3c67e66f
...@@ -199,6 +199,7 @@ register_migraphx_ops( ...@@ -199,6 +199,7 @@ register_migraphx_ops(
scatternd_add scatternd_add
scatternd_mul scatternd_mul
scatternd_none scatternd_none
select_module
sigmoid sigmoid
sign sign
sinh sinh
......
...@@ -54,6 +54,10 @@ using ins_dep_map = std::unordered_map<instruction_ref, std::unordered_set<ins ...@@ -54,6 +54,10 @@ using ins_dep_map = std::unordered_map<instruction_ref, std::unordered_set<ins
*/ */
struct module struct module
{ {
// used by replace_allocate pass
// allocate memory in this module rather than using output parmaeters
bool use_local_alloc = false;
module(const std::string& name = ""); module(const std::string& name = "");
// move constructor // move constructor
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_SELECT_MODULE_HPP
#define MIGRAPHX_GUARD_OPERATORS_SELECT_MODULE_HPP
#include <migraphx/check_shapes.hpp>
#include <migraphx/module.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct select_module
{
shape output_dyn_shapes;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.output_dyn_shapes, "output_dyn_shapes"));
}
std::string name() const { return "select_module"; }
shape compute_shape(const std::vector<shape>&, const std::vector<module_ref>&) const
{
return shape{output_dyn_shapes};
}
argument compute(const shape&,
const std::vector<argument>& args,
const std::vector<module_ref>& submodule_list,
const std::function<std::vector<argument>(
module_ref&, const std::unordered_map<std::string, argument>&)>& run) const
{
// find submodule with input parameter shapes exactly the same as the input arguments
// assuming arguments are in the same order as the input parameters
auto module_iter =
std::find_if(submodule_list.cbegin(), submodule_list.cend(), [&](module_ref mr) {
auto param_names = mr->get_parameter_names();
assert(param_names.size() <= args.size());
return std::equal(param_names.cbegin(),
param_names.cend(),
args.cbegin(),
[&](auto p_name, auto a) {
return a.get_shape() == mr->get_parameter_shape(p_name);
});
});
if(module_iter == submodule_list.end())
{
MIGRAPHX_THROW("SELECT_MODULE: no compatible submodules found for given input shapes");
}
auto* module_to_run = *module_iter;
std::unordered_map<std::string, argument> params;
// add input parameters
auto param_names = module_to_run->get_parameter_names();
assert(param_names.size() <= args.size());
std::transform(param_names.begin(),
param_names.end(),
args.begin(),
std::inserter(params, params.end()),
[](auto&& name, auto&& a) { return std::make_pair(name, a); });
auto results = run(module_to_run, params);
return argument{results};
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
...@@ -140,9 +140,9 @@ template <class T> ...@@ -140,9 +140,9 @@ template <class T>
auto compute_shape_op(rank<2>, const T& x, const std::vector<shape>& inputs) auto compute_shape_op(rank<2>, const T& x, const std::vector<shape>& inputs)
-> decltype(x.normalize_compute_shape(inputs)) -> decltype(x.normalize_compute_shape(inputs))
{ {
dependent_type<operation, T> y = x;
if(inputs.empty()) if(inputs.empty())
MIGRAPHX_THROW("At least one input is required for " + x.name()); MIGRAPHX_THROW("At least one input is required for " + x.name());
dependent_type<operation, T> y = x;
normalize_attributes(y, inputs[0].max_lens()); normalize_attributes(y, inputs[0].max_lens());
return any_cast<T>(y).normalize_compute_shape(inputs); return any_cast<T>(y).normalize_compute_shape(inputs);
} }
......
...@@ -243,6 +243,9 @@ struct shape ...@@ -243,6 +243,9 @@ struct shape
/// Return true if the shape is dynamic /// Return true if the shape is dynamic
bool dynamic() const; bool dynamic() const;
/// Return true if this shape or any of the sub_shapes are dynamic
bool any_of_dynamic() const;
shape normalize_standard() const; shape normalize_standard() const;
shape with_lens(type_t t, const std::vector<std::size_t>& l) const; shape with_lens(type_t t, const std::vector<std::size_t>& l) const;
......
...@@ -379,7 +379,7 @@ std::vector<argument> generic_eval(const module* mod, ...@@ -379,7 +379,7 @@ std::vector<argument> generic_eval(const module* mod,
})); }));
} }
assert(results.find(ins) != results.end()); assert(results.find(ins) != results.end());
if(not ins->get_shape().dynamic()) if(not ins->get_shape().any_of_dynamic())
{ {
assert(results.at(ins).get_shape() == ins->get_shape()); assert(results.at(ins).get_shape() == ins->get_shape());
} }
......
...@@ -104,19 +104,17 @@ void replace_allocate::apply(module& m) const ...@@ -104,19 +104,17 @@ void replace_allocate::apply(module& m) const
continue; continue;
auto s = ins->get_shape(); auto s = ins->get_shape();
if(not(main_offload_copy or m.use_local_alloc) and model.needs_out_params() and
if(not main_offload_copy and model.needs_out_params() and contains(mod_output_names, ins)) contains(mod_output_names, ins))
{ {
auto out_param = m.add_parameter(mod_output_names[ins], s); auto out_param = m.add_parameter(mod_output_names[ins], s);
m.replace_instruction(ins, out_param); m.replace_instruction(ins, out_param);
continue;
} }
else
m.replace_instruction( {
ins, m.replace_instruction(ins,
m.insert_instruction(ins, make_op(model.name(), migraphx::value{{"shape", to_value(s)}}));
make_op(model.name(), migraphx::value{{"shape", to_value(s)}}))); }
} }
} }
......
...@@ -483,6 +483,17 @@ std::string shape::type_string() const { return name(this->type()); } ...@@ -483,6 +483,17 @@ std::string shape::type_string() const { return name(this->type()); }
bool shape::dynamic() const { return not impl->m_dyn_dims.empty(); } bool shape::dynamic() const { return not impl->m_dyn_dims.empty(); }
bool shape::any_of_dynamic() const
{
if(this->dynamic())
{
return true;
}
return std::any_of(this->sub_shapes().cbegin(), this->sub_shapes().cend(), [](auto s) {
return s.any_of_dynamic();
});
}
const std::vector<shape::dynamic_dimension>& shape::dyn_dims() const { return impl->m_dyn_dims; } const std::vector<shape::dynamic_dimension>& shape::dyn_dims() const { return impl->m_dyn_dims; }
std::vector<std::size_t> shape::min_lens() const std::vector<std::size_t> shape::min_lens() const
......
...@@ -111,6 +111,7 @@ struct miopen_apply ...@@ -111,6 +111,7 @@ struct miopen_apply
add_loop_op(); add_loop_op();
add_neg_op(); add_neg_op();
add_nms_op(); add_nms_op();
add_select_module_op();
} }
void copy_params() const void copy_params() const
...@@ -358,6 +359,33 @@ struct miopen_apply ...@@ -358,6 +359,33 @@ struct miopen_apply
return mod->replace_instruction(ins, gpu_out); return mod->replace_instruction(ins, gpu_out);
}); });
} }
/**
* Turns on use_local_alloc in the select_module submodules.
* Changes the submodule returns to a hip::sync_stream.
*/
void add_select_module_op()
{
apply_map.emplace("select_module", [=](instruction_ref ins) {
std::vector<instruction_ref> inputs = ins->inputs();
auto mod_args = ins->module_inputs();
for(auto* smod : mod_args)
{
smod->use_local_alloc = true;
auto last_ins = std::prev(smod->end());
if(last_ins->name() == "@return")
{
for(auto out_ins : last_ins->inputs())
{
auto sync_out = smod->insert_instruction(
last_ins, make_op("hip::sync_stream"), out_ins);
smod->replace_return({sync_out});
}
}
}
return ins;
});
}
}; };
void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); } void lowering::apply(module& m) const { miopen_apply{&m, this}.apply(); }
......
...@@ -2361,6 +2361,18 @@ TEST_CASE(rnn) ...@@ -2361,6 +2361,18 @@ TEST_CASE(rnn)
} }
} }
TEST_CASE(select_module_dyn)
{
migraphx::shape input{migraphx::shape::float_type, {{1, 4}, {3, 3}, {255, 255}, {255, 255}}};
std::vector<migraphx::shape> sub_shapes = {};
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {{1, 4}, {1000, 1000}}});
migraphx::shape out_attr = migraphx::shape{sub_shapes};
expect_shape(
out_attr,
migraphx::make_op("select_module", {{"output_dyn_shapes", migraphx::to_value(out_attr)}}),
input);
}
TEST_CASE(slice_shape) TEST_CASE(slice_shape)
{ {
migraphx::shape input{migraphx::shape::int32_type, {2, 2, 3}}; migraphx::shape input{migraphx::shape::int32_type, {2, 2, 3}};
......
...@@ -7277,6 +7277,188 @@ TEST_CASE(scatternd_reduction_test) ...@@ -7277,6 +7277,188 @@ TEST_CASE(scatternd_reduction_test)
} }
} }
TEST_CASE(select_module_add_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape lit_s{migraphx::shape{migraphx::shape::float_type, {1}}};
auto literal_ins = mm->add_literal(migraphx::literal{lit_s, {6}});
// create batch submodules
auto create_submodule = [&](std::size_t batch_size, const std::string& module_name) {
auto* submod = p.create_module(module_name);
migraphx::shape sm_shape{migraphx::shape::float_type, {batch_size, 4}};
auto sm_input = submod->add_parameter("data", sm_shape);
auto broadcast_lit =
submod->add_instruction(migraphx::make_op("multibroadcast"), literal_ins, sm_input);
auto add_ins = submod->add_instruction(migraphx::make_op("add"), sm_input, broadcast_lit);
submod->add_return({add_ins});
return submod;
};
auto* batch1 = create_submodule(1, "batch_1");
auto* batch2 = create_submodule(2, "batch_2");
auto* batch3 = create_submodule(3, "batch_3");
auto* batch4 = create_submodule(4, "batch_4");
migraphx::shape s{migraphx::shape::float_type, {{1, 4}, {4, 4}}};
auto input = mm->add_parameter("data", s);
std::vector<migraphx::shape> sub_shapes = {};
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {{1, 4}, {4, 4}}});
migraphx::shape out_attr = migraphx::shape{sub_shapes};
auto sm_ins = mm->add_instruction(
migraphx::make_op("select_module", {{"output_dyn_shapes", migraphx::to_value(out_attr)}}),
{input},
{batch1, batch2, batch3, batch4});
auto ret = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), sm_ins);
mm->add_return({ret});
p.compile(migraphx::ref::target{});
std::vector<float> input_data{-4, 8, -1, 4, -1, 8, 8, -4};
migraphx::parameter_map params;
migraphx::shape input_fixed_shape{migraphx::shape::float_type, {2, 4}};
params["data"] = migraphx::argument(input_fixed_shape, input_data.data());
auto result = p.eval(params).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{2, 14, 5, 10, 5, 14, 14, 2};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(select_module_reduce_test0)
{
migraphx::program p;
// create batch submodules
auto create_submodule = [&](std::size_t batch_size, const std::string& module_name) {
auto* submod = p.create_module(module_name);
migraphx::shape sm_shape{migraphx::shape::float_type, {batch_size, 2, 2}};
auto sm_input = submod->add_parameter("data", sm_shape);
auto reduce_ins =
submod->add_instruction(migraphx::make_op("reduce_sum", {{"axes", {1}}}), sm_input);
auto squeeze_ins =
submod->add_instruction(migraphx::make_op("squeeze", {{"axes", {1}}}), reduce_ins);
submod->add_return({squeeze_ins});
return submod;
};
auto* batch1 = create_submodule(1, "batch_1");
auto* batch2 = create_submodule(2, "batch_2");
auto* batch3 = create_submodule(3, "batch_3");
auto* batch4 = create_submodule(4, "batch_4");
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {{1, 4}, {2, 2}, {2, 2}}};
auto input = mm->add_parameter("data", s);
std::vector<migraphx::shape> sub_shapes = {};
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {{1, 4}, {2, 2}}});
migraphx::shape out_attr = migraphx::shape{sub_shapes};
auto sm_ins = mm->add_instruction(
migraphx::make_op("select_module", {{"output_dyn_shapes", migraphx::to_value(out_attr)}}),
{input},
{batch1, batch2, batch3, batch4});
auto ret = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), sm_ins);
mm->add_return({ret});
p.compile(migraphx::ref::target{});
std::vector<float> input_data{-4, 8, -1, 4, -1, 8, 8, -4};
migraphx::parameter_map params;
migraphx::shape input_fixed_shape{migraphx::shape::float_type, {2, 2, 2}};
params["data"] = migraphx::argument(input_fixed_shape, input_data.data());
auto result = p.eval(params).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{-5, 12, 7, 4};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(select_module_reduce_test1)
{
migraphx::program p;
// create batch submodules
auto create_submodule = [&](std::size_t batch_size, const std::string& module_name) {
auto* submod = p.create_module(module_name);
migraphx::shape sm_shape{migraphx::shape::float_type, {batch_size, 2, 2}};
auto sm_input = submod->add_parameter("data", sm_shape);
auto reduce_ins =
submod->add_instruction(migraphx::make_op("reduce_sum", {{"axes", {1}}}), sm_input);
auto squeeze_ins =
submod->add_instruction(migraphx::make_op("squeeze", {{"axes", {1}}}), reduce_ins);
submod->add_return({squeeze_ins});
return submod;
};
auto* batch1 = create_submodule(1, "batch_1");
auto* batch2 = create_submodule(2, "batch_2");
auto* batch3 = create_submodule(3, "batch_3");
auto* batch4 = create_submodule(4, "batch_4");
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {{1, 4}, {2, 2}, {2, 2}}};
auto input = mm->add_parameter("data", s);
std::vector<migraphx::shape> sub_shapes = {};
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {{1, 4}, {2, 2}}});
migraphx::shape out_attr = migraphx::shape{sub_shapes};
auto sm_ins = mm->add_instruction(
migraphx::make_op("select_module", {{"output_dyn_shapes", migraphx::to_value(out_attr)}}),
{input},
{batch1, batch2, batch3, batch4});
auto ret = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), sm_ins);
mm->add_return({ret});
p.compile(migraphx::ref::target{});
std::vector<float> input_data{-4, 8, -1, 4, -1, 8, 8, -4, -4, 8, -1, 4, -1, 8, 8, -4};
migraphx::parameter_map params;
migraphx::shape input_fixed_shape{migraphx::shape::float_type, {4, 2, 2}};
params["data"] = migraphx::argument(input_fixed_shape, input_data.data());
auto result = p.eval(params).back();
std::vector<float> results_vector;
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{-5, 12, 7, 4, -5, 12, 7, 4};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(select_module_not_found_error)
{
migraphx::program p;
// create batch submodules
auto create_submodule = [&](std::size_t batch_size, const std::string& module_name) {
auto* submod = p.create_module(module_name);
migraphx::shape sm_shape{migraphx::shape::float_type, {batch_size, 2, 2}};
auto sm_input = submod->add_parameter("data", sm_shape);
auto reduce_ins =
submod->add_instruction(migraphx::make_op("reduce_sum", {{"axes", {1}}}), sm_input);
auto squeeze_ins =
submod->add_instruction(migraphx::make_op("squeeze", {{"axes", {1}}}), reduce_ins);
submod->add_return({squeeze_ins});
return submod;
};
auto* batch1 = create_submodule(1, "batch_1");
auto* batch2 = create_submodule(2, "batch_2");
auto* batch3 = create_submodule(3, "batch_3");
auto* batch4 = create_submodule(4, "batch_4");
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {{1, 4}, {2, 2}, {2, 2}}};
auto input = mm->add_parameter("data", s);
std::vector<migraphx::shape> sub_shapes = {};
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {{1, 4}, {2, 2}}});
migraphx::shape out_attr = migraphx::shape{sub_shapes};
auto sm_ins = mm->add_instruction(
migraphx::make_op("select_module", {{"output_dyn_shapes", migraphx::to_value(out_attr)}}),
{input},
{batch1, batch2, batch3, batch4});
auto ret = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), sm_ins);
mm->add_return({ret});
p.compile(migraphx::ref::target{});
std::vector<float> input_data{-4, 8, -1, 4, -1, 8, 8, -4, -4, 8,
-1, 4, -1, 8, 8, -4, -1, 8, 8, -4};
migraphx::parameter_map params;
migraphx::shape input_fixed_shape{migraphx::shape::float_type, {5, 2, 2}};
params["data"] = migraphx::argument(input_fixed_shape, input_data.data());
EXPECT(test::throws([&] { p.eval(params).back(); }));
}
TEST_CASE(scatternd_reduction_dyn_test) TEST_CASE(scatternd_reduction_dyn_test)
{ {
// reduction = add, with dynamic input shapes // reduction = add, with dynamic input shapes
......
...@@ -238,6 +238,30 @@ TEST_CASE(test_shape_dynamic_serialize) ...@@ -238,6 +238,30 @@ TEST_CASE(test_shape_dynamic_serialize)
EXPECT(s3 != s4); EXPECT(s3 != s4);
} }
TEST_CASE(any_of_dynamic_true)
{
std::vector<migraphx::shape> sub_shapes = {};
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {{1, 4}, {4, 4}}});
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {3, 4, 5}});
migraphx::shape s0{sub_shapes};
EXPECT(s0.any_of_dynamic());
sub_shapes = {};
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {{1, 1}, {4, 4}}});
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {3, 4, 5}});
migraphx::shape s1{sub_shapes};
EXPECT(s1.any_of_dynamic());
}
TEST_CASE(any_of_dynamic_false)
{
std::vector<migraphx::shape> sub_shapes = {};
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {1, 4}});
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {3, 4, 5}});
migraphx::shape s{sub_shapes};
EXPECT(not s.any_of_dynamic());
}
TEST_CASE(test_shape_packed) TEST_CASE(test_shape_packed)
{ {
migraphx::shape s{migraphx::shape::float_type, {2, 2}, {2, 1}}; migraphx::shape s{migraphx::shape::float_type, {2, 2}, {2, 1}};
......
...@@ -185,7 +185,16 @@ void run_verify::verify(const std::string& name, const migraphx::program& p) con ...@@ -185,7 +185,16 @@ void run_verify::verify(const std::string& name, const migraphx::program& p) con
migraphx::parameter_map m; migraphx::parameter_map m;
for(auto&& x : p.get_parameter_shapes()) for(auto&& x : p.get_parameter_shapes())
{ {
m[x.first] = migraphx::generate_argument(x.second, get_hash(x.first)); if(x.second.dynamic())
{
// create static shape using maximum dimensions
migraphx::shape static_shape{x.second.type(), x.second.max_lens()};
m[x.first] = migraphx::generate_argument(static_shape, get_hash(x.first));
}
else
{
m[x.first] = migraphx::generate_argument(x.second, get_hash(x.first));
}
} }
auto gold_f = detach_async([=] { return run_ref(p, m); }); auto gold_f = detach_async([=] { return run_ref(p, m); });
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_select_module_add : verify_program<test_select_module_add>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape lit_s{migraphx::shape{migraphx::shape::float_type, {1}}};
auto literal_ins = mm->add_literal(migraphx::literal{lit_s, {6}});
// create batch submodules
auto create_submodule = [&](std::size_t batch_size, const std::string& module_name) {
auto* submod = p.create_module(module_name);
migraphx::shape sm_shape{migraphx::shape::float_type, {batch_size, 4}};
auto sm_input = submod->add_parameter("data", sm_shape);
auto broadcast_lit =
submod->add_instruction(migraphx::make_op("multibroadcast"), literal_ins, sm_input);
auto add_ins =
submod->add_instruction(migraphx::make_op("add"), sm_input, broadcast_lit);
submod->add_return({add_ins});
return submod;
};
auto* batch1 = create_submodule(1, "batch_1");
auto* batch2 = create_submodule(2, "batch_2");
auto* batch3 = create_submodule(3, "batch_3");
auto* batch4 = create_submodule(4, "batch_4");
migraphx::shape s{migraphx::shape::float_type, {{1, 4}, {4, 4}}};
auto input = mm->add_parameter("data", s);
std::vector<migraphx::shape> sub_shapes = {};
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {{1, 4}, {4, 4}}});
migraphx::shape out_attr = migraphx::shape{sub_shapes};
auto sm_ins = mm->add_instruction(
migraphx::make_op("select_module",
{{"output_dyn_shapes", migraphx::to_value(out_attr)}}),
{input},
{batch1, batch2, batch3, batch4});
auto ret = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), sm_ins);
mm->add_return({ret});
return p;
}
};
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_select_module_conv : verify_program<test_select_module_conv>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
// create batch submodules
auto create_submodule = [&](std::size_t batch_size, const std::string& module_name) {
auto* submod = p.create_module(module_name);
migraphx::shape sm_shape{migraphx::shape::float_type, {batch_size, 3, 4, 4}};
auto sm_input = submod->add_parameter("data", sm_shape);
migraphx::shape weights_shape{migraphx::shape::float_type, {2, 3, 3, 3}};
std::vector<float> weights_data(2 * 3 * 3 * 3, 2.0);
auto weights = submod->add_literal(migraphx::literal{weights_shape, weights_data});
auto conv_ins = submod->add_instruction(
migraphx::make_op("convolution", {{"padding", {1, 1}}}), sm_input, weights);
submod->add_return({conv_ins});
return submod;
};
auto* batch1 = create_submodule(1, "batch_1");
auto* batch2 = create_submodule(2, "batch_2");
auto* batch3 = create_submodule(3, "batch_3");
auto* batch4 = create_submodule(4, "batch_4");
migraphx::shape s{migraphx::shape::float_type, {{1, 4}, {3, 3}, {4, 4}, {4, 4}}};
auto input = mm->add_parameter("data", s);
std::vector<migraphx::shape> sub_shapes = {};
sub_shapes.push_back(
migraphx::shape{migraphx::shape::float_type, {{1, 4}, {2, 2}, {4, 4}, {4, 4}}});
migraphx::shape out_attr = migraphx::shape{sub_shapes};
auto sm_ins = mm->add_instruction(
migraphx::make_op("select_module",
{{"output_dyn_shapes", migraphx::to_value(out_attr)}}),
{input},
{batch1, batch2, batch3, batch4});
auto ret = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), sm_ins);
mm->add_return({ret});
return p;
}
};
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_select_module_reduce : verify_program<test_select_module_reduce>
{
migraphx::program create_program() const
{
migraphx::program p;
// create batch submodules
auto create_submodule = [&](std::size_t batch_size, const std::string& module_name) {
auto* submod = p.create_module(module_name);
migraphx::shape sm_shape{migraphx::shape::float_type, {batch_size, 2, 2}};
auto sm_input = submod->add_parameter("data", sm_shape);
auto reduce_ins =
submod->add_instruction(migraphx::make_op("reduce_sum", {{"axes", {1}}}), sm_input);
auto squeeze_ins =
submod->add_instruction(migraphx::make_op("squeeze", {{"axes", {1}}}), reduce_ins);
submod->add_return({squeeze_ins});
return submod;
};
auto* batch1 = create_submodule(1, "batch_1");
auto* batch2 = create_submodule(2, "batch_2");
auto* batch3 = create_submodule(3, "batch_3");
auto* batch4 = create_submodule(4, "batch_4");
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {{1, 4}, {2, 2}, {2, 2}}};
auto input = mm->add_parameter("data", s);
std::vector<migraphx::shape> sub_shapes = {};
sub_shapes.push_back(migraphx::shape{migraphx::shape::float_type, {{1, 4}, {2, 2}}});
migraphx::shape out_attr = migraphx::shape{sub_shapes};
auto sm_ins = mm->add_instruction(
migraphx::make_op("select_module",
{{"output_dyn_shapes", migraphx::to_value(out_attr)}}),
{input},
{batch1, batch2, batch3, batch4});
auto ret = mm->add_instruction(migraphx::make_op("get_tuple_elem", {{"index", 0}}), sm_ins);
mm->add_return({ret});
return p;
}
};
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment