Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
a2e3ba0b
Commit
a2e3ba0b
authored
Aug 16, 2019
by
Shucai Xiao
Browse files
Merge branch 'develop' of
https://github.com/ROCmSoftwarePlatform/AMDMIGraphX
into round_operator
parents
f0af5f23
de1d5919
Changes
30
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
693 additions
and
34 deletions
+693
-34
src/include/migraphx/argument.hpp
src/include/migraphx/argument.hpp
+1
-1
src/include/migraphx/op/quant_convolution.hpp
src/include/migraphx/op/quant_convolution.hpp
+79
-0
src/include/migraphx/op/quant_dot.hpp
src/include/migraphx/op/quant_dot.hpp
+92
-0
src/include/migraphx/operators.hpp
src/include/migraphx/operators.hpp
+2
-0
src/opt/memory_coloring_impl.cpp
src/opt/memory_coloring_impl.cpp
+3
-0
src/targets/cpu/gemm.cpp
src/targets/cpu/gemm.cpp
+26
-19
src/targets/cpu/include/migraphx/cpu/gemm.hpp
src/targets/cpu/include/migraphx/cpu/gemm.hpp
+5
-0
src/targets/cpu/lowering.cpp
src/targets/cpu/lowering.cpp
+135
-10
src/targets/gpu/CMakeLists.txt
src/targets/gpu/CMakeLists.txt
+6
-0
src/targets/gpu/device/include/migraphx/gpu/device/tensor.hpp
...targets/gpu/device/include/migraphx/gpu/device/tensor.hpp
+1
-0
src/targets/gpu/device/int8_gemm_pack.cpp
src/targets/gpu/device/int8_gemm_pack.cpp
+75
-0
src/targets/gpu/gemm.cpp
src/targets/gpu/gemm.cpp
+4
-0
src/targets/gpu/include/migraphx/gpu/device/int8_gemm_pack.hpp
...argets/gpu/include/migraphx/gpu/device/int8_gemm_pack.hpp
+22
-0
src/targets/gpu/include/migraphx/gpu/int8_conv_pack.hpp
src/targets/gpu/include/migraphx/gpu/int8_conv_pack.hpp
+29
-0
src/targets/gpu/include/migraphx/gpu/int8_gemm_pack.hpp
src/targets/gpu/include/migraphx/gpu/int8_gemm_pack.hpp
+40
-0
src/targets/gpu/include/migraphx/gpu/miopen.hpp
src/targets/gpu/include/migraphx/gpu/miopen.hpp
+24
-4
src/targets/gpu/include/migraphx/gpu/pack_int8_args.hpp
src/targets/gpu/include/migraphx/gpu/pack_int8_args.hpp
+24
-0
src/targets/gpu/include/migraphx/gpu/quant_convolution.hpp
src/targets/gpu/include/migraphx/gpu/quant_convolution.hpp
+47
-0
src/targets/gpu/include/migraphx/gpu/quant_gemm.hpp
src/targets/gpu/include/migraphx/gpu/quant_gemm.hpp
+38
-0
src/targets/gpu/int8_conv_pack.cpp
src/targets/gpu/int8_conv_pack.cpp
+40
-0
No files found.
src/include/migraphx/argument.hpp
View file @
a2e3ba0b
...
@@ -36,7 +36,7 @@ struct argument : raw_data<argument>
...
@@ -36,7 +36,7 @@ struct argument : raw_data<argument>
}
}
/// Provides a raw pointer to the data
/// Provides a raw pointer to the data
std
::
function
<
char
*
()
>
data
;
std
::
function
<
char
*
()
>
data
=
nullptr
;
/// Whether data is available
/// Whether data is available
bool
empty
()
const
{
return
not
data
;
}
bool
empty
()
const
{
return
not
data
;
}
...
...
src/include/migraphx/op/quant_convolution.hpp
0 → 100644
View file @
a2e3ba0b
#ifndef MIGRAPHX_GUARD_OPERATORS_QUANT_CONVOLUTION_HPP
#define MIGRAPHX_GUARD_OPERATORS_QUANT_CONVOLUTION_HPP
#include <array>
#include <migraphx/op/common.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
quant_convolution
{
std
::
array
<
std
::
size_t
,
2
>
padding
=
{{
0
,
0
}};
std
::
array
<
std
::
size_t
,
2
>
stride
=
{{
1
,
1
}};
std
::
array
<
std
::
size_t
,
2
>
dilation
=
{{
1
,
1
}};
padding_mode_t
padding_mode
=
default_
;
int
group
=
1
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
padding
,
"padding"
),
f
(
self
.
stride
,
"stride"
),
f
(
self
.
dilation
,
"dilation"
),
f
(
self
.
padding_mode
,
"padding_mode"
),
f
(
self
.
group
,
"group"
));
}
std
::
string
name
()
const
{
return
"quant_convolution"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
2
).
same_type
().
same_ndims
().
only_dims
(
4
);
const
shape
&
input
=
inputs
.
at
(
0
);
const
shape
&
weights
=
inputs
.
at
(
1
);
auto
t
=
input
.
type
();
// all input type must be int8_type and output is float_type
if
(
t
!=
shape
::
int8_type
)
{
MIGRAPHX_THROW
(
"QUANT_CONVOLUTION: only accept input and weights of type int8_t"
);
}
t
=
shape
::
int32_type
;
return
{
t
,
{
input
.
lens
()[
0
],
weights
.
lens
()[
0
],
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
(
input
.
lens
()[
2
]
-
(
1
+
dilation
[
0
]
*
(
weights
.
lens
()[
2
]
-
1
))
+
2
*
padding
[
0
])
/
stride
[
0
]
+
1
)),
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
(
input
.
lens
()[
3
]
-
(
1
+
dilation
[
1
]
*
(
weights
.
lens
()[
3
]
-
1
))
+
2
*
padding
[
1
])
/
stride
[
1
]
+
1
)),
}};
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/op/quant_dot.hpp
0 → 100644
View file @
a2e3ba0b
#ifndef MIGRAPHX_GUARD_OPERATORS_QUANT_DOT_HPP
#define MIGRAPHX_GUARD_OPERATORS_QUANT_DOT_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
op
{
struct
quant_dot
{
int32_t
alpha
=
1
;
int32_t
beta
=
1
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
as_number
(
self
.
alpha
),
"alpha"
),
f
(
as_number
(
self
.
beta
),
"beta"
));
}
std
::
string
name
()
const
{
return
"quant_dot"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{{
inputs
.
at
(
0
),
inputs
.
at
(
1
)},
*
this
}.
same_type
();
const
shape
&
a
=
inputs
.
at
(
0
);
const
shape
&
b
=
inputs
.
at
(
1
);
auto
t
=
a
.
type
();
if
(
t
!=
shape
::
int8_type
)
{
MIGRAPHX_THROW
(
"QUANT_DOT: only support data type int8_t"
);
}
if
(
!
std
::
all_of
(
inputs
.
begin
(),
inputs
.
end
(),
[](
auto
s
)
{
return
s
.
lens
().
size
()
>=
2
;
}))
{
MIGRAPHX_THROW
(
"QUANT_DOT: dot only accept 2 or more dims operands"
);
}
// only handle the case that the batch size of a and b are the same
if
(
!
std
::
equal
(
a
.
lens
().
rbegin
()
+
2
,
a
.
lens
().
rend
(),
b
.
lens
().
rbegin
()
+
2
,
b
.
lens
().
rend
()))
{
MIGRAPHX_THROW
(
"QUANT_DOT: batch size of A and B mismatch: {"
+
to_string_range
(
a
.
lens
())
+
"} x {"
+
to_string_range
(
b
.
lens
())
+
"}"
);
}
std
::
size_t
dim_0
=
a
.
lens
().
size
()
-
2
;
std
::
size_t
dim_1
=
a
.
lens
().
size
()
-
1
;
if
(
a
.
lens
()[
dim_1
]
!=
b
.
lens
()[
dim_0
])
{
MIGRAPHX_THROW
(
"QUANT_DOT: inner dimensions do not match: {"
+
to_string_range
(
a
.
lens
())
+
"} x {"
+
to_string_range
(
b
.
lens
())
+
"}"
);
}
// k be multiple of 4
if
((
a
.
lens
()[
dim_1
]
%
4
)
!=
0
)
{
MIGRAPHX_THROW
(
"QUANT_DOT: size of A {"
+
to_string_range
(
a
.
lens
())
+
"} and B {"
+
to_string_range
(
b
.
lens
())
+
"} must be multiple of 4 for int8 type"
);
}
auto
out_lens
=
a
.
lens
();
out_lens
[
dim_1
]
=
b
.
lens
()[
dim_1
];
if
(
inputs
.
size
()
==
3
&&
out_lens
!=
inputs
.
at
(
2
).
lens
())
{
MIGRAPHX_THROW
(
"QUANT_DOT: dimension mismatch, operand C: {"
+
to_string_range
(
inputs
.
at
(
2
).
lens
())
+
"}, cannot add to operand A * B: {"
+
to_string_range
(
out_lens
)
+
"}"
);
}
if
(
inputs
.
size
()
==
3
&&
inputs
.
at
(
2
).
type
()
!=
shape
::
int32_type
)
{
MIGRAPHX_THROW
(
"QUANT_DOT: operand C type must be int32"
);
}
return
{
shape
::
int32_type
,
out_lens
};
}
};
}
// namespace op
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/include/migraphx/operators.hpp
View file @
a2e3ba0b
...
@@ -45,6 +45,8 @@
...
@@ -45,6 +45,8 @@
#include <migraphx/op/outline.hpp>
#include <migraphx/op/outline.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>
#include <migraphx/op/pow.hpp>
#include <migraphx/op/pow.hpp>
#include <migraphx/op/reduce_sum.hpp>
#include <migraphx/op/reduce_sum.hpp>
#include <migraphx/op/reduce_mean.hpp>
#include <migraphx/op/reduce_mean.hpp>
...
...
src/opt/memory_coloring_impl.cpp
View file @
a2e3ba0b
...
@@ -85,6 +85,9 @@ bool memory_coloring_impl::allocate(interval_ptr interval)
...
@@ -85,6 +85,9 @@ bool memory_coloring_impl::allocate(interval_ptr interval)
offset
+=
(
element_size
-
(
offset
%
element_size
));
offset
+=
(
element_size
-
(
offset
%
element_size
));
conflict_queue
.
pop
();
conflict_queue
.
pop
();
}
}
// when int8 type is used, the offset could be any number
// if not 4-byte aligned, miopen int8 convolution can crash
offset
=
(
offset
+
3
)
/
4
*
4
;
segment
.
offset
=
offset
;
segment
.
offset
=
offset
;
MIGRAPHX_DEBUG
(
segment
.
dump
());
MIGRAPHX_DEBUG
(
segment
.
dump
());
required_bytes
=
std
::
max
(
required_bytes
,
offset
+
segment
.
size
);
required_bytes
=
std
::
max
(
required_bytes
,
offset
+
segment
.
size
);
...
...
src/targets/cpu/gemm.cpp
View file @
a2e3ba0b
...
@@ -44,13 +44,9 @@ struct is_fast_gemm_type<float> : std::true_type
...
@@ -44,13 +44,9 @@ struct is_fast_gemm_type<float> : std::true_type
{
{
};
};
template
<
class
T
>
template
<
class
T
,
class
F
>
void
migemm_impl
(
tensor_view
<
T
>
cmat
,
void
migemm_impl
(
tensor_view
<
T
>
amat
,
tensor_view
<
T
>
cmat
,
tensor_view
<
T
>
amat
,
tensor_view
<
T
>
bmat
,
F
alpha
,
F
beta
,
std
::
true_type
)
tensor_view
<
T
>
bmat
,
float
alpha
,
float
beta
,
std
::
true_type
)
{
{
visit_mat
(
amat
,
[
&
](
const
auto
&
a
)
{
visit_mat
(
amat
,
[
&
](
const
auto
&
a
)
{
visit_mat
(
bmat
,
[
&
](
const
auto
&
b
)
{
visit_mat
(
bmat
,
[
&
](
const
auto
&
b
)
{
...
@@ -66,13 +62,9 @@ void migemm_impl(tensor_view<T> cmat,
...
@@ -66,13 +62,9 @@ void migemm_impl(tensor_view<T> cmat,
});
});
}
}
template
<
class
T
>
template
<
class
T
,
class
F
>
void
migemm_impl
(
tensor_view
<
T
>
cmat
,
void
migemm_impl
(
tensor_view
<
T
>
amat
,
tensor_view
<
T
>
cmat
,
tensor_view
<
T
>
amat
,
tensor_view
<
T
>
bmat
,
F
alpha
,
F
beta
,
std
::
false_type
)
tensor_view
<
T
>
bmat
,
float
alpha
,
float
beta
,
std
::
false_type
)
{
{
std
::
size_t
n_dims
=
cmat
.
get_shape
().
lens
().
size
();
std
::
size_t
n_dims
=
cmat
.
get_shape
().
lens
().
size
();
std
::
size_t
dim_0
=
n_dims
-
2
;
std
::
size_t
dim_0
=
n_dims
-
2
;
...
@@ -95,9 +87,8 @@ void migemm_impl(tensor_view<T> cmat,
...
@@ -95,9 +87,8 @@ void migemm_impl(tensor_view<T> cmat,
});
});
}
}
template
<
class
T
>
template
<
class
T
,
class
F
>
void
migemm_impl
(
void
migemm_impl
(
tensor_view
<
T
>
cmat
,
tensor_view
<
T
>
amat
,
tensor_view
<
T
>
bmat
,
F
alpha
,
F
beta
)
tensor_view
<
T
>
cmat
,
tensor_view
<
T
>
amat
,
tensor_view
<
T
>
bmat
,
float
alpha
,
float
beta
)
{
{
auto
lens
=
amat
.
get_shape
().
lens
();
auto
lens
=
amat
.
get_shape
().
lens
();
bool
batch_mul
=
bool
batch_mul
=
...
@@ -113,13 +104,29 @@ void migemm_impl(
...
@@ -113,13 +104,29 @@ void migemm_impl(
}
}
}
}
void
migemm
(
template
<
class
F
>
const
argument
&
c_arg
,
const
argument
&
a_arg
,
const
argument
&
b_arg
,
float
alpha
,
float
beta
)
void
migemm_tpl
(
const
argument
&
c_arg
,
const
argument
&
a_arg
,
const
argument
&
b_arg
,
F
alpha
,
F
beta
)
{
{
visit_all
(
c_arg
,
a_arg
,
b_arg
)(
visit_all
(
c_arg
,
a_arg
,
b_arg
)(
[
&
](
auto
cmat
,
auto
amat
,
auto
bmat
)
{
migemm_impl
(
cmat
,
amat
,
bmat
,
alpha
,
beta
);
});
[
&
](
auto
cmat
,
auto
amat
,
auto
bmat
)
{
migemm_impl
(
cmat
,
amat
,
bmat
,
alpha
,
beta
);
});
}
}
void
migemm
(
const
argument
&
c_arg
,
const
argument
&
a_arg
,
const
argument
&
b_arg
,
float
alpha
,
float
beta
)
{
migemm_tpl
(
c_arg
,
a_arg
,
b_arg
,
alpha
,
beta
);
}
void
migemm
(
const
argument
&
c_arg
,
const
argument
&
a_arg
,
const
argument
&
b_arg
,
int32_t
alpha
,
int32_t
beta
)
{
migemm_tpl
(
c_arg
,
a_arg
,
b_arg
,
alpha
,
beta
);
}
}
// namespace cpu
}
// namespace cpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
}
// namespace migraphx
src/targets/cpu/include/migraphx/cpu/gemm.hpp
View file @
a2e3ba0b
...
@@ -10,6 +10,11 @@ namespace cpu {
...
@@ -10,6 +10,11 @@ namespace cpu {
void
migemm
(
void
migemm
(
const
argument
&
c_arg
,
const
argument
&
a_arg
,
const
argument
&
b_arg
,
float
alpha
,
float
beta
);
const
argument
&
c_arg
,
const
argument
&
a_arg
,
const
argument
&
b_arg
,
float
alpha
,
float
beta
);
void
migemm
(
const
argument
&
c_arg
,
const
argument
&
a_arg
,
const
argument
&
b_arg
,
int32_t
alpha
,
int32_t
beta
);
}
// namespace cpu
}
// namespace cpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace MIGRAPHX_INLINE_NS
...
...
src/targets/cpu/lowering.cpp
View file @
a2e3ba0b
...
@@ -4,7 +4,9 @@
...
@@ -4,7 +4,9 @@
#include <migraphx/dfor.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/op/batch_norm.hpp>
#include <migraphx/op/batch_norm.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/quant_dot.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/leaky_relu.hpp>
...
@@ -216,6 +218,60 @@ struct cpu_convolution
...
@@ -216,6 +218,60 @@ struct cpu_convolution
}
}
};
};
struct
cpu_quant_convolution
{
op
::
quant_convolution
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::quant_convolution"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
auto
output
=
result
.
get
<
int32_t
>
();
visit_all
(
args
[
0
],
args
[
1
])([
&
](
auto
input
,
auto
weights
)
{
auto
in
=
input
.
get_shape
().
lens
();
auto
in_h
=
in
[
2
];
auto
in_w
=
in
[
3
];
auto
wei
=
weights
.
get_shape
().
lens
();
auto
wei_n
=
wei
[
0
];
auto
wei_c
=
wei
[
1
];
auto
wei_h
=
wei
[
2
];
auto
wei_w
=
wei
[
3
];
par_dfor
(
output_shape
.
lens
()[
0
],
output_shape
.
lens
()[
1
],
output_shape
.
lens
()[
2
],
output_shape
.
lens
()[
3
])(
[
&
](
std
::
size_t
o
,
std
::
size_t
w
,
std
::
size_t
i
,
std
::
size_t
j
)
{
const
auto
start_x
=
i
*
op
.
stride
[
0
]
-
op
.
padding
[
0
];
const
auto
start_y
=
j
*
op
.
stride
[
1
]
-
op
.
padding
[
1
];
const
auto
group_id
=
w
/
(
wei_n
/
op
.
group
);
int32_t
acc
=
0
;
dfor
(
wei_c
,
wei_h
,
wei_w
)([
&
](
std
::
size_t
k
,
std
::
size_t
x
,
std
::
size_t
y
)
{
const
auto
in_x
=
start_x
+
x
;
const
auto
in_y
=
start_y
+
y
;
const
auto
in_ch
=
group_id
*
wei_c
+
k
;
if
(
in_x
>=
0
&&
in_x
<
in_h
&&
in_y
>=
0
&&
in_y
<
in_w
)
{
acc
+=
input
(
o
,
in_ch
,
in_x
,
in_y
)
*
weights
(
w
,
k
,
x
,
y
);
}
});
output
(
o
,
w
,
i
,
j
)
=
acc
;
});
});
return
result
;
}
};
struct
cpu_im2col
struct
cpu_im2col
{
{
op
::
im2col
op
;
op
::
im2col
op
;
...
@@ -433,7 +489,7 @@ struct cpu_gemm
...
@@ -433,7 +489,7 @@ struct cpu_gemm
{
{
argument
result
{
output_shape
};
argument
result
{
output_shape
};
// 3 inputs, it is alpha * A * B + beta * C, then
// 3 inputs, it is alpha * A * B + beta * C, then
// A and B are matrics, and C is
broadcastable to
A * B
// A and B are matric
e
s, and C is
of the same shape as
A * B
if
(
args
.
size
()
==
3
)
if
(
args
.
size
()
==
3
)
{
{
// no need to consider the value of args[2]
// no need to consider the value of args[2]
...
@@ -460,6 +516,73 @@ struct cpu_gemm
...
@@ -460,6 +516,73 @@ struct cpu_gemm
}
}
};
};
struct
cpu_quant_gemm
{
op
::
quant_dot
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::quant_dot"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
if
(
inputs
.
size
()
==
3
)
{
auto
c_shape
=
inputs
.
at
(
2
);
check_shapes
{{
c_shape
}}.
not_broadcasted
();
}
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
// 3 inputs, it is alpha * A * B + beta * C, then
// A and B are matrices, and C is of the same shape to A * B
// first, convert the args[0] and args[1] from int8_t to int32_t
argument
arg_0
{{
shape
::
int32_type
,
{
args
.
at
(
0
).
get_shape
().
lens
()}}};
argument
arg_1
{{
shape
::
int32_type
,
{
args
.
at
(
1
).
get_shape
().
lens
()}}};
arg_0
.
visit
([
&
](
auto
output
)
{
args
.
at
(
0
).
visit
(
[
&
](
auto
input
)
{
std
::
copy
(
input
.
begin
(),
input
.
end
(),
output
.
begin
());
});
});
arg_1
.
visit
([
&
](
auto
output
)
{
args
.
at
(
1
).
visit
(
[
&
](
auto
input
)
{
std
::
copy
(
input
.
begin
(),
input
.
end
(),
output
.
begin
());
});
});
if
(
args
.
size
()
==
3
)
{
// no need to consider the value of args[2]
if
(
op
.
beta
==
0
)
{
result
.
visit
([
&
](
auto
output
)
{
std
::
fill
(
output
.
begin
(),
output
.
end
(),
0
);
});
}
else
{
visit_all
(
result
,
args
[
2
])([
&
](
auto
output
,
auto
input
)
{
std
::
copy
(
input
.
begin
(),
input
.
end
(),
output
.
begin
());
});
}
migemm
(
result
,
arg_0
,
arg_1
,
op
.
alpha
,
op
.
beta
);
return
result
;
}
// 2 input arguments
int32_t
beta
=
0
;
migemm
(
result
,
arg_0
,
arg_1
,
op
.
alpha
,
beta
);
return
result
;
}
};
struct
leaky_relu_op
struct
leaky_relu_op
{
{
op
::
leaky_relu
op
;
op
::
leaky_relu
op
;
...
@@ -671,15 +794,17 @@ struct cpu_apply
...
@@ -671,15 +794,17 @@ struct cpu_apply
{
{
apply_map
[
"batch_norm_inference"
]
=
apply_map
[
"batch_norm_inference"
]
=
extend_op
<
cpu_batch_norm_inference
,
op
::
batch_norm_inference
>
();
extend_op
<
cpu_batch_norm_inference
,
op
::
batch_norm_inference
>
();
apply_map
[
"convolution"
]
=
extend_op
<
cpu_convolution
,
op
::
convolution
>
();
apply_map
[
"convolution"
]
=
extend_op
<
cpu_convolution
,
op
::
convolution
>
();
apply_map
[
"dot"
]
=
extend_op
<
cpu_gemm
,
op
::
dot
>
();
apply_map
[
"dot"
]
=
extend_op
<
cpu_gemm
,
op
::
dot
>
();
apply_map
[
"elu"
]
=
extend_op
<
cpu_unary
<
elu_op
>
,
op
::
elu
>
();
apply_map
[
"quant_dot"
]
=
extend_op
<
cpu_quant_gemm
,
op
::
quant_dot
>
();
apply_map
[
"im2col"
]
=
extend_op
<
cpu_im2col
,
op
::
im2col
>
();
apply_map
[
"quant_convolution"
]
=
extend_op
<
cpu_quant_convolution
,
op
::
quant_convolution
>
();
apply_map
[
"leaky_relu"
]
=
extend_op
<
cpu_unary
<
leaky_relu_op
>
,
op
::
leaky_relu
>
();
apply_map
[
"elu"
]
=
extend_op
<
cpu_unary
<
elu_op
>
,
op
::
elu
>
();
apply_map
[
"logsoftmax"
]
=
extend_op
<
cpu_logsoftmax
,
op
::
logsoftmax
>
();
apply_map
[
"im2col"
]
=
extend_op
<
cpu_im2col
,
op
::
im2col
>
();
apply_map
[
"lrn"
]
=
extend_op
<
cpu_lrn
,
op
::
lrn
>
();
apply_map
[
"leaky_relu"
]
=
extend_op
<
cpu_unary
<
leaky_relu_op
>
,
op
::
leaky_relu
>
();
apply_map
[
"pad"
]
=
extend_op
<
cpu_pad
,
op
::
pad
>
();
apply_map
[
"logsoftmax"
]
=
extend_op
<
cpu_logsoftmax
,
op
::
logsoftmax
>
();
apply_map
[
"softmax"
]
=
extend_op
<
cpu_softmax
,
op
::
softmax
>
();
apply_map
[
"lrn"
]
=
extend_op
<
cpu_lrn
,
op
::
lrn
>
();
apply_map
[
"pad"
]
=
extend_op
<
cpu_pad
,
op
::
pad
>
();
apply_map
[
"softmax"
]
=
extend_op
<
cpu_softmax
,
op
::
softmax
>
();
}
}
void
apply
()
void
apply
()
...
...
src/targets/gpu/CMakeLists.txt
View file @
a2e3ba0b
...
@@ -39,6 +39,7 @@ add_library(migraphx_device
...
@@ -39,6 +39,7 @@ add_library(migraphx_device
device/pad.cpp
device/pad.cpp
device/gather.cpp
device/gather.cpp
device/sub.cpp
device/sub.cpp
device/int8_gemm_pack.cpp
device/div.cpp
device/div.cpp
device/clip.cpp
device/clip.cpp
device/reduce_sum.cpp
device/reduce_sum.cpp
...
@@ -65,8 +66,10 @@ add_library(migraphx_gpu
...
@@ -65,8 +66,10 @@ add_library(migraphx_gpu
target.cpp
target.cpp
lowering.cpp
lowering.cpp
gemm.cpp
gemm.cpp
quant_gemm.cpp
pooling.cpp
pooling.cpp
convolution.cpp
convolution.cpp
quant_convolution.cpp
softmax.cpp
softmax.cpp
logsoftmax.cpp
logsoftmax.cpp
contiguous.cpp
contiguous.cpp
...
@@ -83,9 +86,12 @@ add_library(migraphx_gpu
...
@@ -83,9 +86,12 @@ add_library(migraphx_gpu
lrn.cpp
lrn.cpp
schedule_model.cpp
schedule_model.cpp
adjust_allocation.cpp
adjust_allocation.cpp
pack_int8_args.cpp
clip.cpp
clip.cpp
reduce_sum.cpp
reduce_sum.cpp
reduce_mean.cpp
reduce_mean.cpp
int8_gemm_pack.cpp
int8_conv_pack.cpp
)
)
set_target_properties
(
migraphx_gpu PROPERTIES EXPORT_NAME gpu
)
set_target_properties
(
migraphx_gpu PROPERTIES EXPORT_NAME gpu
)
rocm_clang_tidy_check
(
migraphx_gpu
)
rocm_clang_tidy_check
(
migraphx_gpu
)
...
...
src/targets/gpu/device/include/migraphx/gpu/device/tensor.hpp
View file @
a2e3ba0b
...
@@ -31,6 +31,7 @@ struct hip_tensor_descriptor
...
@@ -31,6 +31,7 @@ struct hip_tensor_descriptor
result
[
is
]
=
tidx
/
strides
[
is
];
result
[
is
]
=
tidx
/
strides
[
is
];
tidx
=
tidx
%
strides
[
is
];
tidx
=
tidx
%
strides
[
is
];
}
}
return
result
;
return
result
;
}
}
__device__
__host__
std
::
size_t
linear
(
hip_tensor_index
<
NDim
>
s
)
const
__device__
__host__
std
::
size_t
linear
(
hip_tensor_index
<
NDim
>
s
)
const
...
...
src/targets/gpu/device/int8_gemm_pack.cpp
0 → 100644
View file @
a2e3ba0b
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/gpu/device/int8_gemm_pack.hpp>
#include <migraphx/gpu/device/launch.hpp>
#include <migraphx/gpu/device/types.hpp>
#include <migraphx/gpu/device/tensor.hpp>
#include <migraphx/gpu/hip.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
void
int8_gemm_pack_a
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
)
{
auto
comp_shape
=
arg
.
get_shape
();
auto
out_lens
=
comp_shape
.
lens
();
auto
dim_0
=
out_lens
.
size
()
-
2
;
auto
dim_1
=
out_lens
.
size
()
-
1
;
std
::
size_t
lda
=
comp_shape
.
strides
()[
dim_0
];
std
::
size_t
m_size
=
out_lens
[
dim_0
]
*
out_lens
[
dim_1
];
visit_all
(
result
,
arg
)([
&
](
auto
output
,
auto
input
)
{
std
::
size_t
nelements
=
comp_shape
.
elements
();
auto
*
out_ptr
=
device_cast
(
output
.
data
());
auto
*
in_ptr
=
device_cast
(
input
.
data
());
visit_tensor_size
(
out_lens
.
size
(),
[
&
](
auto
out_dim
)
{
hip_tensor_descriptor
<
out_dim
>
desc
(
comp_shape
);
gs_launch
(
stream
,
nelements
,
256
)([
=
](
auto
ii
)
{
const
size_t
nb
=
4
;
auto
idx
=
desc
.
multi
(
ii
);
std
::
size_t
i_m
=
idx
[
dim_1
];
std
::
size_t
i_k
=
idx
[
dim_0
];
std
::
size_t
offset
=
ii
/
m_size
*
m_size
;
out_ptr
[
i_k
%
nb
+
(
i_m
+
(
i_k
/
nb
)
*
lda
)
*
nb
+
offset
]
=
in_ptr
[
i_m
+
i_k
*
lda
+
offset
];
});
});
});
}
void
int8_gemm_pack_b
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
)
{
auto
trans_shape
=
arg
.
get_shape
();
auto
out_lens
=
trans_shape
.
lens
();
auto
dim_0
=
trans_shape
.
lens
().
size
()
-
2
;
auto
dim_1
=
trans_shape
.
lens
().
size
()
-
1
;
std
::
size_t
ldb
=
trans_shape
.
strides
()[
dim_1
];
auto
wrap_lens
=
out_lens
;
std
::
swap
(
wrap_lens
[
dim_0
],
wrap_lens
[
dim_1
]);
shape
comp_shape
{
trans_shape
.
type
(),
wrap_lens
};
std
::
size_t
m_size
=
out_lens
[
dim_0
]
*
out_lens
[
dim_1
];
visit_all
(
result
,
arg
)([
&
](
auto
output
,
auto
input
)
{
std
::
size_t
nelements
=
comp_shape
.
elements
();
auto
*
out_ptr
=
device_cast
(
output
.
data
());
auto
*
in_ptr
=
device_cast
(
input
.
data
());
visit_tensor_size
(
out_lens
.
size
(),
[
&
](
auto
out_dim
)
{
hip_tensor_descriptor
<
out_dim
>
desc
(
comp_shape
);
gs_launch
(
stream
,
nelements
,
256
)([
=
](
auto
ii
)
{
const
size_t
nb
=
4
;
auto
idx
=
desc
.
multi
(
ii
);
std
::
size_t
i_n
=
idx
[
dim_1
];
std
::
size_t
i_k
=
idx
[
dim_0
];
std
::
size_t
offset
=
ii
/
m_size
*
m_size
;
out_ptr
[
i_k
%
nb
+
(
i_n
+
(
i_k
/
nb
)
*
ldb
)
*
nb
+
offset
]
=
in_ptr
[
i_n
+
i_k
*
ldb
+
offset
];
});
});
});
}
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
src/targets/gpu/gemm.cpp
View file @
a2e3ba0b
...
@@ -233,6 +233,10 @@ argument miopen_gemm::compute(context& ctx,
...
@@ -233,6 +233,10 @@ argument miopen_gemm::compute(context& ctx,
auto
to_pointer
=
[
&
](
auto
&&
arg
)
{
return
to_rocblas_type
(
as
.
from
(
arg
.
data
()));
};
auto
to_pointer
=
[
&
](
auto
&&
arg
)
{
return
to_rocblas_type
(
as
.
from
(
arg
.
data
()));
};
if
(
num_matrices
==
1
)
if
(
num_matrices
==
1
)
{
{
// the rocblas_gemm API handles inputs and output matrices as
// column-major format. When doing a C = A * B, we actually do
// C^T = (B^T) * (A^T). That is the reason we input args[1] as
// A and args[0] as B in calling the rocblas_gemm.
generic_rocblas_gemm
(
as
,
generic_rocblas_gemm
(
as
,
ctx
.
get_stream
().
get_rocblas
(),
ctx
.
get_stream
().
get_rocblas
(),
transb
?
rocblas_operation_transpose
:
rocblas_operation_none
,
transb
?
rocblas_operation_transpose
:
rocblas_operation_none
,
...
...
src/targets/gpu/include/migraphx/gpu/device/int8_gemm_pack.hpp
0 → 100644
View file @
a2e3ba0b
#ifndef MIGRAPHX_GUARD_RTGLIB_DEVICE_INT8_GEMM_PACK_HPP
#define MIGRAPHX_GUARD_RTGLIB_DEVICE_INT8_GEMM_PACK_HPP
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <hip/hip_runtime_api.h>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
namespace
device
{
void
int8_gemm_pack_a
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
);
void
int8_gemm_pack_b
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
);
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/include/migraphx/gpu/int8_conv_pack.hpp
0 → 100644
View file @
a2e3ba0b
#ifndef MIGRAPHX_GUARD_RTGLIB_INT8_CONV_PACK_HPP
#define MIGRAPHX_GUARD_RTGLIB_INT8_CONV_PACK_HPP
#include <migraphx/op/quant_dot.hpp>
#include <migraphx/config.hpp>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
struct
context
;
struct
miopen_int8_conv_pack
{
std
::
string
name
()
const
{
return
"gpu::int8_conv_pack"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
;
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
shapes
)
const
{
return
shapes
.
size
()
-
1
;
}
};
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/include/migraphx/gpu/int8_gemm_pack.hpp
0 → 100644
View file @
a2e3ba0b
#ifndef MIGRAPHX_GUARD_RTGLIB_INT8_GEMM_PACK_HPP
#define MIGRAPHX_GUARD_RTGLIB_INT8_GEMM_PACK_HPP
#include <migraphx/op/quant_dot.hpp>
#include <migraphx/config.hpp>
#include <utility>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
struct
context
;
struct
hip_int8_gemm_pack_a
{
std
::
string
name
()
const
{
return
"gpu::int8_gemm_pack_a"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
;
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
shapes
)
const
{
return
shapes
.
size
()
-
1
;
}
};
struct
hip_int8_gemm_pack_b
{
std
::
string
name
()
const
{
return
"gpu::int8_gemm_pack_b"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
;
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
shapes
)
const
{
return
shapes
.
size
()
-
1
;
}
};
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/include/migraphx/gpu/miopen.hpp
View file @
a2e3ba0b
...
@@ -34,11 +34,11 @@ Result make_obj(F f, Ts... xs)
...
@@ -34,11 +34,11 @@ Result make_obj(F f, Ts... xs)
auto
status
=
f
(
&
x
,
xs
...);
auto
status
=
f
(
&
x
,
xs
...);
Result
r
{
x
};
Result
r
{
x
};
if
(
status
!=
miopenStatusSuccess
)
if
(
status
!=
miopenStatusSuccess
)
MIGRAPHX_THROW
(
"MIOpen call failed"
);
MIGRAPHX_THROW
(
"
MAKE_OBJ:
MIOpen call failed"
);
return
r
;
return
r
;
}
}
inline
tensor_descriptor
make_tensor
(
const
migraphx
::
shape
&
s
)
inline
tensor_descriptor
make_tensor
(
const
migraphx
::
shape
&
s
,
bool
pack
=
false
)
{
{
auto
t
=
make_obj
<
tensor_descriptor
>
(
&
miopenCreateTensorDescriptor
);
auto
t
=
make_obj
<
tensor_descriptor
>
(
&
miopenCreateTensorDescriptor
);
// Convert to ints
// Convert to ints
...
@@ -49,13 +49,33 @@ inline tensor_descriptor make_tensor(const migraphx::shape& s)
...
@@ -49,13 +49,33 @@ inline tensor_descriptor make_tensor(const migraphx::shape& s)
d
=
miopenFloat
;
d
=
miopenFloat
;
else
if
(
s
.
type
()
==
shape
::
half_type
)
else
if
(
s
.
type
()
==
shape
::
half_type
)
d
=
miopenHalf
;
d
=
miopenHalf
;
else
if
(
s
.
type
()
==
shape
::
int32_type
)
d
=
miopenInt32
;
else
if
(
s
.
type
()
==
shape
::
int8_type
)
{
if
(
pack
)
{
// update the lens and corresponding strides
d
=
miopenInt8x4
;
lens
[
1
]
=
((
lens
[
1
]
+
3
)
/
4
)
*
4
;
strides
[
0
]
=
strides
[
1
]
*
lens
[
1
];
}
else
{
d
=
miopenInt8
;
}
}
else
else
MIGRAPHX_THROW
(
"Unsupported type"
);
{
MIGRAPHX_THROW
(
"MAKE_TENSOR: unsupported type"
);
}
miopenSetTensorDescriptor
(
t
.
get
(),
d
,
s
.
lens
().
size
(),
lens
.
data
(),
strides
.
data
());
miopenSetTensorDescriptor
(
t
.
get
(),
d
,
s
.
lens
().
size
(),
lens
.
data
(),
strides
.
data
());
return
t
;
return
t
;
}
}
inline
convolution_descriptor
make_conv
(
const
migraphx
::
op
::
convolution
&
op
)
template
<
class
T
>
inline
convolution_descriptor
make_conv
(
const
T
&
op
)
{
{
auto
c
=
make_obj
<
convolution_descriptor
>
(
&
miopenCreateConvolutionDescriptor
);
auto
c
=
make_obj
<
convolution_descriptor
>
(
&
miopenCreateConvolutionDescriptor
);
miopenConvolutionMode_t
c_mode
=
miopenConvolution
;
miopenConvolutionMode_t
c_mode
=
miopenConvolution
;
...
...
src/targets/gpu/include/migraphx/gpu/pack_int8_args.hpp
0 → 100644
View file @
a2e3ba0b
#ifndef MIGRAPHX_GUARD_RTGLIB_PACK_INT8_ARGS_HPP
#define MIGRAPHX_GUARD_RTGLIB_PACK_INT8_ARGS_HPP
#include <migraphx/program.hpp>
#include <migraphx/config.hpp>
#include <migraphx/gpu/context.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
struct
pack_int8_args
{
std
::
string
name
()
const
{
return
"gpu::pack_int8_args"
;
}
void
apply
(
program
&
p
)
const
;
shape
pack_int8_shape
(
const
shape
&
s
)
const
;
};
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/include/migraphx/gpu/quant_convolution.hpp
0 → 100644
View file @
a2e3ba0b
#ifndef MIGRAPHX_GUARD_RTGLIB_QUANT_CONVOLUTION_HPP
#define MIGRAPHX_GUARD_RTGLIB_QUANT_CONVOLUTION_HPP
#include <migraphx/shape.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/gpu/miopen.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
struct
context
;
struct
miopen_quant_convolution
{
op
::
quant_convolution
op
;
shared
<
convolution_descriptor
>
cd
;
miopenConvFwdAlgorithm_t
algo
{};
miopenHandle_t
handle
=
nullptr
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
// TODO: Add algo
return
op
::
quant_convolution
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::quant_convolution"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
;
shape
compile
(
context
&
ctx
,
const
shape
&
output_shape
,
std
::
vector
<
shape
>
inputs
);
void
finalize
(
context
&
ctx
,
const
shape
&
output_shape
,
std
::
vector
<
shape
>
inputs
);
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
shapes
)
const
{
return
shapes
.
size
()
-
1
;
}
private:
shape
pack_int8_shape
(
const
shape
&
s
)
const
;
};
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/include/migraphx/gpu/quant_gemm.hpp
0 → 100644
View file @
a2e3ba0b
#ifndef MIGRAPHX_GUARD_RTGLIB_QUANT_GEMM_HPP
#define MIGRAPHX_GUARD_RTGLIB_QUANT_GEMM_HPP
#include <migraphx/shape.hpp>
#include <migraphx/op/quant_dot.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
struct
context
;
struct
rocblas_quant_gemm
{
op
::
quant_dot
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::quant_gemm"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
;
void
batch_not_transposed
(
const
std
::
vector
<
std
::
size_t
>&
strides
)
const
;
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
shapes
)
const
{
return
shapes
.
size
()
-
1
;
}
};
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
#endif
src/targets/gpu/int8_conv_pack.cpp
0 → 100644
View file @
a2e3ba0b
#include <migraphx/gpu/int8_conv_pack.hpp>
#include <migraphx/gpu/context.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
shape
miopen_int8_conv_pack
::
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{{
inputs
.
at
(
0
)},
*
this
}.
has
(
1
).
standard
();
return
inputs
.
at
(
0
);
}
argument
miopen_int8_conv_pack
::
compute
(
context
&
ctx
,
const
shape
&
,
const
std
::
vector
<
argument
>&
args
)
const
{
auto
arg_desc
=
make_tensor
(
args
[
0
].
get_shape
());
auto
arg_desc_vec4
=
make_tensor
(
args
[
0
].
get_shape
(),
true
);
float
alpha
=
1
;
float
beta
=
0
;
// pack input to vec4 format
auto
status
=
miopenTransformTensor
(
ctx
.
get_stream
().
get_miopen
(),
&
alpha
,
arg_desc
.
get
(),
args
[
0
].
implicit
(),
&
beta
,
arg_desc_vec4
.
get
(),
args
[
1
].
implicit
());
if
(
status
!=
miopenStatusSuccess
)
{
MIGRAPHX_THROW
(
"INT8_CONV_PACK: transform input tensor failed"
);
}
return
args
[
1
];
}
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment