Commit a22ec139 authored by Manupa Karunaratne's avatar Manupa Karunaratne
Browse files

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/AMDMIGraphX into mlir-attention

parents 9898823d 650ba45f
......@@ -33,17 +33,6 @@
namespace migraphx {
// In CK, the B matrix is ordered as N,K instead of K,N
template <class Dims>
constexpr auto ck_transposeb_dims(Dims dims)
{
return unpack(dims, [](auto k, auto n) { return make_const_array(n, k); });
}
template <class Tensor>
using ck_transposeb = decltype(make_shape(ck_transposeb_dims(get_shape_c<Tensor>{}.lens),
ck_transposeb_dims(get_shape_c<Tensor>{}.strides)));
template <class G, class E, class A, class B, class... Ds>
__device__ void ck_gemm_matrix(E e, A a, B b, Ds... ds)
{
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_KERNELS_CK_GEMM_SOFTMAX_GEMM_HPP
#define MIGRAPHX_GUARD_KERNELS_CK_GEMM_SOFTMAX_GEMM_HPP
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/algorithm.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/tensor_view.hpp>
#include <migraphx/kernels/ck.hpp>
#include <migraphx/kernels/gemm_batcher.hpp>
namespace migraphx {
template <class T>
struct ck_gemm_softmax_gemm_settings
{
T scale{};
};
template <class... Ts>
constexpr ck_gemm_softmax_gemm_settings<Ts...> make_ck_gemm_softmax_gemm_settings(Ts... xs)
{
return {xs...};
}
template <class G, class C, class A, class B, class B1, class Settings>
__device__ void ck_gemm_softmax_gemm_matrix(C c, A a, B b, B1 b1, Settings s)
{
constexpr auto desc = G::make_descriptor(to_ck_tensor<A>(),
to_ck_tensor<ck_transposeb<B>>(),
to_ck_tensor<ck_transposeb<B1>>(),
to_ck_tensor<C>());
static_assert(desc.IsValid(), "Invalid ck gemm.");
G::Run(desc,
s.scale,
to_ck_const_pointer(a.data()),
to_ck_const_pointer(b.data()),
to_ck_const_pointer(b1.data()),
to_ck_pointer(c.data()));
}
template <class G, index_int BlocksPerBatch, class... Ts, class Settings>
__device__ void ck_gemm_softmax_gemm(Settings s, Ts... xs)
{
gemm_batch_args(make_index(), _c<BlocksPerBatch>, xs...)(
[&](auto... ys) { ck_gemm_softmax_gemm_matrix<G>(ys..., s); });
}
} // namespace migraphx
#endif
......@@ -1032,6 +1032,15 @@ tuning_config get_tuning_config_mlir(const context& migraphx_ctx,
mlir_program mp;
mp.set_gpu_properties(migraphx_ctx);
mp.parse(m);
const bool trace = enabled(MIGRAPHX_TRACE_MLIR{});
static std::mutex mutex;
if(trace)
{
const std::lock_guard<std::mutex> lock(mutex);
auto mod_op = mlirModuleGetOperation(mp.mmodule.get());
std::cout << mlir_print(&mlirOperationPrint, mod_op) << std::endl;
}
return mp.get_tuning_config(exhaustive);
}
......
......@@ -23,16 +23,17 @@
*/
#include <migraphx/permutation.hpp>
#include <migraphx/gpu/prefuse_ops.hpp>
#include <migraphx/gpu/gemm_softmax_gemm.hpp>
#include <migraphx/match/layernorm.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/gpu/ck.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace {
template <class Derived, std::size_t N>
......@@ -120,6 +121,60 @@ struct find_add_layernorm
m.replace_instruction(ins, add_layernorm{op.epsilon}, add_ins->inputs());
}
};
struct pre_gemm_softmax_gemm : gemm_softmax_gemm
{
std::string name() const { return "gpu::pre_gemm_softmax_gemm"; }
};
MIGRAPHX_REGISTER_OP(pre_gemm_softmax_gemm);
MIGRAPHX_PRED_MATCHER(is_ck_gemm, instruction_ref ins)
{
if(ins->name() != "dot")
return false;
if(not pre_gemm_softmax_gemm::is_ck_supported_type(ins->get_shape().type()))
return false;
return true;
}
struct find_gemm_softmax_gemm
{
auto matcher() const
{
auto gemm1 =
match::skip(match::name("contiguous"))(match::name("dot")(is_ck_gemm().bind("gemm1")));
auto mul = match::name("mul")(
match::nargs(2), match::either_arg(0, 1)(match::is_constant().bind("scale"), gemm1));
auto softmax = match::name("softmax")(match::arg(0)(mul)).bind("softmax");
return match::name("dot")(is_ck_gemm().bind("gemm2"))(match::arg(0)(softmax));
}
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto ins = r.result;
auto gemm2_ins = r.instructions["gemm2"];
auto gemm1_ins = r.instructions["gemm1"];
auto scale_lit = r.instructions["scale"];
float scale = 1.0;
scale_lit->eval().visit([&](const auto s) {
// CK only supports single-valued scale
if(std::all_of(
s.begin() + 1, s.end(), [&](auto v) { return float_equal(v, s.front()); }))
scale = s.front();
else
return;
});
auto inputs = gemm1_ins->inputs(); // A, B
inputs.push_back(gemm2_ins->inputs().back()); // B1
mpm.get_module().replace_instruction(
ins, pre_gemm_softmax_gemm{gemm2_ins->get_operator(), scale}, inputs);
}
};
} // namespace
void prefuse_ops::apply(module_pass_manager& mpm) const
......@@ -127,6 +182,8 @@ void prefuse_ops::apply(module_pass_manager& mpm) const
match::find_matches(mpm.get_module(), find_layernorm{});
mpm.run_pass(dead_code_elimination{});
match::find_matches(mpm.get_module(), find_add_layernorm{});
if(enabled(MIGRAPHX_ENABLE_CK{}))
match::find_matches(mpm, find_gemm_softmax_gemm{});
}
} // namespace gpu
......
......@@ -41,8 +41,7 @@ std::vector<argument> generate_arguments(const std::vector<shape>& shapes, unsig
}
using milliseconds = std::chrono::duration<double, std::milli>;
std::pair<double, double>
time_op(context& ictx, operation op, const std::vector<shape>& inputs, int n)
double time_op(context& ictx, operation op, const std::vector<shape>& inputs, int n)
{
// TODO: Use std::ref
......@@ -51,21 +50,19 @@ time_op(context& ictx, operation op, const std::vector<shape>& inputs, int n)
auto output = op.compute_shape(inputs);
op.finalize(ctx, output, inputs);
auto args = generate_arguments(inputs);
auto run = [&] {
op.compute(ctx, output, args);
ctx.finish();
};
gctx.enable_perf_measurement();
auto start = context::create_event_for_timing();
auto stop = context::create_event_for_timing();
auto run = [&] { op.compute(ctx, output, args); };
run();
double host_time = 0.0;
double device_time = 0.0;
gctx.get_stream().record(start.get());
for(auto i : range(n))
{
(void)i;
host_time += time<milliseconds>(run);
device_time += gctx.get_elapsed_ms();
run();
}
return std::make_pair(host_time / n, device_time / n);
gctx.get_stream().record(stop.get());
gctx.finish();
return context::get_elapsed_ms(start.get(), stop.get()) / n;
}
} // namespace gpu
......
......@@ -45,8 +45,7 @@ struct parse_reshape : op_parser<parse_reshape>
auto s = args[1]->eval();
std::vector<int64_t> dims;
s.visit([&](auto v) { copy(v, std::back_inserter(dims)); });
return info.add_instruction(make_op("reshape", {{"dims", dims}}),
info.make_contiguous(args[0]));
return info.add_instruction(make_op("reshape", {{"dims", dims}}), args[0]);
}
};
......
......@@ -34,7 +34,8 @@
void run_pass(migraphx::program& p)
{
migraphx::run_passes(p, {migraphx::gpu::fuse_mlir{}, migraphx::dead_code_elimination{}});
migraphx::run_passes(
p, {migraphx::gpu::fuse_mlir{.enable_extra = true}, migraphx::dead_code_elimination{}});
}
template <class F>
......@@ -151,7 +152,6 @@ TEST_CASE(int_quant_dot_tanh_fails)
int main(int argc, const char* argv[])
{
if(migraphx::gpu::mlir_enabled())
test::run(argc, argv);
test::run(argc, argv);
return 0;
}
......@@ -339,6 +339,8 @@ inline std::ostream& operator<<(std::ostream& os, const color& c)
static const bool use_color = isatty(STDOUT_FILENO) != 0;
if(use_color)
return os << "\033[" << static_cast<std::size_t>(c) << "m";
#else
(void)c;
#endif
return os;
}
......
......@@ -5151,6 +5151,223 @@ def qlinearadd_bcast_test():
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])
@onnx_test()
def qlinearconv_test():
# https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__QLinearConv.html
x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 1, 7, 7])
sc_x = helper.make_tensor('1', TensorProto.FLOAT, [], [0.00369204697])
zero_pt_x = helper.make_tensor('2', TensorProto.UINT8, [], [132])
wt = helper.make_tensor('3', TensorProto.UINT8, [1, 1, 1, 1], [0])
sc_wt = helper.make_tensor('4', TensorProto.FLOAT, [], [0.00172794575])
zero_pt_wt = helper.make_tensor('5', TensorProto.UINT8, [], [255])
sc_y = helper.make_tensor('6', TensorProto.FLOAT, [], [0.00162681262])
zero_pt_y = helper.make_tensor('7', TensorProto.UINT8, [], [123])
out = helper.make_tensor_value_info('out', TensorProto.UINT8, [1, 1, 7, 7])
node = onnx.helper.make_node(
'QLinearConv',
inputs=['X', '1', '2', '3', '4', '5', '6', '7'],
outputs=['out'],
)
return ([node], [x], [out],
[sc_x, zero_pt_x, wt, sc_wt, zero_pt_wt, sc_y, zero_pt_y])
@onnx_test()
def qlinearconv_pad_1_test():
# https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__Conv.html
x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 1, 5, 5])
sc_x = helper.make_tensor('1', TensorProto.FLOAT, [],
[0.09411764705882353])
zero_pt_x = helper.make_tensor('2', TensorProto.UINT8, [], [0])
wt = helper.make_tensor('3', TensorProto.UINT8, [1, 1, 3, 3],
[1, 1, 1, 1, 1, 1, 1, 1, 1])
sc_wt = helper.make_tensor('4', TensorProto.FLOAT, [], [1.0])
zero_pt_wt = helper.make_tensor('5', TensorProto.UINT8, [], [0])
sc_y = helper.make_tensor('6', TensorProto.FLOAT, [], [0.6352941176470588])
zero_pt_y = helper.make_tensor('7', TensorProto.UINT8, [], [0])
out = helper.make_tensor_value_info('out', TensorProto.UINT8, [1, 1, 5, 5])
node = onnx.helper.make_node(
'QLinearConv',
inputs=['X', '1', '2', '3', '4', '5', '6', '7'],
outputs=['out'],
pads=[1, 1, 1, 1],
)
return ([node], [x], [out],
[sc_x, zero_pt_x, wt, sc_wt, zero_pt_wt, sc_y, zero_pt_y])
@onnx_test()
def qlinearconv_pad_0_test():
# https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__Conv.html
x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 1, 5, 5])
sc_x = helper.make_tensor('1', TensorProto.FLOAT, [],
[0.09411764705882353])
zero_pt_x = helper.make_tensor('2', TensorProto.UINT8, [], [0])
wt = helper.make_tensor('3', TensorProto.UINT8, [1, 1, 3, 3],
[1, 1, 1, 1, 1, 1, 1, 1, 1])
sc_wt = helper.make_tensor('4', TensorProto.FLOAT, [], [1.0])
zero_pt_wt = helper.make_tensor('5', TensorProto.UINT8, [], [0])
sc_y = helper.make_tensor('6', TensorProto.FLOAT, [], [0.6352941176470588])
zero_pt_y = helper.make_tensor('7', TensorProto.INT8, [], [-128])
out = helper.make_tensor_value_info('out', TensorProto.INT8, [1, 1, 3, 3])
node = onnx.helper.make_node(
'QLinearConv',
inputs=['X', '1', '2', '3', '4', '5', '6', '7'],
outputs=['out'],
pads=[0, 0, 0, 0],
)
return ([node], [x], [out],
[sc_x, zero_pt_x, wt, sc_wt, zero_pt_wt, sc_y, zero_pt_y])
@onnx_test()
def qlinearconv_scale_1D_test():
# https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__Conv.html
x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 1, 5, 5])
sc_x = helper.make_tensor('1', TensorProto.FLOAT, [],
[0.09411764705882353])
zero_pt_x = helper.make_tensor('2', TensorProto.UINT8, [], [0])
wt = helper.make_tensor(
'3', TensorProto.UINT8, [2, 1, 3, 3],
[1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2])
sc_wt = helper.make_tensor('4', TensorProto.FLOAT, [2], [1.0, 0.5])
zero_pt_wt = helper.make_tensor('5', TensorProto.UINT8, [2], [0, 0])
sc_y = helper.make_tensor('6', TensorProto.FLOAT, [], [0.6352941176470588])
zero_pt_y = helper.make_tensor('7', TensorProto.INT8, [], [-128])
out = helper.make_tensor_value_info('out', TensorProto.INT8, [1, 2, 3, 3])
node = onnx.helper.make_node(
'QLinearConv',
inputs=['X', '1', '2', '3', '4', '5', '6', '7'],
outputs=['out'],
pads=[0, 0, 0, 0],
)
return ([node], [x], [out],
[sc_x, zero_pt_x, wt, sc_wt, zero_pt_wt, sc_y, zero_pt_y])
@onnx_test()
def qlinearglobalavgpool_test():
x = helper.make_tensor_value_info('X', TensorProto.UINT8, [1, 3, 4, 4])
sc_x = helper.make_tensor('X_scale', TensorProto.FLOAT, [], [0.05])
z_pt_x = helper.make_tensor('X_zero_point', TensorProto.UINT8, [], [128])
y = helper.make_tensor_value_info('Y', TensorProto.UINT8, [1, 3, 1, 1])
sc_y = helper.make_tensor('Y_scale', TensorProto.FLOAT, [], [0.025])
z_pt_y = helper.make_tensor('Y_zero_point', TensorProto.UINT8, [], [64])
n = onnx.helper.make_node(
'QLinearGlobalAveragePool',
inputs=['X', 'X_scale', 'X_zero_point', 'Y_scale', 'Y_zero_point'],
outputs=['Y'],
channels_last=0,
)
return ([n], [x], [y], [sc_x, z_pt_x, sc_y, z_pt_y])
def qlinearmatmul_1D_test():
a = helper.make_tensor_value_info('A', TensorProto.UINT8, [8])
sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [], [0])
b = helper.make_tensor_value_info('B', TensorProto.UINT8, [8])
sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [],
[128])
sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [], [64])
c = helper.make_tensor_value_info('C', TensorProto.UINT8, [1])
node = onnx.helper.make_node(
'QLinearMatMul',
inputs=[
'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
'C_scale', 'C_zero_point'
],
outputs=['C'],
)
return ([node], [a, b], [c],
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])
@onnx_test()
def qlinearmatmul_2D_test():
a = helper.make_tensor_value_info('A', TensorProto.UINT8, [1, 8])
sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [], [0])
b = helper.make_tensor_value_info('B', TensorProto.UINT8, [8, 1])
sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [],
[128])
sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [], [64])
c = helper.make_tensor_value_info('C', TensorProto.UINT8, [1, 1])
node = onnx.helper.make_node(
'QLinearMatMul',
inputs=[
'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
'C_scale', 'C_zero_point'
],
outputs=['C'],
)
return ([node], [a, b], [c],
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])
@onnx_test()
def qlinearmatmul_3D_test():
a = helper.make_tensor_value_info('A', TensorProto.UINT8, [2, 2, 4])
sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.0066])
zero_pt_a = helper.make_tensor('A_zero_point', TensorProto.UINT8, [],
[113])
b = helper.make_tensor_value_info('B', TensorProto.UINT8, [2, 4, 3])
sc_b = helper.make_tensor('B_scale', TensorProto.FLOAT, [], [0.00705])
zero_pt_b = helper.make_tensor('B_zero_point', TensorProto.UINT8, [],
[114])
sc_c = helper.make_tensor('C_scale', TensorProto.FLOAT, [], [0.0107])
zero_pt_c = helper.make_tensor('C_zero_point', TensorProto.UINT8, [],
[118])
c = helper.make_tensor_value_info('C', TensorProto.UINT8, [2, 2, 3])
node = onnx.helper.make_node(
'QLinearMatMul',
inputs=[
'A', 'A_scale', 'A_zero_point', 'B', 'B_scale', 'B_zero_point',
'C_scale', 'C_zero_point'
],
outputs=['C'],
)
return ([node], [a, b], [c],
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])
@onnx_test()
def quantizelinear_test():
arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
......
......@@ -1772,8 +1772,7 @@ TEST_CASE(depthtospace_test)
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {2, 2, 2, 2, 5, 5}}}), l0);
auto tmp2 = mm->add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 3, 4, 1, 5, 2}}}), tmp1);
auto tmp3 = mm->add_instruction(migraphx::make_op("contiguous"), tmp2);
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {2, 2, 10, 10}}}), tmp3);
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {2, 2, 10, 10}}}), tmp2);
auto prog = optimize_onnx("depthtospace_test.onnx");
EXPECT(p == prog);
}
......@@ -1787,8 +1786,7 @@ TEST_CASE(depthtospace_crd_test)
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {2, 2, 2, 2, 5, 5}}}), l0);
auto tmp2 = mm->add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 1, 4, 2, 5, 3}}}), tmp1);
auto tmp3 = mm->add_instruction(migraphx::make_op("contiguous"), tmp2);
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {2, 2, 10, 10}}}), tmp3);
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {2, 2, 10, 10}}}), tmp2);
auto prog = optimize_onnx("depthtospace_crd_test.onnx");
EXPECT(p == prog);
}
......@@ -1802,8 +1800,7 @@ TEST_CASE(depthtospace_simple_test)
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {1, 2, 2, 2, 2, 3}}}), l0);
auto tmp2 = mm->add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 3, 4, 1, 5, 2}}}), tmp1);
auto tmp3 = mm->add_instruction(migraphx::make_op("contiguous"), tmp2);
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {1, 2, 4, 6}}}), tmp3);
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {1, 2, 4, 6}}}), tmp2);
auto prog = optimize_onnx("depthtospace_simple_test.onnx");
EXPECT(p == prog);
}
......@@ -1817,8 +1814,7 @@ TEST_CASE(spacetodepth_test)
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {2, 2, 5, 2, 5, 2}}}), l0);
auto tmp2 = mm->add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 3, 5, 1, 2, 4}}}), tmp1);
auto tmp3 = mm->add_instruction(migraphx::make_op("contiguous"), tmp2);
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {2, 8, 5, 5}}}), tmp3);
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {2, 8, 5, 5}}}), tmp2);
auto prog = optimize_onnx("spacetodepth_test.onnx");
EXPECT(p == prog);
}
......@@ -1832,8 +1828,7 @@ TEST_CASE(spacetodepth_simple_test)
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {1, 2, 2, 2, 3, 2}}}), l0);
auto tmp2 = mm->add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 3, 5, 1, 2, 4}}}), tmp1);
auto tmp3 = mm->add_instruction(migraphx::make_op("contiguous"), tmp2);
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {1, 8, 2, 3}}}), tmp3);
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {1, 8, 2, 3}}}), tmp2);
auto prog = optimize_onnx("spacetodepth_simple_test.onnx");
EXPECT(p == prog);
}
......@@ -4909,6 +4904,218 @@ TEST_CASE(qlinearadd_test)
EXPECT(p.sort() == prog.sort());
}
TEST_CASE(qlinearconv_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("X", {migraphx::shape::uint8_type, {1, 1, 7, 7}});
auto sc_x = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.00369204697}});
auto z_pt_x = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {132}});
auto w = mm->add_literal(
migraphx::literal{migraphx::shape{migraphx::shape::uint8_type, {1, 1, 1, 1}}, {0}});
auto sc_w = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.00172794575}});
auto z_pt_w = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {255}});
auto sc_y = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.00162681262}});
auto z_pt_y = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {123}});
auto scale_x_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 7, 7}}}), sc_x);
auto z_pt_x_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 7, 7}}}), z_pt_x);
auto fp_x =
mm->add_instruction(migraphx::make_op("dequantizelinear"), x, scale_x_bcast, z_pt_x_bcast);
auto scale_w_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 1, 1}}}), sc_w);
auto z_pt_w_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 1, 1}}}), z_pt_w);
auto fp_w =
mm->add_instruction(migraphx::make_op("dequantizelinear"), w, scale_w_bcast, z_pt_w_bcast);
auto fp_y = mm->add_instruction(migraphx::make_op("convolution"), fp_x, fp_w);
auto scale_y_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 7, 7}}}), sc_y);
auto z_pt_y_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 1, 7, 7}}}), z_pt_y);
auto y =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_y, scale_y_bcast, z_pt_y_bcast);
mm->add_return({y});
auto prog = migraphx::parse_onnx("qlinearconv_test.onnx");
EXPECT(p.sort() == prog.sort());
}
TEST_CASE(qlinearglobalavgpool_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("X", {migraphx::shape::uint8_type, {1, 3, 4, 4}});
auto sc_x = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_x = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {128}});
auto sc_y = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.025}});
auto z_pt_y = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {64}});
auto scale_x_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 3, 4, 4}}}), sc_x);
auto z_pt_x_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 3, 4, 4}}}), z_pt_x);
auto fp_x =
mm->add_instruction(migraphx::make_op("dequantizelinear"), x, scale_x_bcast, z_pt_x_bcast);
auto fp_y =
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0}},
{"lengths", {4, 4}}}),
fp_x);
auto scale_y_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 3, 1, 1}}}), sc_y);
auto z_pt_y_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 3, 1, 1}}}), z_pt_y);
auto y =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_y, scale_y_bcast, z_pt_y_bcast);
mm->add_return({y});
auto prog = migraphx::parse_onnx("qlinearglobalavgpool_test.onnx");
EXPECT(p.sort() == prog.sort());
}
TEST_CASE(qlinearmatmul_1D_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto a = mm->add_parameter("A", {migraphx::shape::uint8_type, {8}});
auto b = mm->add_parameter("B", {migraphx::shape::uint8_type, {8}});
auto sc_a = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_a = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {0}});
auto sc_b = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_b = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {128}});
auto sc_c = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_c = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {64}});
auto scale_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {8}}}), sc_a);
auto z_pt_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {8}}}), z_pt_a);
auto fp_a =
mm->add_instruction(migraphx::make_op("dequantizelinear"), a, scale_a_bcast, z_pt_a_bcast);
auto scale_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {8}}}), sc_b);
auto z_pt_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {8}}}), z_pt_b);
auto fp_b =
mm->add_instruction(migraphx::make_op("dequantizelinear"), b, scale_b_bcast, z_pt_b_bcast);
auto sq_a = mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {0}}}), fp_a);
auto sq_b = mm->add_instruction(migraphx::make_op("unsqueeze", {{"axes", {1}}}), fp_b);
auto fp_c = mm->add_instruction(migraphx::make_op("dot"), sq_a, sq_b);
auto sq_c = mm->add_instruction(migraphx::make_op("squeeze", {{"axes", {0}}}), fp_c);
auto scale_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1}}}), sc_c);
auto z_pt_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1}}}), z_pt_c);
auto c =
mm->add_instruction(migraphx::make_op("quantizelinear"), sq_c, scale_c_bcast, z_pt_c_bcast);
mm->add_return({c});
auto prog = migraphx::parse_onnx("qlinearmatmul_1D_test.onnx");
EXPECT(p.sort() == prog.sort());
}
TEST_CASE(qlinearmatmul_2D_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto a = mm->add_parameter("A", {migraphx::shape::uint8_type, {1, 8}});
auto b = mm->add_parameter("B", {migraphx::shape::uint8_type, {8, 1}});
auto sc_a = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_a = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {0}});
auto sc_b = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_b = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {128}});
auto sc_c = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_c = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {64}});
auto scale_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 8}}}), sc_a);
auto z_pt_a_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 8}}}), z_pt_a);
auto fp_a =
mm->add_instruction(migraphx::make_op("dequantizelinear"), a, scale_a_bcast, z_pt_a_bcast);
auto scale_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {8, 1}}}), sc_b);
auto z_pt_b_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {8, 1}}}), z_pt_b);
auto fp_b =
mm->add_instruction(migraphx::make_op("dequantizelinear"), b, scale_b_bcast, z_pt_b_bcast);
auto fp_c = mm->add_instruction(migraphx::make_op("dot"), fp_a, fp_b);
auto scale_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 1}}}), sc_c);
auto z_pt_c_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 1}}}), z_pt_c);
auto c =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_c, scale_c_bcast, z_pt_c_bcast);
mm->add_return({c});
auto prog = migraphx::parse_onnx("qlinearmatmul_2D_test.onnx");
EXPECT(p.sort() == prog.sort());
}
TEST_CASE(quantizelinear_test)
{
migraphx::program p;
......@@ -5491,12 +5698,9 @@ TEST_CASE(reshape_test)
migraphx::literal{migraphx::shape{migraphx::shape::int64_type, {2}}, reshape_dims});
auto l0 = mm->add_parameter("0", migraphx::shape{migraphx::shape::float_type, {4, 2, 3}});
op.dims = reshape_dims;
auto c0 = mm->add_instruction(migraphx::make_op("contiguous"), l0);
mm->add_instruction(op, c0);
auto c1 = mm->add_instruction(migraphx::make_op("contiguous"), l0);
mm->add_instruction(op, c1);
mm->add_instruction(op, l0);
mm->add_instruction(op, l0);
auto prog = optimize_onnx("reshape_test.onnx");
EXPECT(p == prog);
}
......@@ -5509,8 +5713,7 @@ TEST_CASE(reshape_non_standard_test)
auto x = mm->add_parameter("x", s);
auto tran_x =
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 2, 1}}}), x);
auto cont_x = mm->add_instruction(migraphx::make_op("contiguous"), tran_x);
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {4, 3, 2}}}), cont_x);
mm->add_instruction(migraphx::make_op("reshape", {{"dims", {4, 3, 2}}}), tran_x);
auto prog = optimize_onnx("reshape_non_standard_test.onnx");
EXPECT(p == prog);
......
qlinearmatmul_3D_test:
]
A
A_scale
A_zero_point
B
B_scale
B_zero_point
C_scale
C_zero_pointC" QLinearMatMulqlinearmatmul_3D_test*"D;BA_scale**qB A_zero_point*";BB_scale**rB B_zero_point*"O/<BC_scale**vB C_zero_pointZ
A



Z
B



b
C



B
\ No newline at end of file
......@@ -1270,7 +1270,7 @@ TEST_CASE(qlinearadd_test)
pp["B"] = migraphx::argument(b, data_b.data());
auto result = p.eval(pp).back();
std::vector<unsigned char> result_vector;
std::vector<uint8_t> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<uint8_t> gold = {64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64,
......@@ -1318,6 +1318,215 @@ TEST_CASE(qlinearadd_bcast_test)
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(qlinearconv_test)
{
// https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__QLinearConv.html
migraphx::program p = migraphx::parse_onnx("qlinearconv_test.onnx");
p.compile(migraphx::make_target("ref"));
migraphx::shape sx{migraphx::shape::uint8_type, {1, 1, 7, 7}};
std::vector<uint8_t> x_data = {255, 174, 162, 25, 203, 168, 58, 15, 59, 237, 95, 129, 0,
64, 56, 242, 153, 221, 168, 12, 166, 232, 178, 186, 195, 237,
162, 237, 188, 39, 124, 77, 80, 102, 43, 127, 230, 21, 83,
41, 40, 134, 255, 154, 92, 141, 42, 148, 247};
migraphx::parameter_map pp;
pp["X"] = migraphx::argument(sx, x_data.data());
auto result = p.eval(pp).back();
std::vector<uint8_t> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<uint8_t> gold = {0, 81, 93, 230, 52, 87, 197, 240, 196, 18, 160, 126, 255,
191, 199, 13, 102, 34, 87, 243, 89, 23, 77, 69, 60, 18,
93, 18, 67, 216, 131, 178, 175, 153, 212, 128, 25, 234, 172,
214, 215, 121, 0, 101, 163, 114, 213, 107, 8};
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(qlinearconv_pad_0_test)
{
// https:xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__Conv.html
migraphx::program p = migraphx::parse_onnx("qlinearconv_pad_0_test.onnx");
p.compile(migraphx::make_target("ref"));
migraphx::shape sx{migraphx::shape::uint8_type, {1, 1, 5, 5}};
std::vector<uint8_t> x_data = {0, 11, 21, 32, 42, 53, 64, 74, 85, 96, 106, 117, 128,
138, 149, 159, 170, 181, 191, 202, 212, 223, 234, 244, 255};
migraphx::parameter_map pp;
pp["X"] = migraphx::argument(sx, x_data.data());
auto result = p.eval(pp).back();
std::vector<int8_t> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
// # (1, 1, 3, 3) output tensor
std::vector<int8_t> gold = {-43, -29, -15, 28, 42, 56, 99, 113, 127};
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(qlinearconv_pad_1_test)
{
// https:xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__Conv.html
migraphx::program p = migraphx::parse_onnx("qlinearconv_pad_1_test.onnx");
p.compile(migraphx::make_target("ref"));
migraphx::shape sx{migraphx::shape::uint8_type, {1, 1, 5, 5}};
std::vector<uint8_t> x_data = {0, 11, 21, 32, 42, 53, 64, 74, 85, 96, 106, 117, 128,
138, 149, 159, 170, 181, 191, 202, 212, 223, 234, 244, 255};
migraphx::parameter_map pp;
pp["X"] = migraphx::argument(sx, x_data.data());
auto result = p.eval(pp).back();
std::vector<uint8_t> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
// # (1, 1, 5, 5) output tensor
std::vector<uint8_t> gold = {19, 33, 43, 52, 38, 52, 85, 99, 113, 80, 99, 156, 170,
184, 128, 146, 227, 241, 255, 175, 113, 175, 184, 194, 132};
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(qlinearconv_scale_1D_test)
{
// https:xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__Conv.html
migraphx::program p = migraphx::parse_onnx("qlinearconv_scale_1D_test.onnx");
p.compile(migraphx::make_target("ref"));
migraphx::shape sx{migraphx::shape::uint8_type, {1, 1, 5, 5}};
std::vector<uint8_t> x_data = {0, 11, 21, 32, 42, 53, 64, 74, 85, 96, 106, 117, 128,
138, 149, 159, 170, 181, 191, 202, 212, 223, 234, 244, 255};
migraphx::parameter_map pp;
pp["X"] = migraphx::argument(sx, x_data.data());
auto result = p.eval(pp).back();
std::vector<int8_t> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
// # (1, 2, 3, 3) output tensor
std::vector<int8_t> gold = {
-43, -29, -15, 28, 42, 56, 99, 113, 127, -43, -29, -15, 28, 42, 56, 99, 113, 127};
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(qlinearglobalavgpool_test)
{
// github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md
// #com.microsoft.QLinearGlobalAveragePool
migraphx::program p = migraphx::parse_onnx("qlinearglobalavgpool_test.onnx");
p.compile(migraphx::make_target("ref"));
migraphx::shape sh_x{migraphx::shape::uint8_type, {1, 3, 4, 4}};
std::vector<uint8_t> data_x = {160, 156, 152, 148, 144, 140, 136, 132, 124, 120, 116, 112,
108, 104, 100, 96, 64, 72, 80, 88, 96, 104, 112, 120,
136, 144, 152, 160, 168, 176, 184, 192, 120, 121, 122, 123,
124, 125, 126, 127, 129, 130, 131, 132, 133, 134, 135, 136};
migraphx::parameter_map pp;
pp["X"] = migraphx::argument(sh_x, data_x.data());
auto result = p.eval(pp).back();
std::vector<uint8_t> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<uint8_t> gold = {64, 64, 64};
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(qlinearmatmul_1D_test)
{
migraphx::program p = migraphx::parse_onnx("qlinearmatmul_1D_test.onnx");
p.compile(migraphx::make_target("ref"));
migraphx::shape a{migraphx::shape::uint8_type, {8}};
std::vector<uint8_t> data_a = {2, 4, 6, 8, 10, 12, 14, 16};
migraphx::shape b{migraphx::shape::uint8_type, {8}};
std::vector<uint8_t> data_b = {126, 130, 124, 132, 122, 134, 120, 136};
migraphx::parameter_map pp;
pp["A"] = migraphx::argument(a, data_a.data());
pp["B"] = migraphx::argument(b, data_b.data());
auto result = p.eval(pp).back();
std::vector<uint8_t> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<uint8_t> gold = {66};
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(qlinearmatmul_2D_test)
{
migraphx::program p = migraphx::parse_onnx("qlinearmatmul_2D_test.onnx");
p.compile(migraphx::make_target("ref"));
migraphx::shape a{migraphx::shape::uint8_type, {1, 8}};
std::vector<uint8_t> data_a = {2, 4, 6, 8, 10, 12, 14, 16};
migraphx::shape b{migraphx::shape::uint8_type, {8, 1}};
std::vector<uint8_t> data_b = {126, 130, 124, 132, 122, 134, 120, 136};
migraphx::parameter_map pp;
pp["A"] = migraphx::argument(a, data_a.data());
pp["B"] = migraphx::argument(b, data_b.data());
auto result = p.eval(pp).back();
std::vector<uint8_t> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<uint8_t> gold = {66};
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(qlinearmatmul_3D_test)
{
// https://xadupre.github.io/draft/onnx/onnx_doc_folder/onnx__QLinearMatMul.html
migraphx::program p = migraphx::parse_onnx("qlinearmatmul_3D_test.onnx");
p.compile(migraphx::make_target("ref"));
migraphx::shape a{migraphx::shape::uint8_type, {2, 2, 4}};
std::vector<uint8_t> data_a = {
208, 236, 0, 238, 3, 214, 255, 29, 208, 236, 0, 238, 3, 214, 255, 29};
migraphx::shape b{migraphx::shape::uint8_type, {2, 4, 3}};
std::vector<uint8_t> data_b = {152, 51, 244, 60, 26, 255, 0, 127, 246, 127, 254, 247,
152, 51, 244, 60, 26, 255, 0, 127, 246, 127, 254, 247};
migraphx::parameter_map pp;
pp["A"] = migraphx::argument(a, data_a.data());
pp["B"] = migraphx::argument(b, data_b.data());
auto result = p.eval(pp).back();
std::vector<uint8_t> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<uint8_t> gold = {168, 115, 255, 1, 66, 151, 168, 115, 255, 1, 66, 151};
EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
TEST_CASE(resize_downsample_f_test)
{
migraphx::program p = migraphx::parse_onnx("resize_downsample_f_test.onnx");
......
......@@ -62,4 +62,41 @@ TEST_CASE(broadcast_transpose_inner_broadcast)
EXPECT(m1 == m2);
}
TEST_CASE(broadcast_transpose_inner_broadcast_generic)
{
// first optimizes broadcast+transpose to unsqueeze+transpose+broadcast,
// then finds inner broadcast to become mul+broadcast
migraphx::module m1;
{
auto l1 = m1.add_parameter("x", {migraphx::shape::float_type, {5, 10}});
auto l2 = m1.add_parameter("y", {migraphx::shape::float_type, {5}});
auto mb1 =
m1.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {3, 5, 10}}}), l1);
auto mb2 =
m1.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {3, 10, 5}}}), l2);
auto t1 =
m1.add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 2, 1}}}), mb2);
auto mul = m1.add_instruction(migraphx::make_op("mul"), mb1, t1);
m1.add_return({mul});
}
run_pass(m1);
migraphx::module m2;
{
auto l1 = m2.add_parameter("x", {migraphx::shape::float_type, {5, 10}});
auto l2 = m2.add_parameter("y", {migraphx::shape::float_type, {5}});
auto unsqueeze = m2.add_instruction(migraphx::make_op("unsqueeze", {{"axes", {0, 1}}}), l2);
auto transpose = m2.add_instruction(
migraphx::make_op("transpose", {{"permutation", {0, 2, 1}}}), unsqueeze);
auto mb1 =
m2.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 5, 10}}}), l1);
auto mb2 = m2.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 5, 10}}}), transpose);
auto mul = m2.add_instruction(migraphx::make_op("mul"), mb1, mb2);
auto mb3 = m2.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {3, 5, 10}}}), mul);
m2.add_return({mb3});
}
EXPECT(m1 == m2);
}
int main(int argc, const char* argv[]) { test::run(argc, argv); }
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment