Commit a0edd061 authored by Paul's avatar Paul
Browse files

Merge branch 'develop' into jit-improve

parents 6deee23b 2781ccd8
...@@ -272,7 +272,7 @@ struct find_concat_transpose ...@@ -272,7 +272,7 @@ struct find_concat_transpose
{ {
auto matcher() const auto matcher() const
{ {
return match::name("concat")(match::all_of[match::inputs()](match::transpose_shape())); return match::name("concat")(match::all_of[match::inputs()](match::name("transpose")));
} }
void apply(module& m, const match::matcher_result& mr) const void apply(module& m, const match::matcher_result& mr) const
...@@ -601,6 +601,69 @@ struct find_transpose_contiguous_reshaper_unary ...@@ -601,6 +601,69 @@ struct find_transpose_contiguous_reshaper_unary
} }
}; };
struct find_slice_transpose
{
auto matcher() const
{
return match::any(match::any_of[match::outputs()](
match::name("slice")(match::output(match::name("transpose")))));
}
static std::vector<int64_t> find_common_perm(const std::vector<instruction_ref>& transposes)
{
std::map<std::vector<int64_t>, int64_t> count;
for(auto t : transposes)
{
auto perm = t->get_operator().to_value()["permutation"].to_vector<int64_t>();
count[perm]++;
}
return std::max_element(
count.begin(), count.end(), by(std::less<>{}, [](auto&& p) { return p.second; }))
->first;
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
std::vector<instruction_ref> splits;
std::copy_if(ins->outputs().begin(),
ins->outputs().end(),
std::back_inserter(splits),
[&](instruction_ref out) {
return out->name() == "slice" and out->outputs().size() == 1 and
out->outputs().front()->name() == "transpose";
});
if(splits.size() < 2)
return;
std::vector<instruction_ref> transposes;
std::transform(splits.begin(),
splits.end(),
std::back_inserter(transposes),
[](auto split) { return split->outputs().front(); });
auto perm = find_common_perm(transposes);
auto iperm = invert_permutation(perm);
auto pre = m.insert_instruction(
std::next(ins), make_op("transpose", {{"permutation", perm}}), ins);
for(auto i : range(transposes.size()))
{
auto split = splits[i];
auto t = transposes[i];
auto op = any_cast<op::slice>(split->get_operator());
std::transform(op.axes.begin(), op.axes.end(), op.axes.begin(), [&](auto axis) {
return iperm[axis];
});
auto new_ins = m.insert_instruction(t, op, pre);
if(t->get_operator() != pre->get_operator())
{
auto curr = t->get_operator().to_value()["permutation"].to_vector<int64_t>();
new_ins = m.insert_instruction(
t, make_op("transpose", {{"permutation", reorder_dims(iperm, curr)}}), new_ins);
}
m.replace_instruction(t, new_ins);
}
}
};
void simplify_reshapes::apply(module& m) const void simplify_reshapes::apply(module& m) const
{ {
for(int i = 0; i < 2; i++) for(int i = 0; i < 2; i++)
...@@ -616,6 +679,7 @@ void simplify_reshapes::apply(module& m) const ...@@ -616,6 +679,7 @@ void simplify_reshapes::apply(module& m) const
find_nested_convert{}, find_nested_convert{},
find_nested_slice{}, find_nested_slice{},
find_nested_concat{}, find_nested_concat{},
find_slice_transpose{},
find_transpose_contiguous_reshaper_unary{}); find_transpose_contiguous_reshaper_unary{});
dead_code_elimination{}.apply(m); dead_code_elimination{}.apply(m);
} }
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/target_assignments.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
void target_assignments::add_assignment(instruction_ref ins, const std::string& target)
{
assignments.emplace(ins, target);
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -25,6 +25,7 @@ ...@@ -25,6 +25,7 @@
#include <migraphx/module.hpp> #include <migraphx/module.hpp>
#include <migraphx/instruction.hpp> #include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp> #include <migraphx/iterator_for.hpp>
#include <migraphx/register_op.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -52,6 +53,7 @@ struct cpu_literal ...@@ -52,6 +53,7 @@ struct cpu_literal
return os; return os;
} }
}; };
MIGRAPHX_REGISTER_OP(cpu_literal);
void write_literals::apply(module& m) const void write_literals::apply(module& m) const
{ {
......
...@@ -164,6 +164,7 @@ add_library(migraphx_gpu ...@@ -164,6 +164,7 @@ add_library(migraphx_gpu
deconvolution.cpp deconvolution.cpp
device_name.cpp device_name.cpp
elu.cpp elu.cpp
fuse_mlir.cpp
fuse_ops.cpp fuse_ops.cpp
gather.cpp gather.cpp
gemm_impl.cpp gemm_impl.cpp
...@@ -176,7 +177,7 @@ add_library(migraphx_gpu ...@@ -176,7 +177,7 @@ add_library(migraphx_gpu
loop.cpp loop.cpp
lrn.cpp lrn.cpp
leaky_relu.cpp leaky_relu.cpp
mlir_conv.cpp mlir.cpp
multinomial.cpp multinomial.cpp
nonzero.cpp nonzero.cpp
pack_args.cpp pack_args.cpp
...@@ -320,16 +321,26 @@ message(STATUS "extractkernel: ${MIGRAPHX_EXTRACT_KERNEL}") ...@@ -320,16 +321,26 @@ message(STATUS "extractkernel: ${MIGRAPHX_EXTRACT_KERNEL}")
set(MIGRAPHX_ENABLE_MLIR OFF CACHE BOOL "") set(MIGRAPHX_ENABLE_MLIR OFF CACHE BOOL "")
if(MIGRAPHX_ENABLE_MLIR) if(MIGRAPHX_ENABLE_MLIR)
find_library(LIBMLIRMIOPEN MLIRMIOpenThin REQUIRED) find_library(MLIRAPI_LIBRARY MLIRMIOpen
PATH_SUFFIXES
# Workaournd broken mlir install
lib/ lib/lib)
# REQUIRED is not supported before cmake 3.18 # REQUIRED is not supported before cmake 3.18
if(NOT LIBMLIRMIOPEN) if(NOT MLIRAPI_LIBRARY)
message(FATAL_ERROR "libMLIRMIOpenThin not found") message(FATAL_ERROR "libMLIRMIOpen not found")
else() else()
message(STATUS "Build with libMLIRMIOpenThin: " ${LIBMLIRMIOPEN}) message(STATUS "Build with libMLIRMIOpen: " ${MLIRAPI_LIBRARY})
endif() endif()
target_compile_definitions(migraphx_gpu PRIVATE "-DMIGRAPHX_MLIR_MIOPEN_SUPPORT") find_path(MLIRAPI_HEADERS NAMES mlir-c/Dialect/MIGraphX.h)
target_link_libraries(migraphx_gpu PUBLIC ${LIBMLIRMIOPEN}) # Workaround MLIR broken installation
find_path(MLIRAPI_HEADERS2 NAMES mlir-c/Registration.h
PATH_SUFFIXES
include/external/include external/include)
target_compile_definitions(migraphx_gpu PRIVATE "-DMIGRAPHX_MLIR")
target_include_directories(migraphx_gpu SYSTEM PRIVATE ${MLIRAPI_HEADERS} ${MLIRAPI_HEADERS2})
target_link_libraries(migraphx_gpu PUBLIC ${MLIRAPI_LIBRARY})
endif() endif()
set(MIGRAPHX_USE_HIPRTC OFF CACHE BOOL "") set(MIGRAPHX_USE_HIPRTC OFF CACHE BOOL "")
......
...@@ -52,7 +52,7 @@ code_object_op::compute(context& ctx, const shape&, const std::vector<argument>& ...@@ -52,7 +52,7 @@ code_object_op::compute(context& ctx, const shape&, const std::vector<argument>&
std::transform( std::transform(
args.begin(), args.end(), kargs.begin(), [](const argument& a) { return a.data(); }); args.begin(), args.end(), kargs.begin(), [](const argument& a) { return a.data(); });
k.launch(ctx.get_stream().get(), global, local, std::move(kargs)); k.launch(ctx.get_stream().get(), global, local, std::move(kargs));
return args.back(); return args[get_output_arg(args.size())];
} }
void code_object_op::finalize(context&, const shape&, const std::vector<shape>&) void code_object_op::finalize(context&, const shape&, const std::vector<shape>&)
{ {
......
...@@ -43,6 +43,9 @@ static std::vector<std::size_t> vector_sizes(const std::vector<shape>& inputs) ...@@ -43,6 +43,9 @@ static std::vector<std::size_t> vector_sizes(const std::vector<shape>& inputs)
vectorize vectorize::elements(std::size_t axis, const std::vector<shape>& inputs) vectorize vectorize::elements(std::size_t axis, const std::vector<shape>& inputs)
{ {
if(std::all_of(
inputs.begin(), inputs.end(), [&](const auto& s) { return s.lens()[axis] == 1; }))
return {1, axis};
auto sizes = vector_sizes(inputs); auto sizes = vector_sizes(inputs);
std::vector<std::size_t> max_vec_size; std::vector<std::size_t> max_vec_size;
std::transform(inputs.begin(), std::transform(inputs.begin(),
......
...@@ -43,6 +43,7 @@ inline namespace MIGRAPHX_INLINE_NS { ...@@ -43,6 +43,7 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace gpu { namespace gpu {
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_GPU_DEBUG); MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_GPU_DEBUG);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_GPU_DEBUG_SYM);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_GPU_OPTIMIZE); MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_GPU_OPTIMIZE);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_GPU_DUMP_ASM); MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_GPU_DUMP_ASM);
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_GPU_DUMP_SRC); MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_GPU_DUMP_SRC);
...@@ -227,6 +228,8 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std ...@@ -227,6 +228,8 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
if(params.find("-std=") == std::string::npos) if(params.find("-std=") == std::string::npos)
params += " --std=c++17"; params += " --std=c++17";
params += " -fno-gpu-rdc"; params += " -fno-gpu-rdc";
if(enabled(MIGRAPHX_GPU_DEBUG_SYM{}))
params += " -g";
params += " -c"; params += " -c";
if(is_hcc_compiler()) if(is_hcc_compiler())
{ {
......
...@@ -51,9 +51,9 @@ static const char* const make_tensor_template = R"__migraphx__( ...@@ -51,9 +51,9 @@ static const char* const make_tensor_template = R"__migraphx__(
template<> template<>
struct make_tensor<${n}> struct make_tensor<${n}>
{ {
static __device__ auto apply(void* p) static __device__ auto apply(void* __restrict__ p)
{ {
return make_tensor_view(reinterpret_cast<${type}*>(p), make_shape(${lens}, ${strides})); return make_tensor_view(reinterpret_cast<${type}* __restrict__>(p), make_shape(${lens}, ${strides}));
} }
}; };
)__migraphx__"; )__migraphx__";
......
...@@ -59,31 +59,30 @@ argument miopen_deconvolution::compute(context& ctx, ...@@ -59,31 +59,30 @@ argument miopen_deconvolution::compute(context& ctx,
auto w_desc = make_tensor(reshape_if_1d(args[1].get_shape())); auto w_desc = make_tensor(reshape_if_1d(args[1].get_shape()));
auto y_desc = make_tensor(reshape_if_1d(output_shape)); auto y_desc = make_tensor(reshape_if_1d(output_shape));
float alpha = 1; if(solution_id == 0)
float beta = 0; MIGRAPHX_THROW("MIOpen Deconvolution: invalid solution ID");
auto status = miopenConvolutionForward(ctx.get_stream().get_miopen(),
&alpha, auto status = miopenConvolutionForwardImmediate(ctx.get_stream().get_miopen(),
x_desc.get(), w_desc.get(),
args[0].implicit(), args[1].implicit(),
w_desc.get(), x_desc.get(),
args[1].implicit(), args[0].implicit(),
cd.get(), cd.get(),
algo, y_desc.get(),
&beta, args[3].implicit(),
y_desc.get(), args[2].implicit(),
args[3].implicit(), args[2].get_shape().bytes(),
args[2].implicit(), solution_id);
args[2].get_shape().bytes());
if(status != miopenStatusSuccess) if(status != miopenStatusSuccess)
MIGRAPHX_THROW("Running deconvolution failed"); MIGRAPHX_THROW("MIOpen Deconvolution: running convolution failed");
return args[3]; return args[3];
} }
shape miopen_deconvolution::compile(context& ctx, shape miopen_deconvolution::find(context& ctx, const shape& output_shape, std::vector<shape> inputs)
const shape& output_shape,
std::vector<shape> inputs)
{ {
shape workspace_shape{}; shape workspace_shape{};
auto x_desc = make_tensor(reshape_if_1d(inputs[0])); auto x_desc = make_tensor(reshape_if_1d(inputs[0]));
auto w_desc = make_tensor(reshape_if_1d(inputs[1])); auto w_desc = make_tensor(reshape_if_1d(inputs[1]));
auto y_desc = make_tensor(reshape_if_1d(output_shape)); auto y_desc = make_tensor(reshape_if_1d(output_shape));
...@@ -119,9 +118,35 @@ shape miopen_deconvolution::compile(context& ctx, ...@@ -119,9 +118,35 @@ shape miopen_deconvolution::compile(context& ctx,
workspace_size, workspace_size,
false); false);
if(status != miopenStatusSuccess) if(status != miopenStatusSuccess)
MIGRAPHX_THROW("Find deconvolution failed"); MIGRAPHX_THROW("MIOpen Deconvolution: find convolution failed");
handle = ctx.get_stream().get_miopen(); algo = perf.fwd_algo;
algo = perf.fwd_algo;
size_t solution_count;
status = miopenConvolutionForwardGetSolutionCount(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
&solution_count);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Deconvolution: get solution count failed");
std::vector<miopenConvSolution_t> solutions(solution_count);
status = miopenConvolutionForwardGetSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_count,
&solution_count,
solutions.data());
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Deconvolution: get solution failed");
solution_id = solutions.front().solution_id;
return shape{shape::int8_type, {perf.memory}}; return shape{shape::int8_type, {perf.memory}};
} }
...@@ -129,13 +154,29 @@ void miopen_deconvolution::finalize(context& ctx, ...@@ -129,13 +154,29 @@ void miopen_deconvolution::finalize(context& ctx,
const shape& output_shape, const shape& output_shape,
std::vector<shape> inputs) std::vector<shape> inputs)
{ {
if(handle == ctx.get_stream().get_miopen()) if(cd == nullptr)
return; cd = make_deconv(op);
// Check that workspace hasn't changed if(solution_id == 0)
auto size = inputs.at(2).bytes(); {
auto ws = compile(ctx, output_shape, std::move(inputs)); // Check that workspace hasn't changed
if(ws.bytes() > size) auto size = inputs.at(2).bytes();
MIGRAPHX_THROW("Workspace has changed during finalization."); auto ws = find(ctx, output_shape, inputs);
if(ws.bytes() > size)
MIGRAPHX_THROW("MIOpen Deconvolution: workspace has changed during finalization.");
}
auto x_desc = make_tensor(reshape_if_1d(inputs[0]));
auto w_desc = make_tensor(reshape_if_1d(inputs[1]));
auto y_desc = make_tensor(reshape_if_1d(output_shape));
auto status = miopenConvolutionForwardCompileSolution(ctx.get_stream().get_miopen(),
w_desc.get(),
x_desc.get(),
cd.get(),
y_desc.get(),
solution_id);
if(status != miopenStatusSuccess)
MIGRAPHX_THROW("MIOpen Deconvolution: compile solution failed");
} }
} // namespace gpu } // namespace gpu
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/fuse_mlir.hpp>
#include <migraphx/gpu/mlir.hpp>
#include <migraphx/matcher.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct module;
namespace gpu {
#ifdef MIGRAPHX_MLIR
struct mlir_conv
{
operation op = make_op("convolution");
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.op, "op"));
}
std::string name() const { return "gpu::mlir_conv"; }
shape compute_shape(std::vector<shape> inputs, const std::vector<module_ref>& mods) const
{
check_shapes{inputs, *this}.standard();
if(mods.size() != 1)
MIGRAPHX_THROW("should have one submodule.");
if(inputs.size() < 2)
MIGRAPHX_THROW("should have at least two inputs.");
auto n = inputs.size();
return op.compute_shape({inputs[n - 2], inputs[n - 1]});
}
};
MIGRAPHX_REGISTER_OP(mlir_conv);
namespace {
struct find_conv_pointwise
{
// Find a convolution followed by a pointwise operation.
auto matcher() const
{
auto convolution =
match::skip(match::name("contiguous"))(match::name("convolution").bind("convolution"));
return match::name("pointwise")(match::any_of[match::inputs()](convolution.bind("x")));
}
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto ins = r.result;
auto conv_ins = r.instructions["convolution"];
auto x_ins = r.instructions["x"]; // input after contiguous
auto* pm = ins->module_inputs().front();
auto names = pm->get_parameter_names();
// Whitelist pointwise operators
if(std::any_of(pm->begin(), pm->end(), [](const auto& i) {
return not contains({"@literal", "@param", "@return", "convolution", "add", "relu"},
i.name());
}))
return;
// Only fuse with fp32 for now
if(std::any_of(ins->inputs().begin(), ins->inputs().end(), [&](auto i) {
return i->get_shape().type() != shape::type_t::float_type;
}))
return;
std::sort(names.begin(), names.end());
module_ref mm = mpm.create_module("mlir_" + pm->name());
mm->set_bypass();
std::unordered_map<instruction_ref, instruction_ref> param_map;
auto x = mm->add_parameter("x" + std::to_string(names.size()),
conv_ins->inputs().at(0)->get_shape());
auto w = mm->add_parameter("x" + std::to_string(names.size() + 1),
conv_ins->inputs().at(1)->get_shape());
auto conv = mm->add_instruction(conv_ins->get_operator(), {x, w});
std::transform(names.begin(),
names.end(),
ins->inputs().begin(),
std::inserter(param_map, param_map.end()),
[&](auto name, auto input) {
if(input == x_ins)
return std::make_pair(pm->get_parameter(name), conv);
return std::make_pair(pm->get_parameter(name),
mm->add_parameter(name, input->get_shape()));
});
mm->add_return(mm->insert_instructions(mm->end(), pm, param_map));
std::vector<instruction_ref> inputs;
std::copy_if(ins->inputs().begin(),
ins->inputs().end(),
std::back_inserter(inputs),
[&](auto input) { return input != conv_ins; });
inputs.insert(inputs.end(), conv_ins->inputs().begin(), conv_ins->inputs().end());
mpm.get_module().replace_instruction(
ins, mlir_conv{conv_ins->get_operator()}, inputs, {mm});
}
};
} // namespace
#endif
void fuse_mlir::apply(module_pass_manager& mpm) const
{
#ifdef MIGRAPHX_MLIR
match::find_matches(mpm, find_conv_pointwise{});
#else
(void)mpm;
#endif
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -336,6 +336,7 @@ void move_standard_front(std::vector<instruction_ref>& args) ...@@ -336,6 +336,7 @@ void move_standard_front(std::vector<instruction_ref>& args)
auto gpu_name(const std::string& s) { return match::name("gpu::" + s); } auto gpu_name(const std::string& s) { return match::name("gpu::" + s); }
namespace {
struct find_layernorm struct find_layernorm
{ {
auto matcher() const { return match::layernorm(&gpu_name); } auto matcher() const { return match::layernorm(&gpu_name); }
...@@ -836,15 +837,6 @@ inline auto precompile_name(std::string s) // NOLINT ...@@ -836,15 +837,6 @@ inline auto precompile_name(std::string s) // NOLINT
}); });
} }
template <class... Ms>
auto conv_bias_pointwise(Ms... ms)
{
return precompile_name("pointwise")(
match::either_arg(0, 1)(bias_shape(match::used_once()).bind("bias"),
fusable_conv(match::used_once()).bind("conv")),
ms...);
}
struct find_conv_bias struct find_conv_bias
{ {
context* ctx = nullptr; context* ctx = nullptr;
...@@ -1013,6 +1005,7 @@ struct find_commutative_broadcast ...@@ -1013,6 +1005,7 @@ struct find_commutative_broadcast
m.replace_instruction(ins, ins->get_operator(), args); m.replace_instruction(ins, ins->get_operator(), args);
} }
}; };
} // namespace
struct find_contiguous struct find_contiguous
{ {
......
...@@ -38,12 +38,13 @@ struct context; ...@@ -38,12 +38,13 @@ struct context;
struct code_object_op struct code_object_op
{ {
value::binary code_object; value::binary code_object{};
std::string symbol_name; std::string symbol_name = "";
std::size_t global; std::size_t global = 0;
std::size_t local; std::size_t local = 0;
std::vector<shape> expected_inputs; std::vector<shape> expected_inputs{};
shape output; shape output{};
std::int64_t output_arg = -1;
kernel k{}; kernel k{};
template <class Self, class F> template <class Self, class F>
...@@ -66,9 +67,13 @@ struct code_object_op ...@@ -66,9 +67,13 @@ struct code_object_op
argument argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const; compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
void finalize(context&, const shape&, const std::vector<shape>&); void finalize(context&, const shape&, const std::vector<shape>&);
std::int64_t get_output_arg(std::size_t n) const
{
return output_arg < 0 ? n + output_arg : output_arg;
}
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{ {
return shapes.size() - 1; return get_output_arg(shapes.size());
} }
friend std::ostream& operator<<(std::ostream& os, const code_object_op& op) friend std::ostream& operator<<(std::ostream& os, const code_object_op& op)
......
...@@ -39,20 +39,20 @@ struct miopen_deconvolution ...@@ -39,20 +39,20 @@ struct miopen_deconvolution
op::deconvolution op; op::deconvolution op;
shared<convolution_descriptor> cd; shared<convolution_descriptor> cd;
miopenConvFwdAlgorithm_t algo{}; miopenConvFwdAlgorithm_t algo{};
miopenHandle_t handle = nullptr; uint64_t solution_id = 0;
template <class Self, class F> template <class Self, class F>
static auto reflect(Self& self, F f) static auto reflect(Self& self, F f)
{ {
// TODO: Add algo return pack_join(op::deconvolution::reflect(self.op, f),
return op::convolution::reflect(self.op, f); pack(f(self.solution_id, "solution_id")));
} }
std::string name() const { return "gpu::deconv"; } std::string name() const { return "gpu::deconv"; }
shape compute_shape(const std::vector<shape>& inputs) const; shape compute_shape(const std::vector<shape>& inputs) const;
argument argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const; compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
shape compile(context& ctx, const shape& output_shape, std::vector<shape> inputs); shape find(context& ctx, const shape& output_shape, std::vector<shape> inputs);
void finalize(context& ctx, const shape& output_shape, std::vector<shape> inputs); void finalize(context& ctx, const shape& output_shape, std::vector<shape> inputs);
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{ {
......
...@@ -21,8 +21,8 @@ ...@@ -21,8 +21,8 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#ifndef MIGRAPHX_GUARD_RTGLIB_MIOPEN_MLIR_CONV_HPP #ifndef MIGRAPHX_GUARD_GPU_FUSE_MLIR_HPP
#define MIGRAPHX_GUARD_RTGLIB_MIOPEN_MLIR_CONV_HPP #define MIGRAPHX_GUARD_GPU_FUSE_MLIR_HPP
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <migraphx/gpu/context.hpp> #include <migraphx/gpu/context.hpp>
...@@ -30,18 +30,19 @@ ...@@ -30,18 +30,19 @@
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
struct module; struct module_pass_manager;
namespace gpu { namespace gpu {
struct mlir_conv
struct fuse_mlir
{ {
context* ctx; context* ctx = nullptr;
std::string name() const { return "mlir::convolution"; } std::string name() const { return "gpu::fuse_mlir"; }
void apply(module& m) const; void apply(module_pass_manager& mpm) const;
}; };
} // namespace gpu } // namespace gpu
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx } // namespace migraphx
#endif // MIGRAPHX_GUARD_GPU_FUSE_MLIR_HPP
#endif
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_GPU_MLIR_HPP
#define MIGRAPHX_GUARD_RTGLIB_GPU_MLIR_HPP
#include <string>
#include <vector>
#include <migraphx/config.hpp>
#include <migraphx/gpu/code_object_op.hpp>
#include <migraphx/instruction_ref.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
struct module;
namespace gpu {
std::string dump_mlir(const module& m);
code_object_op compile_mlir(const context& ctx, const module& m);
instruction_ref insert_mlir(module& m,
instruction_ref ins,
code_object_op co,
const std::vector<instruction_ref>& inputs);
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
...@@ -41,7 +41,7 @@ struct miopen_quant_convolution ...@@ -41,7 +41,7 @@ struct miopen_quant_convolution
bool int8_x4_format = false; bool int8_x4_format = false;
shared<convolution_descriptor> cd; shared<convolution_descriptor> cd;
miopenConvFwdAlgorithm_t algo{}; miopenConvFwdAlgorithm_t algo{};
miopenHandle_t handle = nullptr; uint64_t solution_id = 0;
template <class Self, class F> template <class Self, class F>
static auto reflect(Self& self, F f) static auto reflect(Self& self, F f)
...@@ -55,7 +55,7 @@ struct miopen_quant_convolution ...@@ -55,7 +55,7 @@ struct miopen_quant_convolution
shape compute_shape(const std::vector<shape>& inputs) const; shape compute_shape(const std::vector<shape>& inputs) const;
argument argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const; compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
shape compile(context& ctx, const shape& output_shape, std::vector<shape> inputs); shape find(context& ctx, const shape& output_shape, std::vector<shape> inputs);
void finalize(context& ctx, const shape& output_shape, std::vector<shape> inputs); void finalize(context& ctx, const shape& output_shape, std::vector<shape> inputs);
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{ {
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/mlir.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct mlir_compiler : compiler<mlir_compiler>
{
std::vector<std::string> names() const { return {"gpu::mlir_conv"}; }
operation compile_op(context&, const std::vector<shape>&, const value&) const { return {}; }
compiler_replace compile(context& ctx, instruction_ref ins, const operation&) const
{
auto* smod = ins->module_inputs().front();
assert(smod->get_parameter_names().size() == ins->inputs().size() - 1);
return insert(compile_mlir(ctx, *smod));
}
compiler_replace insert(code_object_op co) const
{
return [co = std::move(co)](module& m, instruction_ref ins) {
auto mlir = insert_mlir(m, ins, co, ins->inputs());
m.replace_instruction(ins, mlir);
};
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/cpp_generator.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
#include <migraphx/module.hpp>
#include <migraphx/pass_manager.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
using namespace migraphx::gpu::gen; // NOLINT
static const char* const softmax_kernel = R"__migraphx__(
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/softmax.hpp>
#include <migraphx/kernels/vectorize.hpp>
#include <args.hpp>
namespace migraphx {
extern "C" {
__global__ void softmax_kernel(void* input_p, void* output_p)
{
transform_args(make_tensors(), ${transformers})(input_p, output_p)([](auto input, auto output) {
softmax<${axis}>(input, output);
});
}
}
} // namespace migraphx
)__migraphx__";
struct softmax_compiler : compiler<softmax_compiler>
{
std::vector<std::string> names() const { return {"softmax"}; }
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
{
// TODO: Use reduce_dims
auto axis = v.at("axis").to<int64_t>();
auto faxis = find_fast_axis({inputs.front()});
vectorize vec{};
// Vectorize if the axis is a reduction axis
if(faxis == axis)
{
vec = vectorize::elements(faxis, inputs);
}
auto relements = inputs[0].lens()[axis] / vec.size;
auto nelements = (inputs.back().elements() / inputs[0].lens()[axis]);
auto block_size = compute_block_size(relements, 256);
hip_compile_options options;
options.set_launch_params(
v, compute_global_for(ctx, nelements * block_size, 256), block_size);
options.output = inputs.back();
options.inputs = inputs;
options.kernel_name = "softmax_kernel";
auto src = interpolate_string(
softmax_kernel,
{{"transformers", make_transformer_args(vec)}, {"axis", to_string(axis)}});
return compile_hip_code_object(src, options);
}
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
return replace(compile_op(ctx, to_shapes(ins->inputs()), op.to_value()));
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -27,6 +27,7 @@ ...@@ -27,6 +27,7 @@
#include <migraphx/kernels/types.hpp> #include <migraphx/kernels/types.hpp>
#include <migraphx/kernels/type_traits.hpp> #include <migraphx/kernels/type_traits.hpp>
#include <migraphx/kernels/integral_constant.hpp> #include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/functional.hpp>
#include <migraphx/kernels/debug.hpp> #include <migraphx/kernels/debug.hpp>
namespace migraphx { namespace migraphx {
...@@ -213,6 +214,13 @@ constexpr auto transform(integral_const_array<T, Xs...>, F f) ...@@ -213,6 +214,13 @@ constexpr auto transform(integral_const_array<T, Xs...>, F f)
return integral_const_array<T, f(Xs)...>{}; return integral_const_array<T, f(Xs)...>{};
} }
template <class T, T... Xs, class F>
constexpr auto transform_i(integral_const_array<T, Xs...>, F f)
{
return sequence_c<sizeof...(Xs)>(
[=](auto... is) { return integral_const_array<T, f(Xs, is)...>{}; });
}
template <class T, T... Xs, class U, U... Ys, class F> template <class T, T... Xs, class U, U... Ys, class F>
constexpr auto transform(integral_const_array<T, Xs...>, integral_const_array<U, Ys...>, F f) constexpr auto transform(integral_const_array<T, Xs...>, integral_const_array<U, Ys...>, F f)
{ {
......
...@@ -24,7 +24,7 @@ ...@@ -24,7 +24,7 @@
#ifndef MIGRAPHX_GUARD_KERNELS_FUNCTIONAL_HPP #ifndef MIGRAPHX_GUARD_KERNELS_FUNCTIONAL_HPP
#define MIGRAPHX_GUARD_KERNELS_FUNCTIONAL_HPP #define MIGRAPHX_GUARD_KERNELS_FUNCTIONAL_HPP
#include <migraphx/kernels/array.hpp> #include <migraphx/kernels/integral_constant.hpp>
// NOLINTNEXTLINE // NOLINTNEXTLINE
#define MIGRAPHX_RETURNS(...) \ #define MIGRAPHX_RETURNS(...) \
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment