Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
9b32ae0c
Commit
9b32ae0c
authored
Aug 12, 2019
by
Paul
Browse files
Reduce dims in pooling
parent
d1e0225d
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
79 additions
and
18 deletions
+79
-18
src/include/migraphx/op/reshape.hpp
src/include/migraphx/op/reshape.hpp
+1
-1
src/rewrite_pooling.cpp
src/rewrite_pooling.cpp
+6
-1
src/targets/gpu/device/include/migraphx/gpu/device/array.hpp
src/targets/gpu/device/include/migraphx/gpu/device/array.hpp
+6
-0
src/targets/gpu/device/include/migraphx/gpu/device/reduce.hpp
...targets/gpu/device/include/migraphx/gpu/device/reduce.hpp
+66
-16
No files found.
src/include/migraphx/op/reshape.hpp
View file @
9b32ae0c
...
...
@@ -59,7 +59,7 @@ struct reshape
shape
s
{
inputs
.
front
().
type
(),
rdims
};
if
(
s
.
elements
()
!=
inputs
.
front
().
elements
())
MIGRAPHX_THROW
(
"Wrong number of elements for reshape
"
);
MIGRAPHX_THROW
(
"Wrong number of elements for reshape
: reshape has "
+
std
::
to_string
(
s
.
elements
())
+
" elements whereas the input has "
+
std
::
to_string
(
inputs
.
front
().
elements
())
);
return
s
;
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
...
...
src/rewrite_pooling.cpp
View file @
9b32ae0c
...
...
@@ -2,6 +2,7 @@
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/reshape.hpp>
#include <migraphx/op/reduce_mean.hpp>
#include <migraphx/program.hpp>
...
...
@@ -28,7 +29,11 @@ void rewrite_pooling::apply(program& prog) const
continue
;
if
(
s
.
lens
()[
2
]
!=
op
.
lengths
[
0
]
and
s
.
lens
()[
3
]
!=
op
.
lengths
[
1
])
continue
;
prog
.
replace_instruction
(
ins
,
op
::
reduce_mean
{{
2
,
3
}},
ins
->
inputs
().
front
());
std
::
int64_t
n
=
s
.
lens
()[
0
];
std
::
int64_t
c
=
s
.
lens
()[
1
];
auto
reshape
=
prog
.
insert_instruction
(
ins
,
op
::
reshape
{{
n
*
c
,
-
1
}},
ins
->
inputs
().
front
());
auto
pooling
=
prog
.
insert_instruction
(
ins
,
op
::
reduce_mean
{{
1
}},
reshape
);
prog
.
replace_instruction
(
ins
,
op
::
reshape
{{
n
,
c
,
1
,
1
}},
pooling
);
}
}
...
...
src/targets/gpu/device/include/migraphx/gpu/device/array.hpp
View file @
9b32ae0c
...
...
@@ -16,6 +16,12 @@ struct hip_array
MIGRAPHX_DEVICE_CONSTEXPR
T
&
operator
[](
std
::
size_t
i
)
{
return
d
[
i
];
}
MIGRAPHX_DEVICE_CONSTEXPR
const
T
&
operator
[](
std
::
size_t
i
)
const
{
return
d
[
i
];
}
MIGRAPHX_DEVICE_CONSTEXPR
T
&
front
()
{
return
d
[
0
];
}
MIGRAPHX_DEVICE_CONSTEXPR
const
T
&
front
()
const
{
return
d
[
0
];
}
MIGRAPHX_DEVICE_CONSTEXPR
T
&
back
()
{
return
d
[
N
-
1
];
}
MIGRAPHX_DEVICE_CONSTEXPR
const
T
&
back
()
const
{
return
d
[
N
-
1
];
}
MIGRAPHX_DEVICE_CONSTEXPR
T
*
data
()
{
return
d
;
}
MIGRAPHX_DEVICE_CONSTEXPR
const
T
*
data
()
const
{
return
d
;
}
...
...
src/targets/gpu/device/include/migraphx/gpu/device/reduce.hpp
View file @
9b32ae0c
...
...
@@ -209,28 +209,15 @@ constexpr std::size_t compute_block_size(std::size_t n, std::size_t max_block_si
}
template
<
class
Op
,
class
T
,
class
Input
,
class
Output
>
void
reduce
(
hipStream_t
stream
,
void
reduce
_multi_impl
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
Op
op
,
T
init
,
Input
read_input
,
Output
read_output
)
Output
read_output
,
const
shape
&
reduce_slice
)
{
auto
&&
output_shape
=
result
.
get_shape
();
auto
&&
input_shape
=
arg
.
get_shape
();
std
::
vector
<
std
::
size_t
>
reduce_lens
;
std
::
transform
(
output_shape
.
lens
().
begin
(),
output_shape
.
lens
().
end
(),
input_shape
.
lens
().
begin
(),
std
::
back_inserter
(
reduce_lens
),
[](
auto
x
,
auto
y
)
->
std
::
size_t
{
if
(
x
==
y
)
return
1
;
else
return
y
;
});
shape
reduce_slice
{
output_shape
.
type
(),
reduce_lens
};
hip_visit_all
(
result
,
arg
,
reduce_slice
)([
&
](
auto
output
,
auto
input
,
auto
reduce_shape
)
{
auto
nelements
=
result
.
get_shape
().
elements
();
auto
relements
=
reduce_slice
.
elements
();
...
...
@@ -250,6 +237,69 @@ void reduce(hipStream_t stream,
});
}
template
<
class
Op
,
class
T
,
class
Input
,
class
Output
>
void
reduce_standard_impl
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
Op
op
,
T
init
,
Input
read_input
,
Output
read_output
,
std
::
size_t
relements
,
std
::
size_t
stride
)
{
hip_visit_all
(
result
,
arg
)([
&
](
auto
output
,
auto
input
)
{
auto
nelements
=
result
.
get_shape
().
elements
();
const
std
::
size_t
max_block_size
=
256
;
const
std
::
size_t
block_size
=
compute_block_size
(
relements
,
max_block_size
);
gs_launch
(
stream
,
nelements
*
block_size
,
block_size
)([
=
](
auto
i
,
auto
idx
)
__device__
{
const
auto
out_idx
=
i
/
block_size
;
const
auto
base_idx
=
out_idx
*
stride
;
auto
r
=
block_reduce
<
max_block_size
>
(
idx
,
op
,
init
,
relements
,
[
&
](
auto
j
)
__device__
{
return
read_input
(
input
.
data
()[
base_idx
+
j
]);
});
if
(
idx
.
local
==
0
)
output
.
data
()[
out_idx
]
=
read_output
(
r
);
});
});
}
template
<
class
Op
,
class
T
,
class
Input
,
class
Output
>
void
reduce
(
hipStream_t
stream
,
const
argument
&
result
,
const
argument
&
arg
,
Op
op
,
T
init
,
Input
read_input
,
Output
read_output
)
{
auto
&&
output_shape
=
result
.
get_shape
();
auto
&&
input_shape
=
arg
.
get_shape
();
if
(
input_shape
.
standard
()
and
output_shape
.
standard
()
and
output_shape
.
lens
().
back
()
!=
input_shape
.
lens
().
back
()
and
std
::
equal
(
output_shape
.
lens
().
begin
(),
std
::
prev
(
output_shape
.
lens
().
end
()),
input_shape
.
lens
().
begin
()))
{
std
::
size_t
stride
=
std
::
accumulate
(
input_shape
.
strides
().
begin
(),
input_shape
.
strides
().
end
(),
1
,
std
::
multiplies
<
size_t
>
());
reduce_standard_impl
(
stream
,
result
,
arg
,
op
,
init
,
read_input
,
read_output
,
input_shape
.
lens
().
back
(),
stride
);
}
else
{
std
::
vector
<
std
::
size_t
>
reduce_lens
;
std
::
transform
(
output_shape
.
lens
().
begin
(),
output_shape
.
lens
().
end
(),
input_shape
.
lens
().
begin
(),
std
::
back_inserter
(
reduce_lens
),
[](
auto
x
,
auto
y
)
->
std
::
size_t
{
if
(
x
==
y
)
return
1
;
else
return
y
;
});
shape
reduce_slice
{
output_shape
.
type
(),
reduce_lens
};
reduce_multi_impl
(
stream
,
result
,
arg
,
op
,
init
,
read_input
,
read_output
,
reduce_slice
);
}
}
}
// namespace device
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment