Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
9a7bb6d2
Commit
9a7bb6d2
authored
Sep 12, 2022
by
turneram
Browse files
Create half_t test
parent
f7838bc8
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
161 additions
and
116 deletions
+161
-116
src/targets/gpu/jit/ck_elementwise.cpp
src/targets/gpu/jit/ck_elementwise.cpp
+108
-108
src/targets/gpu/kernels/include/migraphx/kernels/ck_elementwise.hpp
...s/gpu/kernels/include/migraphx/kernels/ck_elementwise.hpp
+8
-8
test/verify/0ck_elementwise_half_test.cpp
test/verify/0ck_elementwise_half_test.cpp
+45
-0
No files found.
src/targets/gpu/jit/ck_elementwise.cpp
View file @
9a7bb6d2
...
...
@@ -43,135 +43,135 @@ namespace gpu {
using
namespace
migraphx
::
gpu
::
gen
;
// NOLINT
static
const
char
*
const
ck_elementwise_kernel
=
R"__migraphx__(
//#include <migraphx/kernels/ck_elementwise.hpp>
#include <migraphx/kernels/ops.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/generic_constant.hpp>
#include <args.hpp>
//
static const char* const ck_elementwise_kernel = R"__migraphx__(
//
//#include <migraphx/kernels/ck_elementwise.hpp>
//
#include <migraphx/kernels/ops.hpp>
//
#include <migraphx/kernels/integral_constant.hpp>
//
#include <migraphx/kernels/generic_constant.hpp>
//
#include <args.hpp>
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/algorithm.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/tensor_view.hpp>
//
#include <migraphx/kernels/index.hpp>
//
#include <migraphx/kernels/algorithm.hpp>
//
#include <migraphx/kernels/integral_constant.hpp>
//
#include <migraphx/kernels/tensor_view.hpp>
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_binary_elementwise_1d.hpp"
//
#include "ck/device_utility/device_prop.hpp"
//
#include "ck/device_utility/kernel_launch.hpp"
//
#include "ck/tensor_operation/gpu/device/device_base.hpp"
//
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
//
#include "ck/tensor_operation/gpu/grid/gridwise_binary_elementwise_1d.hpp"
namespace migraphx {
//
namespace migraphx {
using ADataType = float;
using BDataType = float;
using CDataType = float;
using ElementwiseFunctor = float;
//
using ADataType = float;
//
using BDataType = float;
//
using CDataType = float;
//
using ElementwiseFunctor = float;
static constexpr auto I0 = ck::Number<0>{};
//
static constexpr auto I0 = ck::Number<0>{};
template <class L, class S, class N>
constexpr auto MakeDescriptor_M(const L& lengths, const S& strides, const N& ndim)
{
auto gridSize = 72;
auto blockSize = 1024;
//constexpr auto ndim = 1;
// auto idx = make_index();
auto tupleOfShape = generate_tuple([&](auto I) { return static_cast<ck::index_t>(lengths[I]); },
ck::Number<ndim>{});
auto tupleOfStride = generate_tuple(
[&](auto I) { return static_cast<ck::index_t>(strides[I]); }, ck::Number<1>{});
const auto desc = make_naive_tensor_descriptor(tupleOfShape, tupleOfStride);
auto desc_m = desc;
// merge nd to 1d desc - [s0 * s1 * ...]
if constexpr(ndim > 1)
{
desc_m = transform_tensor_descriptor(
desc,
make_tuple(make_merge_transform(tupleOfShape)),
make_tuple(generate_sequence_v2([&](auto I) { return I; }, ck::Number<ndim>{})),
make_tuple(ck::Sequence<0>{}));
}
const auto M = desc_m.GetLength(I0);
const ck::index_t loop_step = /* idx.nglobal(); // */ gridSize * blockSize /* * MPerThread */;
const auto pad = ck::math::integer_least_multiple(M, loop_step) - M;
const auto desc_m_pad =
transform_tensor_descriptor(desc_m,
make_tuple(ck::make_right_pad_transform(M, pad)),
make_tuple(ck::Sequence<0>{}),
make_tuple(ck::Sequence<0>{}));
return desc_m_pad;
}
//
template <class L, class S, class N>
//
constexpr auto MakeDescriptor_M(const L& lengths, const S& strides, const N& ndim)
//
{
//
auto gridSize = 72;
//
auto blockSize = 1024;
//
//constexpr auto ndim = 1;
//
// auto idx = make_index();
//
auto tupleOfShape = generate_tuple([&](auto I) { return static_cast<ck::index_t>(lengths[I]); },
//
ck::Number<ndim>{});
//
auto tupleOfStride = generate_tuple(
//
[&](auto I) { return static_cast<ck::index_t>(strides[I]); }, ck::Number<1>{});
//
const auto desc = make_naive_tensor_descriptor(tupleOfShape, tupleOfStride);
//
auto desc_m = desc;
//
// merge nd to 1d desc - [s0 * s1 * ...]
//
if constexpr(ndim > 1)
//
{
//
desc_m = transform_tensor_descriptor(
//
desc,
//
make_tuple(make_merge_transform(tupleOfShape)),
//
make_tuple(generate_sequence_v2([&](auto I) { return I; }, ck::Number<ndim>{})),
//
make_tuple(ck::Sequence<0>{}));
//
}
//
const auto M = desc_m.GetLength(I0);
//
const ck::index_t loop_step = /* idx.nglobal(); // */ gridSize * blockSize /* * MPerThread */;
//
const auto pad = ck::math::integer_least_multiple(M, loop_step) - M;
//
const auto desc_m_pad =
//
transform_tensor_descriptor(desc_m,
//
make_tuple(ck::make_right_pad_transform(M, pad)),
//
make_tuple(ck::Sequence<0>{}),
//
make_tuple(ck::Sequence<0>{}));
//
return desc_m_pad;
//
}
struct Add
{
template <typename Y, typename X0, typename X1>
__device__ constexpr void operator()(Y& y, const X0& x0, const X1& x1) const
{
y = x0 + x1;
};
};
//
struct Add
//
{
//
template <typename Y, typename X0, typename X1>
//
__device__ constexpr void operator()(Y& y, const X0& x0, const X1& x1) const
//
{
//
y = x0 + x1;
//
};
//
};
extern "C" {
//
extern "C" {
__global__ void ck_elementwise_kernel(void* a_p, void* b_p, void* c_p)
{
make_tensors()(a_p, b_p, c_p)([](auto a_t, auto b_t, auto c_t) {
constexpr auto lengths = get_shape_c<decltype(a_t)>{}.lens;
constexpr auto strides = get_shape_c<decltype(a_t)>{}.strides;
constexpr auto ndim = _c<decltype(lengths.size()){}>[1];
constexpr auto a_desc = MakeDescriptor_M(lengths, strides, ndim);
using AGridDesc_M = decltype(a_desc);
using GridwiseBinEltwise = ck::GridwiseBinaryElementwise_1D<ADataType,
BDataType,
CDataType,
CDataType,
AGridDesc_M,
AGridDesc_M,
AGridDesc_M,
Add,
1,
1,
1,
1>;
auto op = Add{};
GridwiseBinEltwise::Run(a_t.data(), b_t.data(), c_t.data(), a_desc, a_desc, a_desc, op);
});
}
//
__global__ void ck_elementwise_kernel(void* a_p, void* b_p, void* c_p)
//
{
//
make_tensors()(a_p, b_p, c_p)([](auto a_t, auto b_t, auto c_t) {
//
constexpr auto lengths = get_shape_c<decltype(a_t)>{}.lens;
//
constexpr auto strides = get_shape_c<decltype(a_t)>{}.strides;
//
constexpr auto ndim = _c<decltype(lengths.size()){}>[1];
//
constexpr auto a_desc = MakeDescriptor_M(lengths, strides, ndim);
//
using AGridDesc_M = decltype(a_desc);
//
using GridwiseBinEltwise = ck::GridwiseBinaryElementwise_1D<ADataType,
//
BDataType,
//
CDataType,
//
CDataType,
//
AGridDesc_M,
//
AGridDesc_M,
//
AGridDesc_M,
//
Add,
//
1,
//
1,
//
1,
//
1>;
//
auto op = Add{};
//
GridwiseBinEltwise::Run(a_t.data(), b_t.data(), c_t.data(), a_desc, a_desc, a_desc, op);
//
});
//
}
}
//
}
} // namespace migraphx
//
} // namespace migraphx
)__migraphx__"
;
//
)__migraphx__";
// NOLINTNEXTLINE
//
static const char* const ck_elementwise_kernel = R"__migraphx__(
//
#include <migraphx/kernels/ck_elementwise.hpp>
//
#include <migraphx/kernels/ops.hpp>
//
#include <migraphx/kernels/integral_constant.hpp>
//
#include <migraphx/kernels/generic_constant.hpp>
//
#include <args.hpp>
static
const
char
*
const
ck_elementwise_kernel
=
R"__migraphx__(
#include <migraphx/kernels/ck_elementwise.hpp>
#include <migraphx/kernels/ops.hpp>
#include <migraphx/kernels/integral_constant.hpp>
#include <migraphx/kernels/generic_constant.hpp>
#include <args.hpp>
//
namespace migraphx {
namespace migraphx {
//
extern "C" {
extern "C" {
//
__global__ void ck_elementwise_kernel(void* a_p, void* b_p, void* c_p)
//
{
//
make_tensors()(a_p, b_p, c_p)([](auto&&... xs) {
//
ck_elementwise(xs...);
//
});
//
}
__global__ void ck_elementwise_kernel(void* a_p, void* b_p, void* c_p)
{
make_tensors()(a_p, b_p, c_p)([](auto&&... xs) {
ck_elementwise(xs...);
});
}
//
}
}
//
} // namespace migraphx
} // namespace migraphx
//
)__migraphx__";
)__migraphx__"
;
struct
ck_elementwise_compiler
:
compiler
<
ck_elementwise_compiler
>
{
...
...
src/targets/gpu/kernels/include/migraphx/kernels/ck_elementwise.hpp
View file @
9a7bb6d2
...
...
@@ -37,9 +37,9 @@
namespace
migraphx
{
using
ADataType
=
float
;
using
BDataType
=
float
;
using
CDataType
=
float
;
using
ADataType
=
ck
::
half_t
;
//
float;
using
BDataType
=
ck
::
half_t
;
//
float;
using
CDataType
=
ck
::
half_t
;
//
float;
using
ElementwiseFunctor
=
float
;
static
constexpr
auto
I0
=
ck
::
Number
<
0
>
{};
...
...
@@ -90,7 +90,7 @@ struct Add
template
<
class
T
,
class
U
,
class
V
>
__device__
void
ck_elementwise
(
const
T
&
a_t
,
const
U
&
b_t
,
const
V
&
c_t
)
{
auto
idx
=
make_index
();
//
auto idx = make_index();
constexpr
auto
lengths
=
get_shape_c
<
T
>
{}.
lens
;
constexpr
auto
strides
=
get_shape_c
<
T
>
{}.
strides
;
constexpr
auto
a_desc
=
MakeDescriptor_M
(
lengths
,
strides
,
1
);
...
...
@@ -104,10 +104,10 @@ __device__ void ck_elementwise(const T& a_t, const U& b_t, const V& c_t)
AGridDesc_M
,
AGridDesc_M
,
Add
,
1
,
1
,
1
,
1
>
;
4
,
4
,
4
,
4
>
;
auto
op
=
Add
{};
GridwiseBinEltwise
::
Run
(
a_t
.
data
(),
b_t
.
data
(),
c_t
.
data
(),
a_desc
,
a_desc
,
a_desc
,
op
);
}
...
...
test/verify/0ck_elementwise_half_test.cpp
0 → 100644
View file @
9a7bb6d2
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct
ck_elementwise_half
:
verify_program
<
ck_elementwise_half
>
{
migraphx
::
program
create_program
()
const
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
m1_shape
{
migraphx
::
shape
::
half_type
,
{
2000
}};
// migraphx::shape m2_shape{migraphx::shape::float_type, {20, 10}};
auto
l1
=
mm
->
add_parameter
(
"1"
,
m1_shape
);
auto
l2
=
mm
->
add_parameter
(
"2"
,
m1_shape
);
mm
->
add_instruction
(
migraphx
::
make_op
(
"ck_elementwise"
),
l1
,
l2
);
return
p
;
}
};
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment