"vscode:/vscode.git/clone" did not exist on "b72243c166140b696712b0d09e795c745dd6d94c"
Commit 9a758ec4 authored by Alan Turner's avatar Alan Turner
Browse files

Merge remote-tracking branch 'origin/optimize' into ck-gsg

parents ffe2c0cc 913ae362
......@@ -87,7 +87,7 @@ RUN git clone --single-branch --branch ${ONNXRUNTIME_BRANCH} --recursive ${ONNXR
ADD tools/build_and_test_onnxrt.sh /onnxruntime/build_and_test_onnxrt.sh
RUN cget -p /usr/local install ROCmSoftwarePlatform/llvm-project-mlir@c0723a7e50043d973cb73ae51dc30d36679ee7e5 -DBUILD_MIXR_TARGET=On
RUN cget -p /usr/local install ROCmSoftwarePlatform/rocMLIR@0f38fb33f518b53b94b541feb9b079668c5518e8 -DBUILD_MIXR_TARGET=On -DLLVM_ENABLE_ZSTD=Off -DLLVM_ENABLE_THREADS=Off
ENV MIOPEN_FIND_DB_PATH=/tmp/miopen/find-db
ENV MIOPEN_USER_DB_PATH=/tmp/miopen/user-db
......
......@@ -77,7 +77,6 @@ std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, sha
}
auto offset = s1.ndim() - s0.ndim();
std::vector<shape::dynamic_dimension> out_dims(s1.dyn_dims());
shape::dynamic_dimension one_dyn_dim{1, 1, 0};
std::transform(
s0.dyn_dims().cbegin(),
s0.dyn_dims().cend(),
......@@ -88,7 +87,7 @@ std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, sha
{
return a;
}
else if(a == one_dyn_dim or b == one_dyn_dim)
else if(a == 1 or b == 1)
{
// setting opt to 0, may need to be changed
return shape::dynamic_dimension{std::max(a.min, b.min), std::max(a.max, b.max), 0};
......
......@@ -51,8 +51,8 @@ void dead_code_elimination::apply(module& m) const
// Skip instruction with empty shape as output unless its [dynamic, builtin, undefined,
// identity, allocate]
if((not i->get_shape().dynamic() and i->get_shape().elements() == 0) and
i->name().front() != '@' and
not contains({"undefined", "identity", "allocate"}, i->name()))
not(i->name().front() == '@') and not contains({"identity", "allocate"}, i->name()) and
not i->is_undefined())
continue;
assert(std::distance(m.begin(), i) <= std::distance(m.begin(), last));
std::unordered_set<instruction_ref> visited;
......
......@@ -30,23 +30,31 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
template <class T>
T generic_read_file(const std::string& filename)
T generic_read_file(const std::string& filename, size_t offset = 0, size_t nbytes = 0)
{
std::ifstream is(filename, std::ios::binary | std::ios::ate);
std::streamsize size = is.tellg();
if(size < 1)
if(nbytes == 0)
{
// if there is a non-zero offset and nbytes is not set,
// calculate size of remaining bytes to read
nbytes = is.tellg();
if(offset > nbytes)
MIGRAPHX_THROW("offset is larger than file size");
nbytes -= offset;
}
if(nbytes < 1)
MIGRAPHX_THROW("Invalid size for: " + filename);
is.seekg(0, std::ios::beg);
is.seekg(offset, std::ios::beg);
T buffer(size, 0);
if(not is.read(&buffer[0], size))
T buffer(nbytes, 0);
if(not is.read(&buffer[0], nbytes))
MIGRAPHX_THROW("Error reading file: " + filename);
return buffer;
}
std::vector<char> read_buffer(const std::string& filename)
std::vector<char> read_buffer(const std::string& filename, size_t offset, size_t nbytes)
{
return generic_read_file<std::vector<char>>(filename);
return generic_read_file<std::vector<char>>(filename, offset, nbytes);
}
std::string read_string(const std::string& filename)
......
......@@ -198,7 +198,7 @@ struct check_shapes
*/
const check_shapes& same_ndims() const
{
if(not this->same([](const shape& s) { return s.max_lens().size(); }))
if(not this->same([](const shape& s) { return s.ndim(); }))
MIGRAPHX_THROW(prefix() + "Number of dimensions do not match");
return *this;
}
......
......@@ -31,7 +31,7 @@
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
std::vector<char> read_buffer(const std::string& filename);
std::vector<char> read_buffer(const std::string& filename, size_t offset = 0, size_t nbytes = 0);
std::string read_string(const std::string& filename);
void write_buffer(const std::string& filename, const char* buffer, std::size_t size);
......
......@@ -121,6 +121,8 @@ struct instruction
bool can_eval() const;
bool is_undefined() const;
argument eval(bool check_eval = true) const;
void finalize(context& ctx);
......
......@@ -30,6 +30,7 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -56,12 +57,20 @@ struct argmax
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
auto lens = inputs[0].lens();
lens[axis] = 1;
return {shape::int64_type, lens};
check_shapes{inputs, *this, true}.has(1);
const auto& s0 = inputs[0];
if(s0.dynamic())
{
auto dyn_dims = s0.dyn_dims();
dyn_dims[axis] = {1, 1, 0};
return {shape::int64_type, dyn_dims};
}
else
{
auto lens = s0.lens();
lens[axis] = 1;
return {shape::int64_type, lens};
}
}
template <class T>
......@@ -79,19 +88,18 @@ struct argmax
max_index = i;
}
}
return max_index;
}
argument compute(const shape& output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
argument result{output_shape};
argument result{dyn_out.computed_shape};
auto batch_item_num = args.front().get_shape().lens()[axis];
result.visit([&](auto output) {
args[0].visit([&](auto input) {
par_for(output_shape.elements(), [&](auto i) {
auto data_idx = output_shape.multi(i);
par_for(dyn_out.computed_shape.elements(), [&](auto i) {
auto data_idx = dyn_out.computed_shape.multi(i);
output[i] = this->calc_argmax(input, data_idx, batch_item_num);
});
});
......
......@@ -28,6 +28,7 @@
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/gemm.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -38,41 +39,69 @@ struct dot
std::string name() const { return "dot"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.same_type().has(2);
check_shapes{inputs, *this, true}.same_type().same_ndims().has(2);
const shape& a = inputs.at(0);
const shape& b = inputs.at(1);
auto t = a.type();
if(not std::all_of(
inputs.begin(), inputs.end(), [](auto s) { return s.lens().size() >= 2; }))
if(not std::all_of(inputs.begin(), inputs.end(), [](auto s) { return s.ndim() >= 2; }))
{
MIGRAPHX_THROW("DOT: dot only accept 2 or more dims operands");
MIGRAPHX_THROW("DOT: dot only accepts operands with 2 or more dimensions ");
}
// only handle the case that the batch size of a and b are the same
if(not std::equal(
a.lens().rbegin() + 2, a.lens().rend(), b.lens().rbegin() + 2, b.lens().rend()))
if(a.dynamic() or b.dynamic())
{
MIGRAPHX_THROW("DOT: batch size of A and B mismatch: {" + to_string_range(a.lens()) +
"} x {" + to_string_range(b.lens()) + "}");
auto s0 = a.to_dynamic();
auto s1 = b.to_dynamic();
if(not std::equal(s0.dyn_dims().rbegin() + 2,
s0.dyn_dims().rend(),
s1.dyn_dims().rbegin() + 2,
s1.dyn_dims().rend()))
{
MIGRAPHX_THROW("DOT: dynamic outer dimensions of A and B mismatch: {" +
to_string_range(s0.dyn_dims()) + "} x {" +
to_string_range(s1.dyn_dims()) + "}");
}
std::size_t dim_0 = s0.ndim() - 2;
std::size_t dim_1 = s0.ndim() - 1;
if(s0.dyn_dims()[dim_1] != s1.dyn_dims()[dim_0])
{
MIGRAPHX_THROW("DOT: dynamic inner dimensions do not match: {" +
to_string_range(s0.dyn_dims()) + "} x {" +
to_string_range(s1.dyn_dims()) + "}");
}
auto out_dyn_dims = s0.dyn_dims();
out_dyn_dims[dim_1] = s1.dyn_dims()[dim_1];
return {t, out_dyn_dims};
}
std::size_t dim_0 = a.lens().size() - 2;
std::size_t dim_1 = a.lens().size() - 1;
if(a.lens()[dim_1] != b.lens()[dim_0])
else
{
MIGRAPHX_THROW("DOT: inner dimensions do not match: {" + to_string_range(a.lens()) +
"} x {" + to_string_range(b.lens()) + "}");
}
// only handle the case that all the dimensions except the last two are the same
if(not std::equal(
a.lens().rbegin() + 2, a.lens().rend(), b.lens().rbegin() + 2, b.lens().rend()))
{
MIGRAPHX_THROW("DOT: static outer dimensions of A and B mismatch: {" +
to_string_range(a.lens()) + "} x {" + to_string_range(b.lens()) +
"}");
}
auto out_lens = a.lens();
out_lens[dim_1] = b.lens()[dim_1];
return {t, out_lens};
std::size_t dim_0 = a.ndim() - 2;
std::size_t dim_1 = a.ndim() - 1;
if(a.lens()[dim_1] != b.lens()[dim_0])
{
MIGRAPHX_THROW("DOT: static inner dimensions do not match: {" +
to_string_range(a.lens()) + "} x {" + to_string_range(b.lens()) +
"}");
}
auto out_lens = a.lens();
out_lens[dim_1] = b.lens()[dim_1];
return {t, out_lens};
}
}
argument compute(shape output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
argument result = argument{output_shape};
argument result = argument{dyn_out.computed_shape};
visit_all(result, args[0], args[1])(
[&](auto cmat, auto amat, auto bmat) { gemm(cmat, amat, bmat, 1.0f, 0.0f); });
return result;
......
......@@ -55,17 +55,47 @@ struct flatten
std::string name() const { return "flatten"; }
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1).standard();
auto&& lens = inputs.front().lens();
auto x =
std::accumulate(lens.begin(), lens.begin() + axis, std::size_t{1}, std::multiplies<>{});
auto y =
std::accumulate(lens.begin() + axis, lens.end(), std::size_t{1}, std::multiplies<>{});
return {inputs.at(0).type(), {x, y}};
check_shapes{inputs, *this, true}.has(1);
auto s = inputs[0];
if(s.dynamic())
{
auto min_lens = s.min_lens();
auto max_lens = s.max_lens();
auto opt_lens = s.opt_lens();
// If any of the opt values is 0, output opt will be 0
shape::dynamic_dimension x = {
std::accumulate(
min_lens.begin(), min_lens.begin() + axis, std::size_t{1}, std::multiplies<>{}),
std::accumulate(
max_lens.begin(), max_lens.begin() + axis, std::size_t{1}, std::multiplies<>{}),
std::accumulate(opt_lens.begin(),
opt_lens.begin() + axis,
std::size_t{1},
std::multiplies<>{})};
shape::dynamic_dimension y = {
std::accumulate(
min_lens.begin() + axis, min_lens.end(), std::size_t{1}, std::multiplies<>{}),
std::accumulate(
max_lens.begin() + axis, max_lens.end(), std::size_t{1}, std::multiplies<>{}),
std::accumulate(
opt_lens.begin() + axis, opt_lens.end(), std::size_t{1}, std::multiplies<>{}),
};
return {s.type(), {x, y}};
}
else
{
check_shapes{inputs, *this}.standard();
auto&& lens = s.lens();
auto x = std::accumulate(
lens.begin(), lens.begin() + axis, std::size_t{1}, std::multiplies<>{});
auto y = std::accumulate(
lens.begin() + axis, lens.end(), std::size_t{1}, std::multiplies<>{});
return {s.type(), {x, y}};
}
}
argument compute(shape output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
return args[0].reshape(output_shape);
return args[0].reshape(dyn_out.computed_shape);
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
};
......
......@@ -53,15 +53,15 @@ struct softmax
std::string name() const { return "softmax"; }
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
if(inputs.at(0).packed())
check_shapes{inputs, *this, true}.has(1);
auto s0 = inputs[0];
if(s0.dynamic() or s0.packed())
{
return inputs.at(0);
return s0;
}
else
{
auto lens = inputs.at(0).lens();
return {inputs.at(0).type(), lens};
return {s0.type(), s0.lens()};
}
}
......
......@@ -29,6 +29,7 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -54,52 +55,85 @@ struct squeeze
std::string name() const { return "squeeze"; }
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
check_shapes{inputs, *this, true}.has(1);
auto input_shape = inputs[0];
auto type = input_shape.type();
auto old_lens = input_shape.lens();
auto old_strides = input_shape.strides();
if(std::any_of(axes.begin(), axes.end(), [&](auto axis) { return old_lens[axis] != 1; }))
if(input_shape.dynamic())
{
MIGRAPHX_THROW("squeeze axis dimension should be equal to 1");
}
std::vector<std::size_t> new_lens;
std::vector<std::size_t> new_strides;
if(axes.empty())
{
for(auto i : range(old_lens.size()))
if(std::any_of(axes.begin(), axes.end(), [&](auto axis) {
return input_shape.dyn_dims()[axis] != 1;
}))
{
MIGRAPHX_THROW(
"SQUEEZE: dynamic axis dimension should be equal to {1, 1, 0} or {1, 1, 1}");
}
std::vector<shape::dynamic_dimension> dyn_dims = {};
if(axes.empty())
{
std::copy_if(input_shape.dyn_dims().cbegin(),
input_shape.dyn_dims().cend(),
std::back_inserter(dyn_dims),
[&](auto dd) { return dd != 1; });
}
else
{
if(old_lens[i] != 1)
for(auto i : range(input_shape.ndim()))
{
new_lens.push_back(old_lens[i]);
new_strides.push_back(old_strides[i]);
if(std::find(axes.begin(), axes.end(), i) == axes.end())
{
dyn_dims.push_back(input_shape.dyn_dims()[i]);
}
}
}
return {input_shape.type(), dyn_dims};
}
else
{
for(auto i : range(old_lens.size()))
auto type = input_shape.type();
auto old_lens = input_shape.lens();
auto old_strides = input_shape.strides();
if(std::any_of(
axes.begin(), axes.end(), [&](auto axis) { return old_lens[axis] != 1; }))
{
if(std::find(axes.begin(), axes.end(), i) == axes.end())
MIGRAPHX_THROW("SQUEEZE: static axis dimension should be equal to 1");
}
std::vector<std::size_t> new_lens;
std::vector<std::size_t> new_strides;
if(axes.empty())
{
for(auto i : range(old_lens.size()))
{
new_lens.push_back(old_lens[i]);
new_strides.push_back(old_strides[i]);
if(old_lens[i] != 1)
{
new_lens.push_back(old_lens[i]);
new_strides.push_back(old_strides[i]);
}
}
}
}
if(new_lens.empty())
{
return shape{type};
}
else
{
return shape{type, new_lens, new_strides};
else
{
for(auto i : range(old_lens.size()))
{
if(std::find(axes.begin(), axes.end(), i) == axes.end())
{
new_lens.push_back(old_lens[i]);
new_strides.push_back(old_strides[i]);
}
}
}
if(new_lens.empty())
{
return shape{type};
}
else
{
return shape{type, new_lens, new_strides};
}
}
}
argument compute(shape output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
return args[0].reshape(output_shape);
return args[0].reshape(dyn_out.computed_shape);
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
};
......
......@@ -29,11 +29,20 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
/**
* Adds dimensions to a tensor based on the axes attribute.
* `axes` are based on the number of output shape dimensions and should not contain duplicates.
* `steps` are for modifying dimensions added to the middle of the original shape.
* Each step must be a factor of the original dimension.
* ex: unsqueeze(shape = [3, 4, 10], axes = [2, 4, 5], steps = [2]) -> shape = [3, 4, 2, 5, 1, 1]
* Dynamic shape version does not handle `steps`.
*/
struct unsqueeze
{
std::vector<int64_t> axes;
......@@ -56,63 +65,89 @@ struct unsqueeze
std::string name() const { return "unsqueeze"; }
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
check_shapes{inputs, *this, true}.has(1);
auto input_shape = inputs[0];
auto type = input_shape.type();
auto old_lens = input_shape.lens();
auto old_strides = input_shape.strides();
if(input_shape.scalar())
if(input_shape.dynamic())
{
if(old_lens.size() == 1 and old_lens.front() == 1)
return shape{type, old_lens};
else
MIGRAPHX_THROW("UNSQUEEZE: Input must be a scalar");
if(not steps.empty())
{
MIGRAPHX_THROW("UNSQUEEZE_dyn: nonempty steps attribute");
}
std::vector<shape::dynamic_dimension> dyn_dims = {};
auto new_ndim = input_shape.ndim() + axes.size();
std::size_t k = 0;
for(auto i : range(new_ndim))
{
if(std::find(axes.begin(), axes.end(), i) != axes.end())
{
dyn_dims.push_back({1, 1, 0});
}
else
{
dyn_dims.push_back(input_shape.dyn_dims().at(k++));
}
}
return {input_shape.type(), dyn_dims};
}
else
{
auto type = input_shape.type();
auto old_lens = input_shape.lens();
auto old_strides = input_shape.strides();
if(input_shape.scalar())
{
if(old_lens.size() == 1 and old_lens.front() == 1)
return shape{type, old_lens};
else
MIGRAPHX_THROW("UNSQUEEZE: Input must be a scalar");
}
if(steps.size() > axes.size())
MIGRAPHX_THROW("UNSQUEEZE: Steps provided with no axis");
if(steps.size() > axes.size())
MIGRAPHX_THROW("UNSQUEEZE: Steps provided with no axis");
std::size_t new_size = old_lens.size() + axes.size();
std::size_t new_size = old_lens.size() + axes.size();
std::vector<std::size_t> new_lens(new_size);
std::vector<std::size_t> new_strides(new_size);
std::size_t p = 0;
for(auto i : range(new_size))
{
auto axis_idx = std::find(axes.begin(), axes.end(), i) - axes.begin();
if(axis_idx < axes.size())
std::vector<std::size_t> new_lens(new_size);
std::vector<std::size_t> new_strides(new_size);
std::size_t p = 0;
for(auto i : range(new_size))
{
std::int64_t step = 1;
if(axis_idx < steps.size())
step = steps[axis_idx];
if(step == 0)
MIGRAPHX_THROW("UNSQUEEZE: step must be non-zero");
new_lens[i] = step;
if(p < old_strides.size())
auto axis_idx = std::find(axes.begin(), axes.end(), i) - axes.begin();
if(axis_idx < axes.size())
{
if((old_lens[p] % step) != 0)
MIGRAPHX_THROW("UNSQUEEZE: Axis dimenstion is not divisible by step");
old_lens[p] /= step;
new_strides[i] = old_strides[p] * old_lens[p];
std::int64_t step = 1;
if(axis_idx < steps.size())
step = steps[axis_idx];
if(step == 0)
MIGRAPHX_THROW("UNSQUEEZE: step must be non-zero");
new_lens[i] = step;
if(p < old_strides.size())
{
if((old_lens[p] % step) != 0)
MIGRAPHX_THROW("UNSQUEEZE: Axis dimenstion is not divisible by step");
old_lens[p] /= step;
new_strides[i] = old_strides[p] * old_lens[p];
}
else
{
if(step != 1)
MIGRAPHX_THROW("UNSQUEEZE: Step must be 1 for extra axes");
new_strides[i] = 1;
}
}
else
{
if(step != 1)
MIGRAPHX_THROW("UNSQUEEZE: Step must be 1 for extra axes");
new_strides[i] = 1;
new_lens[i] = old_lens[p];
new_strides[i] = old_strides[p++];
}
}
else
{
new_lens[i] = old_lens[p];
new_strides[i] = old_strides[p++];
}
return shape{type, new_lens, new_strides};
}
return shape{type, new_lens, new_strides};
}
argument compute(shape output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
return args[0].reshape(output_shape);
return args[0].reshape(dyn_out.computed_shape);
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
};
......
......@@ -39,7 +39,7 @@ struct module_pass_manager;
struct optimize
{
std::string name() const { return "optimize"; }
void apply(module_pass_manager& m) const;
void apply(module_pass_manager& mpm) const;
};
} // namespace MIGRAPHX_INLINE_NS
......
......@@ -101,6 +101,12 @@ struct shape
friend bool operator==(const dynamic_dimension& x, const dynamic_dimension& y);
friend bool operator!=(const dynamic_dimension& x, const dynamic_dimension& y);
friend std::ostream& operator<<(std::ostream& os, const dynamic_dimension& x);
// compare to fixed std::size_t dimension
friend bool operator==(const dynamic_dimension& x, const std::size_t& y);
friend bool operator==(const std::size_t& x, const dynamic_dimension& y);
friend bool operator!=(const dynamic_dimension& x, const std::size_t& y);
friend bool operator!=(const std::size_t& x, const dynamic_dimension& y);
};
static const std::vector<type_t>& types();
......
......@@ -302,6 +302,24 @@ void instruction::replace_mod_argument(module_ref old, module_ref new_mod)
std::replace(module_args.begin(), module_args.end(), old, new_mod);
}
bool instruction::is_undefined() const
{
if(op.name() == "undefined")
{
return true;
}
else if(this->inputs().empty())
{
return false;
}
else
{
return std::all_of(this->inputs().begin(), this->inputs().end(), [](auto arg) {
return arg->is_undefined();
});
}
}
bool instruction::can_eval() const
{
if(op.name() == "@literal")
......
......@@ -393,18 +393,31 @@ literal onnx_parser::parse_value(const onnx::AttributeProto& attr) const
literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
{
std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
if(not t.external_data().empty())
auto type = get_type(t.data_type());
shape tensor_shape(type, dims);
auto external_data = t.external_data();
if(not external_data.empty())
{
const std::string& data_file = t.external_data().at(0).value();
auto raw_buffer = read_buffer(path + "/" + data_file);
const std::string& data_file = external_data.at(0).value();
size_t num_data_fields = external_data.size();
size_t offset = 0;
size_t nbytes = tensor_shape.bytes();
if(num_data_fields > 1) // if offset field is present
{
offset = std::stoul(t.external_data().at(1).value());
}
if(num_data_fields > 2) // if nbytes field is present
{
nbytes = std::stoul(t.external_data().at(2).value());
}
auto raw_buffer = read_buffer(path + "/" + data_file, offset, nbytes);
std::string s(raw_buffer.begin(), raw_buffer.end());
auto type = get_type(t.data_type());
return create_literal(type, dims, s.data());
}
if(t.has_raw_data())
{
const std::string& s = t.raw_data();
auto type = get_type(t.data_type());
return create_literal(type, dims, s.data());
}
......
......@@ -92,7 +92,7 @@ void rewrite_rnn::apply_vanilla_rnn(module& m, instruction_ref ins) const
// process sequence length
instruction_ref seq_lens = m.end();
if((args.size() >= 5) && args[4]->name() != "undefined")
if((args.size() >= 5) and not args[4]->is_undefined())
{
seq_lens = args[4];
}
......@@ -117,7 +117,7 @@ void rewrite_rnn::apply_vanilla_rnn(module& m, instruction_ref ins) const
// process bias
instruction_ref bias_forward = m.end();
instruction_ref bias_reverse = m.end();
if(args.size() >= 4 && args[3]->name() != "undefined")
if(args.size() >= 4 and not args[3]->is_undefined())
{
bias_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[3]);
......@@ -129,7 +129,7 @@ void rewrite_rnn::apply_vanilla_rnn(module& m, instruction_ref ins) const
// or the 5th one (if the sequence len argument is ignored)
instruction_ref ih_forward{};
instruction_ref ih_reverse{};
if(args.size() == 6 && args[5]->name() != "undefined")
if(args.size() == 6 and not args[5]->is_undefined())
{
ih_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[5]);
......@@ -195,14 +195,14 @@ void rewrite_rnn::apply_vanilla_rnn(module& m, instruction_ref ins) const
// process bias and initial hidden state
instruction_ref bias = m.end();
if(args.size() >= 4 && args[3]->name() != "undefined")
if(args.size() >= 4 and not args[3]->is_undefined())
{
bias = args[3];
}
// process intial hidden state
instruction_ref ih;
if(args.size() == 6 && args[5]->name() != "undefined")
if(args.size() == 6 and not args[5]->is_undefined())
{
ih = args[5];
}
......@@ -398,7 +398,7 @@ void rewrite_rnn::apply_gru(module& m, instruction_ref ins) const
// process sequence length
instruction_ref seq_lens = m.end();
if((args.size() >= 5) && args[4]->name() != "undefined")
if((args.size() >= 5) and not args[4]->is_undefined())
{
seq_lens = args[4];
}
......@@ -423,7 +423,7 @@ void rewrite_rnn::apply_gru(module& m, instruction_ref ins) const
// bias
instruction_ref bias_forward = m.end();
instruction_ref bias_reverse = m.end();
if(args.size() >= 4 && args[3]->name() != "undefined")
if(args.size() >= 4 and not args[3]->is_undefined())
{
bias_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[3]);
......@@ -434,7 +434,7 @@ void rewrite_rnn::apply_gru(module& m, instruction_ref ins) const
// intial hidden state
instruction_ref ih_forward{};
instruction_ref ih_reverse{};
if(args.size() == 6 && args[5]->name() != "undefined")
if(args.size() == 6 and not args[5]->is_undefined())
{
ih_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[5]);
......@@ -501,14 +501,14 @@ void rewrite_rnn::apply_gru(module& m, instruction_ref ins) const
// bias
instruction_ref bias = m.end();
if(args.size() >= 4 && args[3]->name() != "undefined")
if(args.size() >= 4 and not args[3]->is_undefined())
{
bias = args[3];
}
// intial hidden state
instruction_ref ih{};
if(args.size() == 6 && args[5]->name() != "undefined")
if(args.size() == 6 and not args[5]->is_undefined())
{
ih = args[5];
}
......@@ -784,7 +784,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// process sequence length
instruction_ref seq_lens = m.end();
if((args.size() >= 5) && args[4]->name() != "undefined")
if((args.size() >= 5) and not args[4]->is_undefined())
{
seq_lens = args[4];
}
......@@ -813,7 +813,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// process bias
instruction_ref bias_forward = m.end();
instruction_ref bias_reverse = m.end();
if(args.size() >= 4 && args[3]->name() != "undefined")
if(args.size() >= 4 and not args[3]->is_undefined())
{
bias_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[3]);
......@@ -824,7 +824,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// process intial hidden state, it is the 6th argument
instruction_ref ih_forward{};
instruction_ref ih_reverse{};
if(args.size() >= 6 && args[5]->name() != "undefined")
if(args.size() >= 6 and not args[5]->is_undefined())
{
ih_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[5]);
......@@ -840,7 +840,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// process initial cell value
instruction_ref ic_forward{};
instruction_ref ic_reverse{};
if(args.size() >= 7 && args[6]->name() != "undefined")
if(args.size() >= 7 and not args[6]->is_undefined())
{
ic_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[6]);
......@@ -856,7 +856,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// process weight of the peephole
instruction_ref pph_forward = m.end();
instruction_ref pph_reverse = m.end();
if(args.size() == 8 && args[7]->name() != "undefined")
if(args.size() == 8 and not args[7]->is_undefined())
{
pph_forward = m.insert_instruction(
ins, make_op("slice", {{"axes", {0}}, {"starts", {0}}, {"ends", {1}}}), args[7]);
......@@ -940,14 +940,14 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// bias
instruction_ref bias = m.end();
if(args.size() >= 4 && args[3]->name() != "undefined")
if(args.size() >= 4 and not args[3]->is_undefined())
{
bias = args[3];
}
// initial hidden state
instruction_ref ih{};
if(args.size() >= 6 && args[5]->name() != "undefined")
if(args.size() >= 6 and not args[5]->is_undefined())
{
ih = args[5];
}
......@@ -958,7 +958,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// initial cell value
instruction_ref ic{};
if(args.size() >= 7 && args[6]->name() != "undefined")
if(args.size() >= 7 and not args[6]->is_undefined())
{
ic = args[6];
}
......@@ -969,7 +969,7 @@ void rewrite_rnn::apply_lstm(module& m, instruction_ref ins) const
// process weight of the peephole
instruction_ref pph = m.end();
if(args.size() == 8 && args[7]->name() != "undefined")
if(args.size() == 8 and not args[7]->is_undefined())
{
pph = args[7];
}
......
......@@ -521,6 +521,14 @@ std::ostream& operator<<(std::ostream& os, const shape::dynamic_dimension& x)
return os;
}
bool operator==(const shape::dynamic_dimension& x, const std::size_t& y)
{
return x.min == y and x.max == y;
}
bool operator==(const std::size_t& x, const shape::dynamic_dimension& y) { return y == x; }
bool operator!=(const shape::dynamic_dimension& x, const std::size_t& y) { return not(x == y); }
bool operator!=(const std::size_t& x, const shape::dynamic_dimension& y) { return not(x == y); }
bool operator==(const shape& x, const shape& y)
{
if(x.dynamic() and y.dynamic())
......
......@@ -185,7 +185,7 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
options.push_back("-fno-gpu-rdc");
options.push_back(" -O" + string_value_of(MIGRAPHX_GPU_OPTIMIZE{}, "3"));
options.push_back("-Wno-cuda-compat");
options.push_back("--cuda-gpu-arch=" + arch);
options.push_back("--offload-arch=" + arch);
prog.compile(options);
return {prog.get_code_obj()};
}
......@@ -237,7 +237,7 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
}
else if(is_hip_clang_compiler())
{
params += " --cuda-gpu-arch=" + arch;
params += " --offload-arch=" + arch;
params += " --cuda-device-only";
params += " -O" + string_value_of(MIGRAPHX_GPU_OPTIMIZE{}, "3") + " ";
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment