Commit 9979fada authored by Paul's avatar Paul
Browse files

Add stream to device functions

parent 3f84bc67
......@@ -14,9 +14,9 @@ shape hip_add::compute_shape(const std::vector<shape>& inputs) const
return inputs.at(0);
}
argument hip_add::compute(context&, const shape&, const std::vector<argument>& args) const
argument hip_add::compute(context& ctx, const shape&, const std::vector<argument>& args) const
{
device::add(args[2], args[0], args[1]);
device::add(ctx.get_stream().get(), args[2], args[0], args[1]);
return args[2];
}
......
......@@ -15,10 +15,10 @@ shape hip_concat::compute_shape(std::vector<shape> inputs) const
}
argument
hip_concat::compute(context&, const shape& output_shape, const std::vector<argument>& args) const
hip_concat::compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const
{
std::vector<std::size_t> offsets = op.compute_offsets(output_shape, args);
return device::concat(output_shape, args, offsets);
return device::concat(ctx.get_stream().get(), output_shape, args, offsets);
}
} // namespace gpu
......
......@@ -13,12 +13,12 @@ shape miopen_contiguous::compute_shape(const std::vector<shape>& inputs) const
return op.compute_shape({inputs.at(0)});
}
argument
miopen_contiguous::compute(context&, shape output_shape, const std::vector<argument>& args) const
miopen_contiguous::compute(context& ctx, shape output_shape, const std::vector<argument>& args) const
{
assert(output_shape == args[1].get_shape());
assert(output_shape.standard());
(void)output_shape;
device::contiguous(args.at(1), args.at(0));
device::contiguous(ctx.get_stream().get(), args.at(1), args.at(0));
return args.at(1);
}
......
......@@ -5,14 +5,14 @@ namespace migraph {
namespace gpu {
namespace device {
void add(const argument& result, const argument& arg1, const argument& arg2)
void add(hipStream_t stream, const argument& result, const argument& arg1, const argument& arg2)
{
nary(result, arg1, arg2)([](auto x, auto y) { return x + y; });
nary(stream, result, arg1, arg2)([](auto x, auto y) { return x + y; });
}
void add(const argument& result, const argument& arg1, const argument& arg2, const argument& arg3)
void add(hipStream_t stream, const argument& result, const argument& arg1, const argument& arg2, const argument& arg3)
{
nary(result, arg1, arg2, arg3)([](auto x, auto y, auto z) { return x + y + z; });
nary(stream, result, arg1, arg2, arg3)([](auto x, auto y, auto z) { return x + y + z; });
}
} // namespace device
......
......@@ -5,17 +5,17 @@ namespace migraph {
namespace gpu {
namespace device {
void add_relu(const argument& result, const argument& arg1, const argument& arg2)
void add_relu(hipStream_t stream, const argument& result, const argument& arg1, const argument& arg2)
{
nary(result, arg1, arg2)([](auto x, auto y) { return std::max<decltype(x + y)>(0, x + y); });
nary(stream, result, arg1, arg2)([](auto x, auto y) { return std::max<decltype(x + y)>(0, x + y); });
}
void add_relu(const argument& result,
void add_relu(hipStream_t stream, const argument& result,
const argument& arg1,
const argument& arg2,
const argument& arg3)
{
nary(result, arg1, arg2, arg3)(
nary(stream, result, arg1, arg2, arg3)(
[](auto x, auto y, auto z) { return std::max<decltype(x + y + z)>(0, x + y + z); });
}
......
......@@ -8,11 +8,10 @@ namespace migraph {
namespace gpu {
namespace device {
argument concat(const migraph::shape& output_shape,
argument concat(hipStream_t stream, const migraph::shape& output_shape,
std::vector<migraph::argument> args,
std::vector<std::size_t> offsets)
{
// migraph::argument& result = args.back();
for(std::size_t l = 0; l < args.size() - 1; l++)
{
auto argl = args[l];
......@@ -23,12 +22,11 @@ argument concat(const migraph::shape& output_shape,
const auto* inptr = input.data();
hip_tensor_descriptor<ndim> desc_input(input.get_shape());
hip_tensor_descriptor<ndim> desc_output(output.get_shape());
gs_launch(nelements)(
gs_launch(stream, nelements)(
[=](auto i) { outptr[desc_output.linear(desc_input.multi(i))] = inptr[i]; });
});
});
}
// return result;
return args.back();
}
......
......@@ -6,9 +6,9 @@ namespace migraph {
namespace gpu {
namespace device {
void contiguous(argument result, argument arg)
void contiguous(hipStream_t stream, argument result, argument arg)
{
nary_nonstandard(std::move(result), std::move(arg))([](auto x) { return x; });
nary_nonstandard(stream, std::move(result), std::move(arg))([](auto x) { return x; });
}
} // namespace device
......
......@@ -21,7 +21,7 @@ __global__ void launcher(F f)
f(idx);
}
inline auto launch(std::size_t global, std::size_t local)
inline auto launch(hipStream_t stream, std::size_t global, std::size_t local)
{
return [=](auto f) {
assert(local > 0);
......@@ -29,17 +29,17 @@ inline auto launch(std::size_t global, std::size_t local)
using f_type = decltype(f);
dim3 nblocks(global / local);
dim3 nthreads(local);
hipLaunchKernelGGL((launcher<f_type>), nblocks, nthreads, 0, nullptr, f);
hipLaunchKernelGGL((launcher<f_type>), nblocks, nthreads, 0, stream, f);
};
}
inline auto gs_launch(std::size_t n, std::size_t local = 1024)
inline auto gs_launch(hipStream_t stream, std::size_t n, std::size_t local = 1024)
{
std::size_t groups = 1 + n / local;
std::size_t nglobal = std::min<std::size_t>(256, groups) * local;
return [=](auto f) {
launch(nglobal, local)([=](auto idx) {
launch(stream, nglobal, local)([=](auto idx) {
for(size_t i = idx.global; i < n; i += nglobal)
{
f(i);
......
......@@ -32,7 +32,7 @@ auto pack_vec4(Ts... xs)
}
template <class F, class... Arguments>
auto nary_nonstandard_impl(F f, argument result, Arguments... args)
auto nary_nonstandard_impl(hipStream_t stream, F f, argument result, Arguments... args)
{
const auto& output_shape = result.get_shape();
visit_all(result, args...)([&](auto output, auto... inputs) {
......@@ -41,7 +41,7 @@ auto nary_nonstandard_impl(F f, argument result, Arguments... args)
std::make_pair(hip_tensor_descriptor<ndim>{inputs.get_shape()}, inputs.data())...);
hip_tensor_descriptor<ndim> out_desc(output_shape);
auto* outp = output.data();
gs_launch(output_shape.elements())([=](auto i) {
gs_launch(stream, output_shape.elements())([=](auto i) {
data([&](auto&&... ps) {
auto outidx = out_desc.multi(i);
outp[i] = f(ps.second[ps.first.linear(outidx)]...);
......@@ -53,7 +53,7 @@ auto nary_nonstandard_impl(F f, argument result, Arguments... args)
template <class F>
void trinary_broadcast_vec_impl(
F f, const argument& result, const argument& arg1, const argument& arg2, const argument& arg3)
hipStream_t stream, F f, const argument& result, const argument& arg1, const argument& arg2, const argument& arg3)
{
const auto& output_shape = result.get_shape();
const auto& b_shape = arg3.get_shape();
......@@ -79,7 +79,7 @@ void trinary_broadcast_vec_impl(
const std::size_t n = output.size() / vec_size;
const std::size_t bdim_vec_len = bdim_len / vec_size;
launch(nglobal, nlocal)([=](auto idx) __device__ {
launch(stream, nglobal, nlocal)([=](auto idx) __device__ {
MIGRAPH_DEVICE_SHARED vec4<type> buffer[2048 / vec_size];
// Load bias into LDS
for(size_t i = idx.local; i < bdim_vec_len; i += nlocal)
......@@ -108,7 +108,7 @@ void trinary_broadcast_vec_impl(
template <class F>
void trinary_broadcast_impl(
F f, const argument& result, const argument& arg1, const argument& arg2, const argument& arg3)
hipStream_t stream, F f, const argument& result, const argument& arg1, const argument& arg2, const argument& arg3)
{
const auto& output_shape = result.get_shape();
const auto& b_shape = arg3.get_shape();
......@@ -132,7 +132,7 @@ void trinary_broadcast_impl(
const std::size_t nglobal = 256 * nlocal;
const std::size_t n = output.size();
launch(nglobal, nlocal)([=](auto idx) __device__ {
launch(stream, nglobal, nlocal)([=](auto idx) __device__ {
MIGRAPH_DEVICE_SHARED type buffer[2048];
// Load bias into LDS
for(size_t i = idx.local; i < bdim_len; i += nlocal)
......@@ -154,7 +154,7 @@ void trinary_broadcast_impl(
}
template <class F>
void binary_broadcast_vec_impl(F f,
void binary_broadcast_vec_impl(hipStream_t stream, F f,
const argument& result,
const argument& arg1,
const argument& arg2)
......@@ -182,7 +182,7 @@ void binary_broadcast_vec_impl(F f,
const std::size_t n = output.size() / vec_size;
const std::size_t bdim_vec_len = bdim_len / vec_size;
launch(nglobal, nlocal)([=](auto idx) __device__ {
launch(stream, nglobal, nlocal)([=](auto idx) __device__ {
MIGRAPH_DEVICE_SHARED vec4<type> buffer[2048 / vec_size];
// Load bias into LDS
for(size_t i = idx.local; i < bdim_vec_len; i += nlocal)
......@@ -209,7 +209,7 @@ void binary_broadcast_vec_impl(F f,
}
template <class F>
void binary_broadcast_impl(F f, const argument& result, const argument& arg1, const argument& arg2)
void binary_broadcast_impl(hipStream_t stream, F f, const argument& result, const argument& arg1, const argument& arg2)
{
const auto& output_shape = result.get_shape();
const auto& b_shape = arg2.get_shape();
......@@ -232,7 +232,7 @@ void binary_broadcast_impl(F f, const argument& result, const argument& arg1, co
const std::size_t nglobal = 256 * nlocal;
const std::size_t n = output.size();
launch(nglobal, nlocal)([=](auto idx) __device__ {
launch(stream, nglobal, nlocal)([=](auto idx) __device__ {
MIGRAPH_DEVICE_SHARED type buffer[2048];
// Load bias into LDS
for(size_t i = idx.local; i < bdim_len; i += nlocal)
......@@ -253,7 +253,7 @@ void binary_broadcast_impl(F f, const argument& result, const argument& arg1, co
}
template <class F, class... Arguments>
void nary_standard_vec_impl(F f, argument result, Arguments... args)
void nary_standard_vec_impl(hipStream_t stream, F f, argument result, Arguments... args)
{
// assert(x.get_shape().elements() == y.get_shape().elements());
const auto& output_shape = result.get_shape();
......@@ -262,7 +262,7 @@ void nary_standard_vec_impl(F f, argument result, Arguments... args)
const std::size_t vec_size = 4;
auto data = pack_vec4(inputs.data()...);
auto* outp = as_vec4(output.data());
gs_launch(output_shape.elements() / vec_size)([=](auto i) {
gs_launch(stream, output_shape.elements() / vec_size)([=](auto i) {
vec4<type> out = outp[i];
data(
[&](auto... xs) {
......@@ -278,50 +278,50 @@ void nary_standard_vec_impl(F f, argument result, Arguments... args)
}
template <class F, class... Arguments>
void nary_standard_impl(F f, argument result, Arguments... args)
void nary_standard_impl(hipStream_t stream, F f, argument result, Arguments... args)
{
// assert(x.get_shape().elements() == y.get_shape().elements());
const auto& output_shape = result.get_shape();
visit_all(result, args...)([&](auto output, auto... inputs) {
auto data = pack(inputs.data()...);
auto* outp = output.data();
gs_launch(output_shape.elements())(
gs_launch(stream, output_shape.elements())(
[=](auto i) { data([&](auto... xps) { outp[i] = f(xps[i]...); }); });
});
}
template <class F, class... Arguments>
void nary_impl(F f, argument result, Arguments... args)
void nary_impl(hipStream_t stream, F f, argument result, Arguments... args)
{
bool standard = all_of({args.get_shape()...}, [](const shape& s) { return s.standard(); });
bool packed = all_of({args.get_shape()...}, [](const shape& s) { return s.packed(); });
bool same_shapes =
all_of({args.get_shape()...}, [&](const shape& s) { return s == result.get_shape(); });
if(standard or (packed and same_shapes))
nary_standard_impl(f, result, args...);
nary_standard_impl(stream, f, result, args...);
else
nary_nonstandard_impl(f, result, args...);
nary_nonstandard_impl(stream, f, result, args...);
}
template <class... Arguments>
auto nary_nonstandard(argument result, Arguments... args)
auto nary_nonstandard(hipStream_t stream, argument result, Arguments... args)
{
return [=](auto f) { nary_nonstandard_impl(f, result, args...); };
return [=](auto f) { nary_nonstandard_impl(stream, f, result, args...); };
}
template <class... Arguments>
auto nary_standard(argument result, Arguments... args)
auto nary_standard(hipStream_t stream, argument result, Arguments... args)
{
return [=](auto f) { nary_standard_impl(f, result, args...); };
return [=](auto f) { nary_standard_impl(stream, f, result, args...); };
}
template <class... Arguments>
auto nary(argument result, Arguments... args)
auto nary(hipStream_t stream, argument result, Arguments... args)
{
return [=](auto f) { nary_impl(f, result, args...); };
return [=](auto f) { nary_impl(stream, f, result, args...); };
}
inline auto nary(const argument& result, const argument& arg1, const argument& arg2)
inline auto nary(hipStream_t stream, const argument& result, const argument& arg1, const argument& arg2)
{
return [=](auto f) {
// TODO: Check result and arg1 shape is the same
......@@ -339,18 +339,18 @@ inline auto nary(const argument& result, const argument& arg1, const argument& a
const bool divisible_by_4 = (b_len % 4 == 0) and (b_stride % 4 == 0) and
(arg1.get_shape().elements() % 4 == 0);
if(divisible_by_4)
binary_broadcast_vec_impl(f, result, arg1, arg2);
binary_broadcast_vec_impl(stream, f, result, arg1, arg2);
else
binary_broadcast_impl(f, result, arg1, arg2);
binary_broadcast_impl(stream, f, result, arg1, arg2);
return;
}
}
nary_impl(f, result, arg1, arg2);
nary_impl(stream, f, result, arg1, arg2);
};
}
inline auto
nary(const argument& result, const argument& arg1, const argument& arg2, const argument& arg3)
nary(hipStream_t stream, const argument& result, const argument& arg1, const argument& arg2, const argument& arg3)
{
return [=](auto f) {
// TODO: Check result and arg1 shape is the same
......@@ -369,13 +369,13 @@ nary(const argument& result, const argument& arg1, const argument& arg2, const a
const bool divisible_by_4 = (b_len % 4 == 0) and (b_stride % 4 == 0) and
(arg1.get_shape().elements() % 4 == 0);
if(divisible_by_4)
trinary_broadcast_vec_impl(f, result, arg1, arg2, arg3);
trinary_broadcast_vec_impl(stream, f, result, arg1, arg2, arg3);
else
trinary_broadcast_impl(f, result, arg1, arg2, arg3);
trinary_broadcast_impl(stream, f, result, arg1, arg2, arg3);
return;
}
}
nary_impl(f, result, arg1, arg2, arg3);
nary_impl(stream, f, result, arg1, arg2, arg3);
};
}
......
......@@ -153,9 +153,9 @@ struct hip_triadd
check_shapes{inputs, *this}.has(4);
return inputs.front();
}
argument compute(context&, const shape&, const std::vector<argument>& args) const
argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
{
device::add(args.at(3), args.at(0), args.at(1), args.at(2));
device::add(ctx.get_stream().get(), args.at(3), args.at(0), args.at(1), args.at(2));
return args.at(3);
}
};
......@@ -168,9 +168,9 @@ struct hip_triadd_relu
check_shapes{inputs, *this}.has(4);
return inputs.front();
}
argument compute(context&, const shape&, const std::vector<argument>& args) const
argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
{
device::add_relu(args.at(3), args.at(0), args.at(1), args.at(2));
device::add_relu(ctx.get_stream().get(), args.at(3), args.at(0), args.at(1), args.at(2));
return args.at(3);
}
};
......@@ -183,9 +183,9 @@ struct hip_add_relu
check_shapes{inputs, *this}.has(3);
return inputs.front();
}
argument compute(context&, const shape&, const std::vector<argument>& args) const
argument compute(context& ctx, const shape&, const std::vector<argument>& args) const
{
device::add_relu(args.at(2), args.at(0), args.at(1));
device::add_relu(ctx.get_stream().get(), args.at(2), args.at(0), args.at(1));
return args.at(2);
}
};
......
......@@ -3,14 +3,15 @@
#define MIGRAPH_GUARD_RTGLIB_DEVICE_ADD_HPP
#include <migraph/argument.hpp>
#include <hip/hip_runtime_api.h>
namespace migraph {
namespace gpu {
namespace device {
void add(const argument& result, const argument& arg1, const argument& arg2);
void add(hipStream_t stream, const argument& result, const argument& arg1, const argument& arg2);
void add(const argument& result, const argument& arg1, const argument& arg2, const argument& arg3);
void add(hipStream_t stream, const argument& result, const argument& arg1, const argument& arg2, const argument& arg3);
} // namespace device
} // namespace gpu
......
......@@ -3,14 +3,15 @@
#define MIGRAPH_GUARD_RTGLIB_DEVICE_ADD_RELU_HPP
#include <migraph/argument.hpp>
#include <hip/hip_runtime_api.h>
namespace migraph {
namespace gpu {
namespace device {
void add_relu(const argument& result, const argument& arg1, const argument& arg2);
void add_relu(hipStream_t stream, const argument& result, const argument& arg1, const argument& arg2);
void add_relu(const argument& result,
void add_relu(hipStream_t stream, const argument& result,
const argument& arg1,
const argument& arg2,
const argument& arg3);
......
#ifndef MIGRAPH_GUARD_RTGLIB_DEVICE_CONCAT_HPP
#define MIGRAPH_GUARD_RTGLIB_DEVICE_CONCAT_HPP
#include <migraph/argument.hpp>
#include <hip/hip_runtime_api.h>
namespace migraph {
namespace gpu {
namespace device {
argument
concat(const shape& output_shape, std::vector<argument> args, std::vector<std::size_t> offsets);
concat(hipStream_t stream, const shape& output_shape, std::vector<argument> args, std::vector<std::size_t> offsets);
} // namespace device
} // namespace gpu
......
......@@ -2,12 +2,13 @@
#define MIGRAPH_GUARD_MIGRAPHLIB_KERNELS_HPP
#include <migraph/argument.hpp>
#include <hip/hip_runtime_api.h>
namespace migraph {
namespace gpu {
namespace device {
void contiguous(argument result, argument arg);
void contiguous(hipStream_t stream, argument result, argument arg);
} // namespace device
} // namespace gpu
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment