Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
9263d7ad
Unverified
Commit
9263d7ad
authored
Oct 14, 2023
by
Lakhinder Walia
Committed by
GitHub
Oct 14, 2023
Browse files
QlinearGlobalAveragePool operator (#2297)
parent
271eeddd
Changes
6
Hide whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
246 additions
and
1 deletion
+246
-1
src/onnx/parse_pooling.cpp
src/onnx/parse_pooling.cpp
+1
-1
src/onnx/parse_qlinearglavgpool.cpp
src/onnx/parse_qlinearglavgpool.cpp
+151
-0
test/onnx/gen_onnx.py
test/onnx/gen_onnx.py
+22
-0
test/onnx/onnx_test.cpp
test/onnx/onnx_test.cpp
+45
-0
test/onnx/qlinearglobalavgpool_test.onnx
test/onnx/qlinearglobalavgpool_test.onnx
+0
-0
test/onnx/verify_onnx.cpp
test/onnx/verify_onnx.cpp
+27
-0
No files found.
src/onnx/parse_pooling.cpp
View file @
9263d7ad
...
@@ -97,7 +97,7 @@ struct parse_pooling : op_parser<parse_pooling>
...
@@ -97,7 +97,7 @@ struct parse_pooling : op_parser<parse_pooling>
values
[
"lp_order"
]
=
info
.
attributes
.
at
(
"p"
).
i
();
values
[
"lp_order"
]
=
info
.
attributes
.
at
(
"p"
).
i
();
}
}
// ensure pads availabe only when auto_pad is "NOT_SET"
// ensure pads availab
l
e only when auto_pad is "NOT_SET"
check_padding_mode
(
info
,
"POOLING"
);
check_padding_mode
(
info
,
"POOLING"
);
return
values
;
return
values
;
...
...
src/onnx/parse_qlinearglavgpool.cpp
0 → 100644
View file @
9263d7ad
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
onnx
{
/*
*********************************************************************************
* Reference: see QLinearGlobalAveragePool in *
* github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
QLinearGlobalAveragePool consumes an input tensor X and applies
Average pooling across the values in the same channel. This is
equivalent to AveragePool with kernel size equal to the spatial
dimension of input tensor. Input is of type uint8_t or int8_t.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
channels_last : int
Inputs
X : T
Input data tensor from the previous operator; According to channels_last, dimensions for image case
are (N x C x H x W), or (N x H x W x C) where N is the batch size, C is the number of channels, and
H and W are the height and the width of the data. For non image case, the dimensions are in the form
of (N x C x D1 x D2 ... Dn), or (N x D1 X D2 ... Dn x C) where N is the batch size.
x_scale : tensor(float)
Scale of quantized input 'X'. It must be a scalar.
x_zero_point : T
Zero point tensor for input 'X'. It must be a scalar.
y_scale : tensor(float)
Scale of quantized output 'Y'. It must be a scalar.
y_zero_point : T
Zero point tensor for output 'Y'. It must be a scalar.
Outputs
Y : T
Output data tensor from pooling across the input tensor. The output tensor has the same rank as the
input. with the N and C value keep it value, while the other dimensions are all 1. Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to signed/unsigned int8 tensors.
*/
struct
parse_qlinearglobalaveragepool
:
op_parser
<
parse_qlinearglobalaveragepool
>
{
std
::
vector
<
op_desc
>
operators
()
const
{
return
{{
"QLinearGlobalAveragePool"
}};
}
// basic type checking for QLinearGlobalAveragePool Operator
void
check_inputs
(
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
if
(
args
.
size
()
<
5
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: missing inputs"
);
const
auto
&
in_x
=
args
[
0
];
const
auto
&
zero_pt_x
=
args
[
2
];
const
auto
&
zero_pt_y
=
args
[
4
];
if
(
in_x
->
get_shape
().
ndim
()
<=
2
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: input dimensions too small"
);
auto
type_x
=
in_x
->
get_shape
().
type
();
if
(
type_x
!=
migraphx
::
shape
::
int8_type
and
type_x
!=
migraphx
::
shape
::
uint8_type
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: unsupported input type"
);
if
(
type_x
!=
zero_pt_x
->
get_shape
().
type
())
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: mismatched type: input zero point"
);
if
(
type_x
!=
zero_pt_y
->
get_shape
().
type
())
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: mismatched type: output zero point"
);
}
instruction_ref
parse
(
const
op_desc
&
/* opd */
,
const
onnx_parser
&
parser
,
const
onnx_parser
::
node_info
&
info
,
const
std
::
vector
<
instruction_ref
>&
args
)
const
{
int
channels_last
=
parser
.
parse_value
(
info
.
attributes
.
at
(
"channels_last"
)).
template
at
<
int
>();
if
(
channels_last
!=
0
)
MIGRAPHX_THROW
(
"QLINEARGLOBALAVERAGEPOOL: channels_last (N x D1..Dn x C) is not supported"
);
check_inputs
(
args
);
// Input: X
const
auto
&
in_x
=
args
[
0
];
const
auto
&
scale_x
=
args
[
1
];
const
auto
&
zero_pt_x
=
args
[
2
];
auto
dquant_x
=
bcast_qdq_instr
(
"dequantizelinear"
,
in_x
,
scale_x
,
zero_pt_x
,
info
);
// Output Y = globalaveragepool(X)
auto
op
=
migraphx
::
op
::
pooling
{
migraphx
::
op
::
pooling_mode
::
average
};
auto
lens
=
in_x
->
get_shape
().
lens
();
std
::
vector
<
size_t
>
lengths
(
lens
.
begin
()
+
2
,
lens
.
end
());
op
.
lengths
=
lengths
;
op
.
padding
=
std
::
vector
<
size_t
>
(
lens
.
size
());
auto
out_y
=
info
.
add_instruction
(
op
,
dquant_x
);
const
auto
&
scale_y
=
args
[
3
];
const
auto
&
zero_pt_y
=
args
[
4
];
auto
out_quant_y
=
bcast_qdq_instr
(
"quantizelinear"
,
out_y
,
scale_y
,
zero_pt_y
,
info
);
return
out_quant_y
;
}
};
}
// namespace onnx
}
// namespace MIGRAPHX_INLINE_NS
}
// namespace migraphx
test/onnx/gen_onnx.py
View file @
9263d7ad
...
@@ -5261,6 +5261,28 @@ def qlinearconv_scale_1D_test():
...
@@ -5261,6 +5261,28 @@ def qlinearconv_scale_1D_test():
[
sc_x
,
zero_pt_x
,
wt
,
sc_wt
,
zero_pt_wt
,
sc_y
,
zero_pt_y
])
[
sc_x
,
zero_pt_x
,
wt
,
sc_wt
,
zero_pt_wt
,
sc_y
,
zero_pt_y
])
@
onnx_test
()
def
qlinearglobalavgpool_test
():
x
=
helper
.
make_tensor_value_info
(
'X'
,
TensorProto
.
UINT8
,
[
1
,
3
,
4
,
4
])
sc_x
=
helper
.
make_tensor
(
'X_scale'
,
TensorProto
.
FLOAT
,
[],
[
0.05
])
z_pt_x
=
helper
.
make_tensor
(
'X_zero_point'
,
TensorProto
.
UINT8
,
[],
[
128
])
y
=
helper
.
make_tensor_value_info
(
'Y'
,
TensorProto
.
UINT8
,
[
1
,
3
,
1
,
1
])
sc_y
=
helper
.
make_tensor
(
'Y_scale'
,
TensorProto
.
FLOAT
,
[],
[
0.025
])
z_pt_y
=
helper
.
make_tensor
(
'Y_zero_point'
,
TensorProto
.
UINT8
,
[],
[
64
])
n
=
onnx
.
helper
.
make_node
(
'QLinearGlobalAveragePool'
,
inputs
=
[
'X'
,
'X_scale'
,
'X_zero_point'
,
'Y_scale'
,
'Y_zero_point'
],
outputs
=
[
'Y'
],
channels_last
=
0
,
)
return
([
n
],
[
x
],
[
y
],
[
sc_x
,
z_pt_x
,
sc_y
,
z_pt_y
])
@
onnx_test
()
@
onnx_test
()
def
quantizelinear_test
():
def
quantizelinear_test
():
arg0
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
5
])
arg0
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
[
5
])
...
...
test/onnx/onnx_test.cpp
View file @
9263d7ad
...
@@ -4959,6 +4959,51 @@ TEST_CASE(qlinearconv_test)
...
@@ -4959,6 +4959,51 @@ TEST_CASE(qlinearconv_test)
EXPECT(p.sort() == prog.sort());
EXPECT(p.sort() == prog.sort());
}
}
TEST_CASE(qlinearglobalavgpool_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("X", {migraphx::shape::uint8_type, {1, 3, 4, 4}});
auto sc_x = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_x = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {128}});
auto sc_y = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.025}});
auto z_pt_y = mm->add_literal(migraphx::literal{migraphx::shape::uint8_type, {64}});
auto scale_x_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 3, 4, 4}}}), sc_x);
auto z_pt_x_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 3, 4, 4}}}), z_pt_x);
auto fp_x =
mm->add_instruction(migraphx::make_op("dequantizelinear"), x, scale_x_bcast, z_pt_x_bcast);
auto fp_y =
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0}},
{"lengths", {4, 4}}}),
fp_x);
auto scale_y_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 3, 1, 1}}}), sc_y);
auto z_pt_y_bcast = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {1, 3, 1, 1}}}), z_pt_y);
auto y =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_y, scale_y_bcast, z_pt_y_bcast);
mm->add_return({y});
auto prog = migraphx::parse_onnx("qlinearglobalavgpool_test.onnx");
EXPECT(p.sort() == prog.sort());
}
TEST_CASE(quantizelinear_test)
TEST_CASE(quantizelinear_test)
{
{
migraphx::program p;
migraphx::program p;
...
...
test/onnx/qlinearglobalavgpool_test.onnx
0 → 100644
View file @
9263d7ad
File added
test/onnx/verify_onnx.cpp
View file @
9263d7ad
...
@@ -1424,6 +1424,33 @@ TEST_CASE(qlinearconv_scale_1D_test)
...
@@ -1424,6 +1424,33 @@ TEST_CASE(qlinearconv_scale_1D_test)
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
result_vector
,
gold
));
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
result_vector
,
gold
));
}
}
TEST_CASE
(
qlinearglobalavgpool_test
)
{
// github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md
// #com.microsoft.QLinearGlobalAveragePool
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"qlinearglobalavgpool_test.onnx"
);
p
.
compile
(
migraphx
::
make_target
(
"ref"
));
migraphx
::
shape
sh_x
{
migraphx
::
shape
::
uint8_type
,
{
1
,
3
,
4
,
4
}};
std
::
vector
<
uint8_t
>
data_x
=
{
160
,
156
,
152
,
148
,
144
,
140
,
136
,
132
,
124
,
120
,
116
,
112
,
108
,
104
,
100
,
96
,
64
,
72
,
80
,
88
,
96
,
104
,
112
,
120
,
136
,
144
,
152
,
160
,
168
,
176
,
184
,
192
,
120
,
121
,
122
,
123
,
124
,
125
,
126
,
127
,
129
,
130
,
131
,
132
,
133
,
134
,
135
,
136
};
migraphx
::
parameter_map
pp
;
pp
[
"X"
]
=
migraphx
::
argument
(
sh_x
,
data_x
.
data
());
auto
result
=
p
.
eval
(
pp
).
back
();
std
::
vector
<
uint8_t
>
result_vector
;
result
.
visit
([
&
](
auto
output
)
{
result_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
std
::
vector
<
uint8_t
>
gold
=
{
64
,
64
,
64
};
EXPECT
(
migraphx
::
verify
::
verify_rms_range
(
result_vector
,
gold
));
}
TEST_CASE
(
resize_downsample_f_test
)
TEST_CASE
(
resize_downsample_f_test
)
{
{
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"resize_downsample_f_test.onnx"
);
migraphx
::
program
p
=
migraphx
::
parse_onnx
(
"resize_downsample_f_test.onnx"
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment