Commit 8d32c6b8 authored by Paul's avatar Paul
Browse files

Merge branch 'develop' into blas_tuning

parents 23cb7917 f25606f9
......@@ -24,6 +24,7 @@
#ifndef MIGRAPHX_GUARD_MIGRAPHX_SOURCE_LOCATION_HPP
#define MIGRAPHX_GUARD_MIGRAPHX_SOURCE_LOCATION_HPP
#include <cstdint>
#include <migraphx/config.hpp>
#if defined(CPPCHECK)
......
......@@ -86,7 +86,7 @@ inline std::string join_strings(Strings strings, const std::string& delim)
inline std::vector<std::string> split_string(const std::string& s, char delim)
{
std::vector<std::string> elems;
std::stringstream ss(s + ' ');
std::stringstream ss(s + delim);
std::string item;
while(std::getline(ss, item, delim))
{
......@@ -149,6 +149,10 @@ interpolate_string(const std::string& input, F f, std::string start = "${", std:
result.append(it, next_start);
if(next_start == input.end())
break;
if(next_end == input.end())
{
throw std::runtime_error("Unbalanced brackets");
}
auto r = f(next_start + start.size(), next_end);
result.append(r.begin(), r.end());
it = next_end + end.size();
......
......@@ -34,6 +34,7 @@ struct MIGRAPHX_EXPORT tmp_dir
{
fs::path path;
tmp_dir(const std::string& prefix = "");
tmp_dir(tmp_dir&&) = default;
void execute(const std::string& exe, const std::string& args) const;
......
......@@ -34,7 +34,7 @@ template <class PrivateMigraphTypeNameProbe>
std::string compute_type_name()
{
std::string name;
#ifdef _MSC_VER
#if defined(_MSC_VER) && !defined(__clang__)
name = typeid(PrivateMigraphTypeNameProbe).name();
name = name.substr(7);
#else
......
......@@ -29,10 +29,13 @@
#include <functional>
#include <iostream>
#include <numeric>
#include <assert.h>
#include <migraphx/float_equal.hpp>
#include <migraphx/config.hpp>
#include <migraphx/env.hpp>
MIGRAPHX_DECLARE_ENV_VAR(MIGRAPHX_VERIFY_ENABLE_ALLCLOSE)
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace verify {
......@@ -87,8 +90,7 @@ struct not_finite_fn
template <class T>
bool operator()(T x) const
{
using std::isfinite;
return not isfinite(x);
return not std::isfinite(static_cast<double>(x));
}
};
static constexpr not_finite_fn not_finite{};
......@@ -98,8 +100,7 @@ struct compare_mag_fn
template <class T, class U>
bool operator()(T x, U y) const
{
using std::fabs;
return fabs(x) < fabs(y);
return std::fabs(x) < std::fabs(y);
}
};
static constexpr compare_mag_fn compare_mag{};
......@@ -187,16 +188,103 @@ double rms_range(const R1& r1, const R2& r2)
return std::numeric_limits<range_value<R1>>::max();
}
template <class R>
double get_rms_tol(const R&, std::size_t tolerance = 80)
{
double threshold = std::numeric_limits<range_value<R>>::epsilon() * tolerance;
return threshold;
}
/*
C++ doesn't support named arguments, this is just wrapper that helps distinguish between actual
results v/s expected results arguments.
*/
template <class T>
struct expected
{
expected() = default;
explicit expected(const T& input) : x(&input) {}
const T& data() const
{
assert(x != nullptr);
return *x;
}
private:
const T* x = nullptr;
};
// deduction guide for templated expected class
template <class T>
expected(const T&) -> expected<T>;
struct tolerance
{
double rms_tol = 0.001;
double atol = 0.001;
double rtol = 0.001;
};
/*
MIGraphX implementation of numpy's np.allclose() which checks if elementwise absolute diff is within
tolerance using this formula: abs(a - b) < atol + rtol(abs(b))
*/
template <class R1, class R2>
bool allclose(const R1& r1, const R2& r2, tolerance tols)
{
std::size_t n = range_distance(r1);
if(n == range_distance(r2))
{
auto idx = mismatch_idx(r1, r2, [&](auto x, auto y) {
return abs_diff(double(x), double(y)) < tols.atol + tols.rtol * std::abs(double(y));
});
return idx >= range_distance(r1);
}
return false;
}
template <class R1, class R2>
bool verify_range(const R1& r1, const R2& r2, double tolerance = 80, double* out_error = nullptr)
bool verify_rms_range(const R1& r1,
const R2& r2,
std::size_t tolerance = 80,
double* out_rms_error = nullptr)
{
double threshold = std::numeric_limits<range_value<R1>>::epsilon() * tolerance;
double threshold = get_rms_tol(r1, tolerance);
auto error = rms_range(r1, r2);
if(out_error != nullptr)
*out_error = error;
if(out_rms_error != nullptr)
*out_rms_error = error;
return error <= threshold;
}
template <class R1, class R2>
bool verify_range_with_tolerance(const R1& r1,
const expected<R2>& r2,
tolerance tols = tolerance{},
double* out_rms_error = nullptr)
{
auto rms_error = rms_range(r1, r2.data());
// disable ewise_verify by default for now, it requires lot of tests to be fixed
bool ewise_verify = true;
if(enabled(MIGRAPHX_VERIFY_ENABLE_ALLCLOSE{}))
{
ewise_verify = allclose(r1, r2.data(), tols);
}
if(out_rms_error != nullptr)
*out_rms_error = rms_error;
return rms_error <= tols.rms_tol and ewise_verify;
}
// expected argument should be passed as second, but if it is passed as the first by mistake then
// flip the order
template <class R1, class R2>
bool verify_range_with_tolerance(const expected<R1>& r1,
const R2& r2,
tolerance tols = tolerance{},
double* out_rms_error = nullptr)
{
return verify_rms_range(r2, r1, tols, out_rms_error);
}
} // namespace verify
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -31,11 +31,15 @@
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
MIGRAPHX_EXPORT
bool verify_args(const std::string& name,
const argument& ref_arg,
const argument& target_arg,
double tolerance = 80);
MIGRAPHX_EXPORT bool verify_args(const std::string& name,
const argument& target_arg,
const verify::expected<argument>& ref_arg,
verify::tolerance);
MIGRAPHX_EXPORT bool verify_args_with_tolerance(const std::string& name,
const argument& target_arg,
const verify::expected<argument>& ref_arg,
std::size_t tolerance = 80);
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -21,6 +21,7 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/instruction.hpp>
#include <migraphx/load_save.hpp>
#include <migraphx/file_buffer.hpp>
#include <migraphx/json.hpp>
......@@ -60,9 +61,29 @@ void save(const program& p, const std::string& filename, const file_options& opt
{
write_buffer(filename, save_buffer(p, options));
}
// MIOpen doesn't support serializing fusion plans with Find-2.0 APIs
void print_miopen_warning(const program& p)
{
auto mods = p.get_modules();
if(std::any_of(mods.begin(), mods.end(), [](const auto* m) {
return std::any_of(m->begin(), m->end(), [](const instruction& i) {
return i.name() == "gpu::miopen_fusion";
});
}))
{
std::cout << "[WARNING]: Program has miopen_fusion instructions for which tuned solutions "
"are not stored inside serialized MIGraphX program. Consider serializing with "
"MIGRAPHX_DISABLE_MIOPEN_FUSION=1 flag set."
<< std::endl;
;
}
}
std::vector<char> save_buffer(const program& p, const file_options& options)
{
value v = p.to_value();
print_miopen_warning(p);
std::vector<char> buffer;
if(options.format == "msgpack")
{
......
......@@ -23,9 +23,9 @@
*/
#include <migraphx/memory_coloring.hpp>
#include <migraphx/module.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/functional.hpp>
#include <migraphx/algorithm.hpp>
#include <migraphx/ranges.hpp>
......@@ -382,7 +382,8 @@ void memory_coloring::apply(module& m) const
auto s = ins->get_shape();
std::size_t offset = seg.first * alignment;
assert(offset < n);
m.replace_instruction(ins, op::load{s, offset}, mem);
m.replace_instruction(
ins, make_op("load", {{"shape", to_value(s)}, {"offset", offset}}), mem);
}
// Replace zero allocation
......@@ -391,7 +392,8 @@ void memory_coloring::apply(module& m) const
if(ins->name() != allocation_op)
continue;
assert(ins->get_shape().bytes() == 0);
m.replace_instruction(ins, op::load{ins->get_shape(), 0}, mem);
m.replace_instruction(
ins, make_op("load", {{"shape", to_value(ins->get_shape())}, {"offset", 0}}), mem);
}
// Remove scratch parameter if its not used
......
......@@ -25,6 +25,33 @@
#include <migraphx/serialize.hpp>
#include <msgpack.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
// Leave an extra byte for error checking
constexpr std::size_t msgpack_size_limit = std::numeric_limits<uint32_t>::max() - 1;
template <class Range>
std::size_t msgpack_chunk_size(const Range& r)
{
return 1 + (r.size() - 1) / msgpack_size_limit;
}
template <class Iterator, class F>
void msgpack_chunk_for_each(Iterator start, Iterator last, F f)
{
while(std::distance(start, last) > msgpack_size_limit)
{
auto next = std::next(start, msgpack_size_limit);
f(start, next);
start = next;
}
f(start, last);
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
namespace msgpack {
MSGPACK_API_VERSION_NAMESPACE(MSGPACK_DEFAULT_API_NS)
{
......@@ -63,16 +90,31 @@ MSGPACK_API_VERSION_NAMESPACE(MSGPACK_DEFAULT_API_NS)
break;
}
case msgpack::type::BIN: {
// For backwards compatibility
v = migraphx::value::binary{o.via.bin.ptr, o.via.bin.size};
break;
}
case msgpack::type::ARRAY: {
migraphx::value r = migraphx::value::array{};
std::for_each(
o.via.array.ptr,
o.via.array.ptr + o.via.array.size,
[&](const msgpack::object& so) { r.push_back(so.as<migraphx::value>()); });
v = r;
if(o.via.array.size != 0 and o.via.array.ptr->type == msgpack::type::BIN)
{
auto bin = migraphx::value::binary{};
std::for_each(
o.via.array.ptr,
o.via.array.ptr + o.via.array.size,
[&](const msgpack::object& so) {
bin.insert(bin.end(), so.via.bin.ptr, so.via.bin.ptr + so.via.bin.size);
});
v = bin;
}
else
{
migraphx::value r = migraphx::value::array{};
std::for_each(
o.via.array.ptr,
o.via.array.ptr + o.via.array.size,
[&](const msgpack::object& so) { r.push_back(so.as<migraphx::value>()); });
v = r;
}
break;
}
case msgpack::type::MAP: {
......@@ -102,8 +144,12 @@ MSGPACK_API_VERSION_NAMESPACE(MSGPACK_DEFAULT_API_NS)
{
const auto* data = reinterpret_cast<const char*>(x.data());
auto size = x.size();
o.pack_bin(size);
o.pack_bin_body(data, size);
o.pack_array(migraphx::msgpack_chunk_size(x));
migraphx::msgpack_chunk_for_each(
data, data + size, [&](const char* start, const char* last) {
o.pack_bin(last - start);
o.pack_bin_body(start, last - start);
});
return o;
}
};
......@@ -129,6 +175,8 @@ MSGPACK_API_VERSION_NAMESPACE(MSGPACK_DEFAULT_API_NS)
o.pack_array(0);
return;
}
if(v.size() > migraphx::msgpack_size_limit)
MIGRAPHX_THROW("Size is too large for msgpack");
if(not v.front().get_key().empty())
{
o.pack_map(v.size());
......
......@@ -26,7 +26,7 @@
#include <migraphx/normalize_attributes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/op/common.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -49,6 +49,10 @@ auto tune_attribute(const std::vector<int64_t>& vec,
Message m)
{
std::vector<int64_t> result(vec);
if(result.empty())
{
return result;
};
int64_t n_rank = input_shape.ndim();
std::vector<op::normalize_attribute> vec_attrs = val.to_vector<op::normalize_attribute>();
if(contains(vec_attrs, op::normalize_attribute::use_output))
......@@ -188,20 +192,27 @@ bool normalize_attributes(operation& op, const shape& input_shape)
auto val = op.to_value();
if(attrs.contains("normalize_padding"))
{
auto padding = val.at(attrs.at("normalize_padding").to<std::string>());
auto padding_size = padding.size();
auto padding_start = 2;
if(padding_size == 2 * (input_shape.ndim() - padding_start))
tuned = true;
else if(padding_size != (input_shape.ndim() - padding_start))
MIGRAPHX_THROW("inconsistent padding size");
else
bool use_auto_padding =
(val.contains("padding_mode") and
(val.at("padding_mode").to<int>() != migraphx::op::padding_mode_t::default_));
if(not use_auto_padding)
{
auto result = tune_pad_attribute(padding);
val["padding"] = result;
op.from_value(val);
tuned = true;
auto padding = val.at(attrs.at("normalize_padding").to<std::string>());
auto padding_size = padding.size();
auto padding_start = 2;
if(padding_size == 2 * (input_shape.ndim() - padding_start))
tuned = true;
else if(padding_size != (input_shape.ndim() - padding_start))
{
MIGRAPHX_THROW("normalize_attributes: inconsistent padding vector size ");
}
else
{
auto result = tune_pad_attribute(padding);
val["padding"] = result;
op.from_value(val);
tuned = true;
}
}
}
if(not attrs.contains("normalize_axes"))
......@@ -251,5 +262,22 @@ bool normalize_attributes(operation& op, const shape& input_shape)
return tuned;
}
std::vector<int64_t> normalize_axes(const std::vector<int64_t>& axes,
const shape& input_shape,
const value& attr_val,
const std::string& prefix)
{
return tune_attribute(axes, {}, attr_val, input_shape, [&] { return prefix; });
}
std::vector<int64_t> normalize_indices(const std::vector<int64_t>& indices,
const std::vector<int64_t>& axes,
const shape& input_shape,
const value& attr_val,
const std::string& prefix)
{
return tune_attribute(indices, axes, attr_val, input_shape, [&] { return prefix; });
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/broadcast_qdq.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
// This method is to prep for quantizelinear or dequantizelinear operation for
// either the broadcasting of weight-scale or zero-points of qlinearadd operator
// outputs: operator op (inputs x, broadcasted: scale (float) & zero_pt (8-bit))
instruction_ref bcast_qdq_instr(const std::string& op_name,
instruction_ref x_in,
instruction_ref arg_fscale,
instruction_ref arg_z_pt,
const onnx_parser::node_info& info)
{
auto in_lens = x_in->get_shape().lens();
// prep 1: broadcast scale. it can come as a scalar or a 1-D tensor.
instruction_ref bcast_scale;
if(arg_fscale->get_shape().elements() > 1)
bcast_scale = info.add_instruction(
migraphx::make_op("broadcast", {{"axis", 0}, {"out_lens", in_lens}}), arg_fscale);
else
bcast_scale = info.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", in_lens}}), arg_fscale);
// prep 2: broadcast zero point. it can come as a scalar or a 1-D tensor.
instruction_ref bcast_zero_pt;
if(arg_z_pt->get_shape().elements() > 1)
bcast_zero_pt = info.add_instruction(
migraphx::make_op("broadcast", {{"axis", 0}, {"out_lens", in_lens}}), arg_z_pt);
else
bcast_zero_pt = info.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", in_lens}}), arg_z_pt);
// op_name is either quantizelinear or dequantizelinear:
return info.add_instruction(migraphx::make_op(op_name), x_in, bcast_scale, bcast_zero_pt);
}
// Multibroadcast a scaler..
instruction_ref bcast_scalar_instr(const migraphx::shape& shape_out,
instruction_ref arg_in,
const onnx_parser::node_info& info)
{
auto bcast_instr_out = info.add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", shape_out.lens()}}), arg_in);
return bcast_instr_out;
}
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_AMDMIGRAPHX_ONNX_BROADCAST_QDQ_HPP
#define MIGRAPHX_GUARD_AMDMIGRAPHX_ONNX_BROADCAST_QDQ_HPP
#include <string>
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/instruction.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
// This method is to prep for quantizelinear or dequantizelinear operation for
// either the broadcasting of weight-scale or zero-points of qlinearadd operator
// outputs: operator op (inputs x, broadcasted: scale (float) & zero_pt (8-bit))
instruction_ref bcast_qdq_instr(const std::string& op_name,
instruction_ref x_in,
instruction_ref arg_fscale,
instruction_ref arg_z_pt,
const onnx_parser::node_info& info);
// Multibroadcast a scaler..
instruction_ref bcast_scalar_instr(const migraphx::shape& shape_out,
instruction_ref arg_in,
const onnx_parser::node_info& info);
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -244,7 +244,7 @@ void onnx_parser::parse_from(std::istream& is, std::string name)
this->filename = std::move(name);
auto parent_path = fs::path(this->filename).parent_path();
if(not parent_path.empty())
this->path = parent_path;
this->path = parent_path.string();
onnx::ModelProto model;
if(model.ParseFromIstream(&is))
......
......@@ -47,7 +47,7 @@ void cal_auto_padding_size(onnx_parser::node_info info,
return;
}
auto auto_pad = info.attributes["auto_pad"].s();
auto auto_pad = to_upper(info.attributes["auto_pad"].s());
if(auto_pad.find("SAME") != std::string::npos)
{
bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/instruction.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
struct parse_castlike : op_parser<parse_castlike>
{
std::vector<op_desc> operators() const { return {{"CastLike"}}; }
instruction_ref parse(const op_desc& /*opd*/,
const onnx_parser& /*parser*/,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
if(not(args.size() == 2))
{
MIGRAPHX_THROW("PARSE_CASTLIKE: CastLike must have exactly 2 inputs!");
}
shape::type_t target_type = args[1]->get_shape().type();
return info.add_instruction(make_op("convert", {{"target_type", target_type}}), args[0]);
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -25,6 +25,7 @@
#include <migraphx/ranges.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/stringutils.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -39,16 +40,38 @@ struct parse_constant : op_parser<parse_constant>
onnx_parser::node_info info,
const std::vector<instruction_ref>& /*args*/) const
{
literal v = parser.parse_value(info.attributes.at("value"));
static const std::vector<std::string> attributes = {
"value", "value_float", "value_floats", "value_int", "value_ints"};
std::vector<std::string> present_attributes;
std::copy_if(attributes.begin(),
attributes.end(),
std::back_inserter(present_attributes),
[&](const std::string& a) { return contains(info.attributes, a); });
if(present_attributes.empty())
{
MIGRAPHX_THROW("Constant node does not contain any supported attribute");
}
if(present_attributes.size() > 1)
{
MIGRAPHX_THROW("Constant contains multiple attributes: " +
join_strings(std::move(present_attributes), ", "));
}
// cppcheck-suppress accessMoved
auto&& attr = info.attributes[present_attributes[0]];
literal v = parser.parse_value(attr);
// return empty literal
if(v.get_shape().elements() == 0)
{
return info.add_literal(literal{v.get_shape().type()});
}
auto dim_size = info.attributes.at("value").t().dims_size();
// if dim_size is 0, it is a scalar
if(dim_size == 0)
if(attr.has_t() and attr.t().dims_size() == 0)
{
migraphx::shape scalar_shape{v.get_shape().type()};
return info.add_literal(migraphx::literal{scalar_shape, v.data()});
......
......@@ -49,6 +49,8 @@ struct parse_constant_of_shape : op_parser<parse_constant_of_shape>
{
MIGRAPHX_THROW("ConstantOfShape: attribute value can contain only 1 elements!");
}
// convert to a scalar literal
l_val = literal(shape{l_val.get_shape().type(), {1}, {0}}, l_val.data());
}
else
{
......@@ -64,30 +66,37 @@ struct parse_constant_of_shape : op_parser<parse_constant_of_shape>
migraphx::shape s;
// input is empty, output is a scalar
auto type = l_val.get_shape().type();
// empty input tensor, output is a scalar
if(args[0]->get_shape().elements() == 0)
migraphx::argument input = args[0]->eval();
if(not input.empty())
{
s = migraphx::shape{type, {1}, {0}};
// empty input tensor, output is a scalar
if(args[0]->get_shape().elements() == 0)
{
s = migraphx::shape{type, {1}, {0}};
}
else
{
std::vector<std::size_t> dims;
input.visit([&](auto ia) { dims.assign(ia.begin(), ia.end()); });
s = migraphx::shape{type, dims};
}
literal l_out{};
l_val.visit([&](auto val) {
using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
// l_val contains only one element
std::vector<val_type> out_vec(s.elements(), val.front());
l_out = literal(s, out_vec);
});
return info.add_literal(l_out);
}
// has variable input (dynamic shape buffer)
else
{
migraphx::argument in = args[0]->eval();
check_arg_empty(in, "ConstantOfShape: dynamic shape is not supported");
std::vector<std::size_t> dims;
in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
s = migraphx::shape{type, dims};
auto dv_lit = info.add_literal(l_val);
auto alloc_ins =
info.add_instruction(make_op("allocate", {{"buf_type", type}}), args[0]);
return info.add_instruction(make_op("fill"), dv_lit, alloc_ins);
}
literal l_out{};
l_val.visit([&](auto val) {
using val_type = std::remove_cv_t<typename decltype(val)::value_type>;
// l_val contains only one element
std::vector<val_type> out_vec(s.elements(), val.front());
l_out = literal(s, out_vec);
});
return info.add_literal(l_out);
}
}
};
......
......@@ -87,8 +87,7 @@ struct parse_depthtospace : op_parser<parse_depthtospace>
auto temp1 = info.add_instruction(make_op("reshape", {{"dims", lens1}}), args[0]);
auto temp2 = info.add_instruction(make_op("transpose", {{"permutation", perm}}), temp1);
return info.add_instruction(make_op("reshape", {{"dims", lens2}}),
info.make_contiguous(temp2));
return info.add_instruction(make_op("reshape", {{"dims", lens2}}), temp2);
}
};
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -97,7 +97,7 @@ struct parse_pooling : op_parser<parse_pooling>
values["lp_order"] = info.attributes.at("p").i();
}
// ensure pads availabe only when auto_pad is "NOT_SET"
// ensure pads available only when auto_pad is "NOT_SET"
check_padding_mode(info, "POOLING");
return values;
......@@ -151,26 +151,6 @@ struct parse_pooling : op_parser<parse_pooling>
kdims, paddings.size() / 2, "PARSE_POOLING: inconsistent explicit paddings");
}
if(contains(info.attributes, "auto_pad"))
{
if(in_shape.dynamic())
{
MIGRAPHX_THROW(
"PARSE_POOLING: Auto padding pooling with dynamic input shape not supported");
}
else
{
values["padding"].clear();
// return paddings could be empty, then setting to 0 for no padding
cal_auto_padding_size(info,
values,
values["lengths"].to_vector<std::size_t>(),
{1, 1},
in_shape.lens(),
paddings);
}
}
if(paddings.size() != 2 * kdims)
{
paddings.resize(kdims * 2);
......@@ -192,6 +172,36 @@ struct parse_pooling : op_parser<parse_pooling>
// used to calculate the supposed output shape
std::vector<int64_t> orig_padding = paddings;
// TODO: add parsing for dilations
if(contains(info.attributes, "auto_pad") and
to_upper(info.attributes["auto_pad"].s()) != "NOTSET")
{
auto auto_pad = to_upper(info.attributes["auto_pad"].s());
// don't use the given padding sizes, if any
// values["padding"].clear();
if(in_shape.dynamic())
{
// set padding_mode to trigger auto padding at runtime
bool is_same_upper = (auto_pad.find("SAME_UPPER") != std::string::npos);
values["padding_mode"] = is_same_upper ? to_value(op::padding_mode_t::same_upper)
: to_value(op::padding_mode_t::same_lower);
}
else
{
// Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size(info,
values,
values["lengths"].to_vector<std::size_t>(),
std::vector<size_t>(in_shape.ndim() - 2, 1),
in_shape.lens(),
paddings);
values["padding"] = paddings;
// default padding_mode indicates that padding sizes are not calculated dynamically
values["padding_mode"] = migraphx::op::padding_mode_t::default_;
}
}
std::vector<int64_t> slice_start;
std::vector<int64_t> slice_end;
tune_padding_size(values, paddings, count_include_pad, slice_start);
......@@ -208,8 +218,9 @@ struct parse_pooling : op_parser<parse_pooling>
orig_padding.insert(orig_padding.begin(), 2, 0);
op::pad pad{orig_padding, 0.0f};
shape padded_shape = pad.compute_shape({l0->get_shape()});
auto out_lens = make_op("pooling", values).compute_shape({padded_shape}).lens();
// make an op just to get its output shape
auto out_lens = make_op("pooling", values).compute_shape({padded_shape}).lens();
// compute slice_end information
slice_end.resize(slice_start.size());
std::transform(out_lens.begin() + 2,
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/common.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/instruction.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
/*
*********************************************************************************
* Reference: see QLinearAdd in *
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
com.microsoft.QLinearAdd
Performs element-wise binary addition on 8 bit data types (with Numpy-style broadcasting support).
C = (A_scale * (A - A_zero_point) + B_scale * (B - B_zero_point))/C_scale + C_zero_point
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
Inputs (7 - 8)
A : T
First operand.
A_scale : tensor(float)
Input A's scale. It's a scalar, which means a per-tensor/layer quantization.
A_zero_point (optional) : T
Input A zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
B : T
Second operand.
B_scale : tensor(float)
Input B's scale. It's a scalar, which means a per-tensor/layer quantization.
B_zero_point (optional) : T
Input B zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
C_scale : tensor(float)
Output scale. It's a scalar, which means a per-tensor/layer quantization.
C_zero_point (optional) : T
Output zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
Outputs
C : T
Result, has same element type as two inputs
Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to 8 bit signed and unsigned tensors.
*/
struct parse_qlinearadd : op_parser<parse_qlinearadd>
{
std::vector<op_desc> operators() const { return {{"QLinearAdd"}}; }
// basic type checking for QLinearAdd Operator
void check_inputs(const std::vector<instruction_ref>& args) const
{
if(args.size() < 7)
MIGRAPHX_THROW("QLINEARADD: missing inputs");
const auto& in_a = args[0];
const auto& in_b = args[3];
auto sh_a = in_a->get_shape();
auto sh_b = in_b->get_shape();
auto type_a = sh_a.type();
auto type_b = sh_b.type();
if(type_a != migraphx::shape::int8_type and type_a != migraphx::shape::uint8_type)
MIGRAPHX_THROW("QLINEARADD: unsupported input type");
if(type_b != migraphx::shape::int8_type and type_b != migraphx::shape::uint8_type)
MIGRAPHX_THROW("QLINEARADD: unsupported input type");
if(type_a != type_b)
MIGRAPHX_THROW("QLINEARADD: mismatched input types");
}
instruction_ref parse(const op_desc& /* opd */,
const onnx_parser& /*parser*/,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
check_inputs(args);
// A
const auto& in_a = args[0];
const auto& in_scale_a = args[1];
const auto& in_zero_pt_a = args[2];
auto dquant_a = bcast_qdq_instr("dequantizelinear", in_a, in_scale_a, in_zero_pt_a, info);
// B
const auto& in_b = args[3];
const auto& in_scale_b = args[4];
const auto& in_zero_pt_b = args[5];
auto dquant_b = bcast_qdq_instr("dequantizelinear", in_b, in_scale_b, in_zero_pt_b, info);
// C = A + B
auto out_c = info.add_common_op("add", dquant_a, dquant_b);
const auto& in_scale_c = args[6];
// zero_pt for C is supplied as the last optional argument..
if(args.size() == 8)
return (bcast_qdq_instr("quantizelinear", out_c, in_scale_c, args[7], info));
// if no zero_pt: just broadcast the scale..
auto bcast_scale_c = bcast_scalar_instr(out_c->get_shape(), in_scale_c, info);
return (info.add_instruction(migraphx::make_op("quantizelinear"), out_c, bcast_scale_c));
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment