Unverified Commit 78f7af1d authored by kahmed10's avatar kahmed10 Committed by GitHub
Browse files

Fix pyflakes warnings for test gen scripts (#900)



* remove unused imports and vars

* formatting
Co-authored-by: default avatarCagri Eryilmaz <63118943+cagery@users.noreply.github.com>
parent a110207a
......@@ -4,8 +4,7 @@
import numpy as np
import onnx
from onnx import helper
from onnx import numpy_helper
from onnx import AttributeProto, TensorProto, GraphProto
from onnx import TensorProto
def onnx_test(op_test):
......@@ -483,7 +482,6 @@ def constant_fill_test():
@onnx_test
def constant_fill_input_as_shape_test():
np_shape = np.array([2, 3])
shape = helper.make_tensor_value_info('shape', TensorProto.INT32, [2])
value = helper.make_tensor_value_info('value', TensorProto.FLOAT, [2, 3])
ts_shape = helper.make_tensor(name='shape_tensor',
......@@ -534,7 +532,6 @@ def constant_scalar_test():
def const_of_shape_empty_input_test():
tensor_val = onnx.helper.make_tensor('value', onnx.TensorProto.INT64, [1],
[10])
shape_val = np.array([2, 3, 4]).astype(np.int64)
empty_val = np.array([]).astype(np.int64)
empty_ts = helper.make_tensor(name='empty_tensor',
data_type=TensorProto.INT32,
......@@ -1596,8 +1593,6 @@ def if_literal_test():
onnx.TensorProto.FLOAT, [5])
else_out = onnx.helper.make_tensor_value_info('else_out',
onnx.TensorProto.FLOAT, [5])
empty_out = onnx.helper.make_tensor_value_info('empty_out',
onnx.TensorProto.FLOAT, [])
x = np.array([1, 2, 3, 4, 5]).astype(np.float32)
y = np.array([5, 4, 3, 2, 1]).astype(np.float32)
......@@ -2334,8 +2329,7 @@ def logsoftmax_test():
@onnx_test
def logsoftmax_nonstd_input_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 9])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
node0 = onnx.helper.make_node('Slice',
inputs=['0'],
......@@ -2349,7 +2343,7 @@ def logsoftmax_nonstd_input_test():
outputs=['2'],
axis=-1)
return ([node0, node1], [x], [z])
return ([node0, node1], [x], [y])
@onnx_test
......@@ -3230,8 +3224,6 @@ def reshape_test():
@onnx_test
def reshape_non_standard_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 3, 4])
trans_x = helper.make_tensor_value_info('trans_x', TensorProto.FLOAT,
[2, 4, 3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [4, 3, 2])
trans = helper.make_node(
......@@ -3493,7 +3485,6 @@ def shape_gather_test():
values = np.array([1])
# value = helper.make_tensor_value_info('value', TensorProto.INT32, [1])
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [7, 3, 10])
y = helper.make_tensor_value_info('y', TensorProto.INT64, [3])
z = helper.make_tensor_value_info('z', TensorProto.FLOAT, [1])
value_tensor = helper.make_tensor(name='const_tensor',
......@@ -3800,8 +3791,7 @@ def softmax_test():
@onnx_test
def softmax_nonstd_input_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [6, 8])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 4])
z = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
y = helper.make_tensor_value_info('2', TensorProto.FLOAT, [3, 4])
node0 = onnx.helper.make_node('Slice',
inputs=['0'],
......@@ -3812,7 +3802,7 @@ def softmax_nonstd_input_test():
node1 = onnx.helper.make_node('Softmax', inputs=['1'], outputs=['2'])
return ([node0, node1], [x], [z])
return ([node0, node1], [x], [y])
@onnx_test
......@@ -3915,8 +3905,7 @@ def squeeze_empty_axes_test():
def squeeze_unsqueeze_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT,
[1, 3, 1, 1, 2, 1])
y = helper.make_tensor_value_info('1', TensorProto.FLOAT, [3, 2])
z = helper.make_tensor_value_info('2', TensorProto.FLOAT,
y = helper.make_tensor_value_info('2', TensorProto.FLOAT,
[1, 1, 3, 1, 2, 1])
node = onnx.helper.make_node('Squeeze',
......@@ -3929,7 +3918,7 @@ def squeeze_unsqueeze_test():
axes=[0, 1, 3, 5],
outputs=['2'])
return ([node, node2], [x], [z])
return ([node, node2], [x], [y])
@onnx_test
......
# This script generates tf pb files for MIGraphX tf operator tests.
# To generate an individual pb file, you can use the following
# command: python -c "import gen_tf_pb; gen_tf_pb.{test_name}_test()"
import numpy as np
import tensorflow as tf
from tensorflow.core.framework import attr_value_pb2
def tf_test(op_test):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment