Commit 687c6d17 authored by Artur Wojcik's avatar Artur Wojcik
Browse files

Merge branch 'develop' into uif2-initial

parents 6fd76845 d3e5a5c0
...@@ -465,7 +465,7 @@ jobs: ...@@ -465,7 +465,7 @@ jobs:
- name: Upload code coverage - name: Upload code coverage
if: "matrix.configuration == 'codecov'" if: "matrix.configuration == 'codecov'"
env: env:
CODECOV_TOKEN: "8545af1c-f90b-4345-92a5-0d075503ca56" CODECOV_TOKEN: "f5d5a10b-3177-4c76-b25f-9b1c2f165e8b"
run: | run: |
sudo apt-get install -y lcov sudo apt-get install -y lcov
cd build cd build
......
File mode changed from 100755 to 100644
...@@ -70,7 +70,8 @@ struct pooling ...@@ -70,7 +70,8 @@ struct pooling
// 2 smaller than the input tensor rank (NCHW layout) // 2 smaller than the input tensor rank (NCHW layout)
std::vector<std::size_t> lengths = {1, 1}; std::vector<std::size_t> lengths = {1, 1};
// Dilations are not supported at this time. // Spacing between the elements of the pooling kernel. Must be the same ndim as lengths.
std::vector<std::size_t> dilations = {1, 1};
// ceiling mode is a flag affecting output size // ceiling mode is a flag affecting output size
// or equivalently, placements of the pooling kernel. // or equivalently, placements of the pooling kernel.
...@@ -99,6 +100,7 @@ struct pooling ...@@ -99,6 +100,7 @@ struct pooling
f(self.padding_mode, "padding_mode"), f(self.padding_mode, "padding_mode"),
f(self.stride, "stride"), f(self.stride, "stride"),
f(self.lengths, "lengths"), f(self.lengths, "lengths"),
f(self.dilations, "dilations"),
f(self.ceil_mode, "ceil_mode"), f(self.ceil_mode, "ceil_mode"),
f(self.lp_order, "lp_order"), f(self.lp_order, "lp_order"),
f(self.dyn_global, "dyn_global")); f(self.dyn_global, "dyn_global"));
...@@ -112,14 +114,17 @@ struct pooling ...@@ -112,14 +114,17 @@ struct pooling
return; return;
if((padding_mode != default_ and padding.size() != stride.size() and if((padding_mode != default_ and padding.size() != stride.size() and
(padding.size()) != stride.size() * 2) or (padding.size()) != stride.size() * 2) or
stride.size() != lengths.size()) stride.size() != lengths.size() or dilations.size() != lengths.size())
{ {
MIGRAPHX_THROW("POOLING: inconsistent attribute sizes"); MIGRAPHX_THROW("POOLING: inconsistent attribute sizes");
} }
if(std::any_of(lengths.begin(), lengths.end(), [&](auto i) { return (i == 0); }) or
std::any_of(stride.begin(), stride.end(), [&](auto i) { return (i == 0); })) const auto is_zero = [](auto el) { return el == 0; };
if(std::any_of(lengths.begin(), lengths.end(), is_zero) or
std::any_of(stride.begin(), stride.end(), is_zero) or
std::any_of(dilations.begin(), dilations.end(), is_zero))
{ {
MIGRAPHX_THROW("POOLING: size 0 pooling kernel or stride"); MIGRAPHX_THROW("POOLING: size 0 pooling kernel or stride or dilations");
} }
// TODO: update lowering to run the reference // TODO: update lowering to run the reference
...@@ -142,6 +147,11 @@ struct pooling ...@@ -142,6 +147,11 @@ struct pooling
value attributes() const { return {{"normalize_padding", "padding"}}; } value attributes() const { return {{"normalize_padding", "padding"}}; }
inline std::size_t dilate_dim(std::size_t dim, std::size_t dilation) const
{
return 1 + dilation * (dim - 1);
}
std::vector<std::size_t> calc_spatial_dim_out(const std::vector<std::size_t>& input_lens, std::vector<std::size_t> calc_spatial_dim_out(const std::vector<std::size_t>& input_lens,
std::size_t kdims) const std::size_t kdims) const
{ {
...@@ -151,8 +161,9 @@ struct pooling ...@@ -151,8 +161,9 @@ struct pooling
std::size_t padding_factor = 2 * padding[i]; std::size_t padding_factor = 2 * padding[i];
if(padding.size() == 2 * kdims) if(padding.size() == 2 * kdims)
padding_factor = padding[i] + padding[i + kdims]; padding_factor = padding[i] + padding[i + kdims];
std::size_t dilated_length = dilate_dim(lengths[i], dilations[i]);
std::size_t dim_size; std::size_t dim_size;
if(input_lens[i + 2] + padding_factor < lengths[i]) if(input_lens[i + 2] + padding_factor < dilated_length)
{ {
if(padding_mode == default_) if(padding_mode == default_)
MIGRAPHX_THROW("POOLING: not enough padding for the given kernel size"); MIGRAPHX_THROW("POOLING: not enough padding for the given kernel size");
...@@ -162,7 +173,7 @@ struct pooling ...@@ -162,7 +173,7 @@ struct pooling
} }
else else
{ {
dim_size = input_lens[i + 2] + padding_factor - lengths[i]; dim_size = input_lens[i + 2] + padding_factor - dilated_length;
} }
std::size_t len = std::size_t len =
(ceil_mode) (ceil_mode)
...@@ -331,6 +342,7 @@ struct pooling ...@@ -331,6 +342,7 @@ struct pooling
int start = static_cast<int>(idx_o[dim] * stride[d_2]) - int start = static_cast<int>(idx_o[dim] * stride[d_2]) -
static_cast<int>(padding_vals[d_2]); static_cast<int>(padding_vals[d_2]);
int end; int end;
std::size_t dilated_kernel_dim = dilate_dim(kernel_dims[d_2], dilations[d_2]);
// NOLINT // NOLINT
if(count_include_pad and ceil_mode and (mode != pooling_mode::max)) if(count_include_pad and ceil_mode and (mode != pooling_mode::max))
{ {
...@@ -340,15 +352,14 @@ struct pooling ...@@ -340,15 +352,14 @@ struct pooling
// padding. Clip out-of-bounds indexes but not padding. // padding. Clip out-of-bounds indexes but not padding.
// Check if this kernel extends beyond the padding at end of dimension // Check if this kernel extends beyond the padding at end of dimension
end = std::min(start + kernel_dims[d_2], end = std::min(start + dilated_kernel_dim,
in_lens[dim] + static_cast<int>(padding_vals[d_2])); in_lens[dim] + static_cast<int>(padding_vals[d_2]));
} }
else else
{ {
// In non-ceiling mode, when // In non-ceiling mode, when
// count_include_pad is false, or for max pooling, clip off padding. // count_include_pad is false, or for max pooling, clip off padding.
end = std::min(start + kernel_dims[d_2], in_lens[dim]); end = std::min(start + dilated_kernel_dim, in_lens[dim]);
start = std::max(start, 0);
} }
win_start.push_back(start); win_start.push_back(start);
if(end < start) if(end < start)
...@@ -366,6 +377,16 @@ struct pooling ...@@ -366,6 +377,16 @@ struct pooling
// for each element in the window... // for each element in the window...
shape_for_each(win_shape, [&](const auto& idx_w) { shape_for_each(win_shape, [&](const auto& idx_w) {
// Skip elements that belong to the dilated area
for(size_t axis = 0; axis < idx_w.size(); ++axis)
{
if(idx_w[axis] % dilations[axis])
{
pool_size -= 1;
return;
}
}
// the coordinates of this element // the coordinates of this element
auto idx = idx_o; auto idx = idx_o;
...@@ -390,7 +411,15 @@ struct pooling ...@@ -390,7 +411,15 @@ struct pooling
// this is a padding element. Padding locations // this is a padding element. Padding locations
// don't contribute to average or max pooling total but can play in // don't contribute to average or max pooling total but can play in
// lpnorm pooling. // lpnorm pooling.
output_val = op(output_val, 0); if(mode == pooling_mode::lpnorm)
{
output_val = op(output_val, op.template init<Type>());
}
if(mode == pooling_mode::average)
{
// Ignore padding
pool_size -= 1;
}
} }
}); });
output[i] = Type(op.final(output_val, pool_size)); output[i] = Type(op.final(output_val, pool_size));
......
...@@ -26,6 +26,7 @@ ...@@ -26,6 +26,7 @@
#include <string> #include <string>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <migraphx/instruction_ref.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
......
...@@ -91,6 +91,14 @@ struct parse_pooling : op_parser<parse_pooling> ...@@ -91,6 +91,14 @@ struct parse_pooling : op_parser<parse_pooling>
kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths"); kdims, values["lengths"].size(), "PARSE_POOLING: inconsistent lengths");
} }
if(contains(info.attributes, "dilations"))
{
values["dilations"].clear();
copy(info.attributes["dilations"].ints(), std::back_inserter(values["dilations"]));
check_attr_sizes(
kdims, values["dilations"].size(), "PARSE_POOLING: inconsistent dilations");
}
// lp_order attribute // lp_order attribute
if(contains(info.attributes, "p")) if(contains(info.attributes, "p"))
{ {
...@@ -169,10 +177,15 @@ struct parse_pooling : op_parser<parse_pooling> ...@@ -169,10 +177,15 @@ struct parse_pooling : op_parser<parse_pooling>
std::fill_n(values["stride"].begin(), kdims, 1); std::fill_n(values["stride"].begin(), kdims, 1);
} }
if(values["dilations"].size() != kdims)
{
values["dilations"].resize(kdims);
std::fill_n(values["dilations"].begin(), kdims, 1);
}
// used to calculate the supposed output shape // used to calculate the supposed output shape
std::vector<int64_t> orig_padding = paddings; std::vector<int64_t> orig_padding = paddings;
// TODO: add parsing for dilations
if(contains(info.attributes, "auto_pad") and if(contains(info.attributes, "auto_pad") and
to_upper(info.attributes["auto_pad"].s()) != "NOTSET") to_upper(info.attributes["auto_pad"].s()) != "NOTSET")
{ {
...@@ -189,11 +202,10 @@ struct parse_pooling : op_parser<parse_pooling> ...@@ -189,11 +202,10 @@ struct parse_pooling : op_parser<parse_pooling>
else else
{ {
// Calculate auto padding // Calculate auto padding
// dilations (argument 4) not supported; default to all 1's
cal_auto_padding_size(info, cal_auto_padding_size(info,
values, values,
values["lengths"].to_vector<std::size_t>(), values["lengths"].to_vector<std::size_t>(),
std::vector<size_t>(in_shape.ndim() - 2, 1), values["dilations"].to_vector<std::size_t>(),
in_shape.lens(), in_shape.lens(),
paddings); paddings);
values["padding"] = paddings; values["padding"] = paddings;
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/common.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/onnx/checks.hpp>
#include <migraphx/onnx/broadcast_qdq.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/instruction.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace onnx {
/*
*********************************************************************************
* Reference: see QLinearSigmoid, QLinearLeakyRelu in *
* https://github.com/microsoft/onnxruntime/blob/main/docs/ContribOperators.md *
*********************************************************************************
com.microsoft.QLinearSigmoid
QLinearSigmoid takes quantized input data (Tensor), and quantize parameter for output, and produces
one output data (Tensor) where the function f(x) = quantize(Sigmoid(dequantize(x))), is applied to
the data tensor elementwise. Where the function Sigmoid(x) = 1 / (1 + exp(-x))
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator
set.
*****************************************************************************************************
com.microsoft.QLinearLeakyRelu
QLinearLeakyRelu takes quantized input data (Tensor), an argument alpha, and quantize parameter for
output, and produces one output data (Tensor) where the function f(x) = quantize(alpha *
dequantize(x)) for dequantize(x) < 0, f(x) = quantize(dequantize(x)) for dequantize(x) >= 0, is
applied to the data tensor elementwise.
Version
This version of the operator has been available since version 1 of the 'com.microsoft' operator set.
Attributes
alpha : float
Coefficient of leakage.
******************************************************************************************************
Generic input layout of QLinear unary operators:
Inputs (4 - 5)
X : T
Input tensor
X_scale : tensor(float)
Input X's scale. It's a scalar, which means a per-tensor/layer quantization.
X_zero_point (optional) : T
Input X's zero point. Default value is 0 if it's not specified. It's a scalar, which means a
per-tensor/layer quantization.
Y_scale : tensor(float) Output Y's scale. It's a scalar, which means
a per-tensor/layer quantization.
Y_zero_point (optional) : T Output Y's zero point. Default value is
0 if it's not specified. It's a scalar, which means a per-tensor/layer quantization.
Outputs
Y : T
Output tensor
Type Constraints
T : tensor(uint8), tensor(int8)
Constrain input and output types to 8 bit tensors.
*/
struct parse_qlinearunary : op_parser<parse_qlinearunary>
{
std::vector<op_desc> operators() const
{
return {{"QLinearSigmoid", "sigmoid"}, {"QLinearLeakyRelu", "leaky_relu"}};
}
void check_inputs(const op_desc& opd, const std::vector<instruction_ref>& args) const
{
if(args.size() < 4)
MIGRAPHX_THROW(opd.op_name + ": missing inputs");
const auto& in_x = args[0];
auto sh_x = in_x->get_shape();
auto type_x = sh_x.type();
if(type_x != migraphx::shape::int8_type and type_x != migraphx::shape::uint8_type)
MIGRAPHX_THROW(opd.op_name + ": unsupported input type");
}
instruction_ref parse(const op_desc& opd,
const onnx_parser& parser,
const onnx_parser::node_info& info,
const std::vector<instruction_ref>& args) const
{
check_inputs(opd, args);
// X
const auto& in_x = args[0];
const auto& in_scale_x = args[1];
const auto& in_zero_pt_x = args[2];
auto dquant_x = bcast_qdq_instr("dequantizelinear", in_x, in_scale_x, in_zero_pt_x, info);
// Y = (op(dequantizelinear(x))
auto op = parser.load(opd.op_name, info);
auto y = info.add_instruction(op, dquant_x);
const auto& in_scale_y = args[3];
// zero_pt for Y is supplied as the last optional argument..
if(args.size() == 5)
return (bcast_qdq_instr("quantizelinear", y, in_scale_y, args[4], info));
// if no zero_pt: just broadcast the scale..
auto bcast_scale_sigm = bcast_scalar_instr(y->get_shape(), in_scale_y, info);
return (info.add_instruction(migraphx::make_op("quantizelinear"), y, bcast_scale_sigm));
}
};
} // namespace onnx
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -35,6 +35,110 @@ ...@@ -35,6 +35,110 @@
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
static void replace_with_reduce(module& m, instruction_ref ins)
{
auto&& s = ins->inputs().front()->get_shape();
auto&& op = any_cast<op::pooling>(ins->get_operator());
auto lens = s.lens();
std::vector<std::int64_t> axes(lens.size() - 2);
std::iota(axes.begin(), axes.end(), 2);
// average pooling
if(op.mode == op::pooling_mode::average)
{
m.replace_instruction(ins, make_op("reduce_mean", {{"axes", axes}}), ins->inputs());
}
// max pooling
else
{
m.replace_instruction(ins, make_op("reduce_max", {{"axes", axes}}), ins->inputs());
}
}
static void replace_dilations_with_gather_pooling(module& m, instruction_ref ins)
{
// TODO remove this when MIOpen supports dilated pooling
auto&& s = ins->inputs().front()->get_shape();
auto&& op = any_cast<op::pooling>(ins->get_operator());
// Ignore N, C axes
std::vector<size_t> dims = {s.lens().cbegin() + 2, s.lens().cend()};
bool default_padding =
std::all_of(op.padding.cbegin(), op.padding.cend(), [](auto i) { return i == 0; });
if(not default_padding)
{
for(size_t idx{0}; idx < op.padding.size(); ++idx)
{
// We need to pad both ends
dims[idx] += op.padding.at(idx) * 2;
}
}
std::vector<size_t> kernels = op.lengths;
std::vector<size_t> strides = op.stride;
std::vector<size_t> dilations = op.dilations;
std::vector<std::vector<int>> axis_indices;
axis_indices.resize(dims.size());
for(auto idx{0}; idx < dims.size(); ++idx)
{
// Only consider if iw fits into the window
for(size_t stride{0}; stride < dims.at(idx) - dilations.at(idx) * (kernels.at(idx) - 1);
stride += strides.at(idx))
{
for(size_t step{0}; step < kernels.at(idx); ++step)
{
axis_indices.at(idx).push_back(stride + dilations.at(idx) * step);
}
}
}
auto elements = ins->inputs().front();
if(not default_padding)
{
// Pad supports asym, we need to provide both ends
std::vector<size_t> padding(2 * s.lens().size(), 0);
// Format will be e.g {N, C, P1, P2, N, C, P1, P2}
for(size_t idx{0}; idx < op.padding.size(); ++idx)
{
// Ignore N, C axes
padding.at(2 + idx) = op.padding.at(idx);
padding.at(2 + idx + s.lens().size()) = op.padding.at(idx);
}
// Default value needed for Max pooling
elements = m.insert_instruction(
ins,
make_op("pad", {{"pads", padding}, {"value", std::numeric_limits<float>::lowest()}}),
elements);
}
for(auto idx{0}; idx < axis_indices.size(); ++idx)
{
migraphx::shape s_indices{migraphx::shape::int32_type, {axis_indices.at(idx).size()}};
auto indices = m.add_literal(migraphx::literal{s_indices, axis_indices.at(idx)});
elements = m.insert_instruction(
ins, make_op("gather", {{"axis", idx + 2 /*ignore N,C*/}}), elements, indices);
}
// Ignore padding
std::vector<size_t> new_padding(kernels.size(), 0);
// The kernel window elements are places next to each other. E.g. {x1, y1, x2, y2, ...}
// We need to skip them to not overlap
std::vector<size_t> new_strides(kernels);
// Ignore dilations
std::vector<size_t> new_dilations(kernels.size(), 1);
m.replace_instruction(ins,
make_op("pooling",
{{"mode", op.mode},
{"padding", new_padding},
{"stride", new_strides},
{"lengths", kernels},
{"dilations", new_dilations}}),
elements);
}
void rewrite_pooling::apply(module& m) const void rewrite_pooling::apply(module& m) const
{ {
for(auto ins : iterator_for(m)) for(auto ins : iterator_for(m))
...@@ -43,26 +147,36 @@ void rewrite_pooling::apply(module& m) const ...@@ -43,26 +147,36 @@ void rewrite_pooling::apply(module& m) const
continue; continue;
if(ins->inputs().empty()) if(ins->inputs().empty())
continue; continue;
auto&& s = ins->inputs().front()->get_shape(); auto&& s = ins->inputs().front()->get_shape();
auto&& op = any_cast<op::pooling>(ins->get_operator()); auto&& op = any_cast<op::pooling>(ins->get_operator());
if(not std::all_of(op.padding.begin(), op.padding.end(), [](auto i) { return i == 0; })) bool same_kernel_as_shape = std::equal(
continue; s.lens().cbegin() + 2, s.lens().cend(), op.lengths.cbegin(), op.lengths.cend());
if(not std::all_of(op.stride.begin(), op.stride.end(), [](auto i) { return i == 1; })) bool default_strides =
continue; std::all_of(op.stride.cbegin(), op.stride.cend(), [](auto i) { return i == 1; });
auto lens = s.lens(); bool default_padding =
if(not std::equal(lens.begin() + 2, lens.end(), op.lengths.begin(), op.lengths.end())) std::all_of(op.padding.cbegin(), op.padding.cend(), [](auto i) { return i == 0; });
continue; bool default_dilations =
std::vector<std::int64_t> axes(lens.size() - 2); std::all_of(op.dilations.cbegin(), op.dilations.cend(), [](auto i) { return i == 1; });
std::iota(axes.begin(), axes.end(), 2); if(same_kernel_as_shape and default_strides and default_padding and default_dilations)
// average pooling
if(op.mode == op::pooling_mode::average)
{ {
m.replace_instruction(ins, make_op("reduce_mean", {{"axes", axes}}), ins->inputs()); replace_with_reduce(m, ins);
} }
// max pooling else if(not default_dilations)
else
{ {
m.replace_instruction(ins, make_op("reduce_max", {{"axes", axes}}), ins->inputs()); // Dilated AvgPool with padding is not supported
if(not default_padding and op.mode == op::pooling_mode::average)
{
continue;
}
auto size =
std::accumulate(s.lens().cbegin(), s.lens().cend(), 1, std::multiplies<size_t>());
// Can't handle too much size because of literal size
if(size > 100000)
{
continue;
}
replace_dilations_with_gather_pooling(m, ins);
} }
} }
} }
......
...@@ -22,6 +22,7 @@ ...@@ -22,6 +22,7 @@
* THE SOFTWARE. * THE SOFTWARE.
*/ */
#include <migraphx/simplify_dyn_ops.hpp> #include <migraphx/simplify_dyn_ops.hpp>
#include <migraphx/op/slice.hpp>
#include <migraphx/matcher.hpp> #include <migraphx/matcher.hpp>
#include <migraphx/make_op.hpp> #include <migraphx/make_op.hpp>
#include <migraphx/literal.hpp> #include <migraphx/literal.hpp>
...@@ -33,6 +34,10 @@ inline namespace MIGRAPHX_INLINE_NS { ...@@ -33,6 +34,10 @@ inline namespace MIGRAPHX_INLINE_NS {
* Convert 2 input static shape broadcast/multibroadcast into 1 input version. * Convert 2 input static shape broadcast/multibroadcast into 1 input version.
* Some compiler passes (ex. simplify_algebra) only support the 1 input versions * Some compiler passes (ex. simplify_algebra) only support the 1 input versions
* of the broadcasting operators. * of the broadcasting operators.
* From:
* broadcast_op(argument_with_static_shape, argument_with_static_shape)
* To:
* broadcast_op(argument_with_static_shape); broadcast_op.out_lens = constant_output_dims
*/ */
struct find_static_2in_broadcasts struct find_static_2in_broadcasts
{ {
...@@ -61,8 +66,65 @@ struct find_static_2in_broadcasts ...@@ -61,8 +66,65 @@ struct find_static_2in_broadcasts
}; };
/** /**
* Simplify slice with variable `starts` and `ends` to the constant version if * Simplify slice with 2 inputs to the 1 input version if inputs[1] is constant.
* the `input_starts` and `input_ends` inputs are constant. * From:
* slice(data, constant_input); two attributes set
* To:
* slice(data); slice.starts, slice.ends. slice.axes set
*/
struct find_const_2in_slice
{
auto matcher() const
{
return match::name("slice")(match::nargs(2), match::arg(1)(match::is_constant()));
}
void apply(module& m, const match::matcher_result& mr) const
{
auto ins = mr.result;
auto inputs = ins->inputs();
auto slice_op = any_cast<op::slice>(ins->get_operator());
auto set_attrs = slice_op.get_set_attributes();
std::vector<int64_t> starts_vec;
std::vector<int64_t> ends_vec;
std::vector<int64_t> axes_vec;
if(set_attrs == op::slice::ends_axes)
{
// slice(data, starts)
inputs.at(1)->eval().visit(
[&](auto output) { starts_vec.assign(output.begin(), output.end()); });
ends_vec = slice_op.ends;
axes_vec = slice_op.axes;
}
else if(set_attrs == op::slice::starts_axes)
{
// slice(data, ends)
inputs.at(1)->eval().visit(
[&](auto output) { ends_vec.assign(output.begin(), output.end()); });
starts_vec = slice_op.starts;
axes_vec = slice_op.axes;
}
else
{
// slice(data, axes)
inputs.at(1)->eval().visit(
[&](auto output) { axes_vec.assign(output.begin(), output.end()); });
starts_vec = slice_op.starts;
ends_vec = slice_op.ends;
}
m.replace_instruction(
ins,
make_op("slice", {{"starts", starts_vec}, {"ends", ends_vec}, {"axes", axes_vec}}),
inputs.at(0));
}
};
/**
* Simplify slice with 3 inputs to the 1 input version if inputs[1:2] are constant.
* From:
* slice(data, constant_input1, constant_input2); one attribute set
* To:
* slice(data); slice.starts, slice.ends. slice.axes set
*/ */
struct find_const_3in_slice struct find_const_3in_slice
{ {
...@@ -77,27 +139,51 @@ struct find_const_3in_slice ...@@ -77,27 +139,51 @@ struct find_const_3in_slice
{ {
auto ins = mr.result; auto ins = mr.result;
auto inputs = ins->inputs(); auto inputs = ins->inputs();
argument starts_arg = inputs.at(1)->eval(); auto slice_op = any_cast<op::slice>(ins->get_operator());
argument ends_arg = inputs.at(2)->eval(); auto set_attrs = slice_op.get_set_attributes();
if(not starts_arg.empty() and not ends_arg.empty()) std::vector<int64_t> starts_vec;
std::vector<int64_t> ends_vec;
std::vector<int64_t> axes_vec;
if(set_attrs == op::slice::axes_only)
{ {
std::vector<int64_t> starts_vec; // slice(data, starts, ends)
std::vector<int64_t> ends_vec; inputs.at(1)->eval().visit(
starts_arg.visit([&](auto output) { starts_vec.assign(output.begin(), output.end()); }); [&](auto output) { starts_vec.assign(output.begin(), output.end()); });
ends_arg.visit([&](auto output) { ends_vec.assign(output.begin(), output.end()); }); inputs.at(2)->eval().visit(
auto slice_val = ins->get_operator().to_value(); [&](auto output) { ends_vec.assign(output.begin(), output.end()); });
auto axes_vec = slice_val.at("axes").to_vector<int64_t>(); axes_vec = slice_op.axes;
m.replace_instruction( }
ins, else if(set_attrs == op::slice::ends_only)
make_op("slice", {{"starts", starts_vec}, {"ends", ends_vec}, {"axes", axes_vec}}), {
inputs.at(0)); // slice(data, starts, axes)
inputs.at(1)->eval().visit(
[&](auto output) { starts_vec.assign(output.begin(), output.end()); });
inputs.at(2)->eval().visit(
[&](auto output) { axes_vec.assign(output.begin(), output.end()); });
ends_vec = slice_op.ends;
} }
else
{
// slice(data, ends, axes)
inputs.at(1)->eval().visit(
[&](auto output) { ends_vec.assign(output.begin(), output.end()); });
inputs.at(2)->eval().visit(
[&](auto output) { axes_vec.assign(output.begin(), output.end()); });
starts_vec = slice_op.starts;
}
m.replace_instruction(
ins,
make_op("slice", {{"starts", starts_vec}, {"ends", ends_vec}, {"axes", axes_vec}}),
inputs.at(0));
} }
}; };
/** /**
* Simplify slice with variable `starts`, `ends`, and `input_axes` to the constant version if * Simplify slice with 4 inputs to the 1 input version if inputs[1:3] are constant.
* the `input_starts`, `input_ends`, and `input_axes` inputs are constant. * From:
* slice(data, constant_starts, constant_ends, constant_axes)
* To:
* slice(data); slice.starts, slice.ends. slice.axes set
*/ */
struct find_const_4in_slice struct find_const_4in_slice
{ {
...@@ -113,9 +199,9 @@ struct find_const_4in_slice ...@@ -113,9 +199,9 @@ struct find_const_4in_slice
{ {
auto ins = mr.result; auto ins = mr.result;
auto inputs = ins->inputs(); auto inputs = ins->inputs();
argument starts_arg = inputs.at(1)->eval(); argument starts_arg = inputs.at(1)->eval(false);
argument ends_arg = inputs.at(2)->eval(); argument ends_arg = inputs.at(2)->eval(false);
argument axes_arg = inputs.at(3)->eval(); argument axes_arg = inputs.at(3)->eval(false);
if(not starts_arg.empty() and not ends_arg.empty() and not axes_arg.empty()) if(not starts_arg.empty() and not ends_arg.empty() and not axes_arg.empty())
{ {
std::vector<int64_t> starts_vec; std::vector<int64_t> starts_vec;
...@@ -172,13 +258,76 @@ struct find_static_dimensions_of ...@@ -172,13 +258,76 @@ struct find_static_dimensions_of
} }
}; };
/**
* Simplify allocate into 2 argument reshape that has constant output dimensions into a static 1
* argument reshape. Intended to simplify what ONNX parse_reshape creates for dynamic reshapes.
* This matcher can be generalized to matching reshape(data, static_shape_output_tensor).
* From:
* x = allocate(constant_output_dims) -> reshape(data, x)
* To:
* reshape(data); reshape.dims = constant_output_dims
*/
struct find_const_alloc_reshapes
{
auto matcher() const
{
return match::name("reshape")(match::nargs(2),
match::arg(1)(match::name("allocate")(match::is_constant())));
}
void apply(module& m, const match::matcher_result& mr) const
{
auto reshape_ins = mr.result;
auto reshape_inputs = reshape_ins->inputs();
auto alloc_ins = reshape_inputs.at(1);
argument output_dims_arg = alloc_ins->inputs().at(0)->eval(false);
std::vector<int64_t> output_dims_vec;
output_dims_arg.visit(
[&](auto output) { output_dims_vec.assign(output.begin(), output.end()); });
m.replace_instruction(
reshape_ins, make_op("reshape", {{"dims", output_dims_vec}}), reshape_inputs.at(0));
// have dead_code_elimination remove the previous allocate
}
};
/**
* Simplify allocate into fill operator that has constant output dimensions and constant value.
* The allocate into fill instructions is what is produced when parsing the ONNX
* ConstantOfShape operator. This replacement could be handled with propagate_constant, but
* would rather have the simplification happen earlier during compiling.
* This matcher can be generalized to matching fill(constant_value, static_shape_output_tensor).
* From:
* x = allocate(constant_ouptut_dims) -> fill(constant_value, x)
* To:
* literal
*/
struct find_const_alloc_fill
{
auto matcher() const
{
return match::name("fill")(match::arg(0)(match::is_constant()),
match::arg(1)(match::name("allocate")(match::is_constant())));
}
void apply(module& m, const match::matcher_result& mr) const
{
auto fill_ins = mr.result;
auto fill_arg = fill_ins->eval(false);
auto l = m.add_literal(fill_arg.get_shape(), fill_arg.data());
m.replace_instruction(fill_ins, l);
}
};
void simplify_dyn_ops::apply(module& m) const void simplify_dyn_ops::apply(module& m) const
{ {
match::find_matches(m, match::find_matches(m,
find_static_2in_broadcasts{},
find_static_dimensions_of{}, find_static_dimensions_of{},
find_const_alloc_reshapes{},
find_static_2in_broadcasts{},
find_const_2in_slice{},
find_const_3in_slice{}, find_const_3in_slice{},
find_const_4in_slice{}); find_const_4in_slice{},
find_const_alloc_fill{});
} }
} // namespace MIGRAPHX_INLINE_NS } // namespace MIGRAPHX_INLINE_NS
......
...@@ -34,23 +34,32 @@ namespace migraphx { ...@@ -34,23 +34,32 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
namespace cpu { namespace cpu {
struct dnnl_pooling : dnnl_extend_op<dnnl_pooling, dnnl::pooling_forward, op::pooling> struct dnnl_pooling : dnnl_extend_op<dnnl_pooling, dnnl::pooling_v2_forward, op::pooling>
{ {
std::vector<int> arg_map(int) const { return {MIGRAPHX_DNNL_PREFIX(ARG_SRC)}; } std::vector<int> arg_map(int) const { return {MIGRAPHX_DNNL_PREFIX(ARG_SRC)}; }
dnnl::pooling_forward::desc get_desc(const std::unordered_map<int, dnnl::memory::desc>& m) const dnnl::pooling_v2_forward::desc
get_desc(const std::unordered_map<int, dnnl::memory::desc>& m) const
{ {
auto algo = op.mode == op::pooling_mode::max ? dnnl::algorithm::pooling_max auto algo = op.mode == op::pooling_mode::max ? dnnl::algorithm::pooling_max
: dnnl::algorithm::pooling_avg; : dnnl::algorithm::pooling_avg;
auto kdims = op.kdims(); auto kdims = op.kdims();
std::vector<size_t> padding_l(op.padding.begin(), op.padding.begin() + kdims); std::vector<size_t> padding_l(op.padding.begin(), op.padding.begin() + kdims);
std::vector<size_t> padding_r(op.padding.begin() + kdims, op.padding.end()); std::vector<size_t> padding_r(op.padding.begin() + kdims, op.padding.end());
// Note: It is not documented, but the default dilation seems to be 0 instead of 1.
// We need to offset dilations with -1.
std::vector<size_t> dilations;
std::transform(op.dilations.cbegin(),
op.dilations.cend(),
std::back_inserter(dilations),
[](size_t d) { return d - 1; });
return {dnnl::prop_kind::forward_inference, return {dnnl::prop_kind::forward_inference,
algo, algo,
m.at(MIGRAPHX_DNNL_PREFIX(ARG_SRC)), m.at(MIGRAPHX_DNNL_PREFIX(ARG_SRC)),
m.at(MIGRAPHX_DNNL_PREFIX(ARG_DST)), m.at(MIGRAPHX_DNNL_PREFIX(ARG_DST)),
to_dnnl_dims(op.stride), to_dnnl_dims(op.stride),
to_dnnl_dims(op.lengths), to_dnnl_dims(op.lengths),
to_dnnl_dims(dilations),
to_dnnl_dims(padding_l), to_dnnl_dims(padding_l),
to_dnnl_dims(padding_r)}; to_dnnl_dims(padding_r)};
} }
......
...@@ -194,7 +194,7 @@ struct hiprtc_program ...@@ -194,7 +194,7 @@ struct hiprtc_program
}; };
std::vector<std::vector<char>> compile_hip_src_with_hiprtc(std::vector<hiprtc_src_file> srcs, std::vector<std::vector<char>> compile_hip_src_with_hiprtc(std::vector<hiprtc_src_file> srcs,
std::string params, const std::string& params,
const std::string& arch) const std::string& arch)
{ {
hiprtc_program prog(std::move(srcs)); hiprtc_program prog(std::move(srcs));
...@@ -238,8 +238,9 @@ bool hip_has_flags(const std::vector<std::string>& flags) ...@@ -238,8 +238,9 @@ bool hip_has_flags(const std::vector<std::string>& flags)
} }
} }
std::vector<std::vector<char>> std::vector<std::vector<char>> compile_hip_src(const std::vector<src_file>& srcs,
compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std::string& arch) const std::string& params,
const std::string& arch)
{ {
std::vector<hiprtc_src_file> hsrcs{srcs.begin(), srcs.end()}; std::vector<hiprtc_src_file> hsrcs{srcs.begin(), srcs.end()};
if(enabled(MIGRAPHX_GPU_DUMP_SRC{})) if(enabled(MIGRAPHX_GPU_DUMP_SRC{}))
...@@ -281,13 +282,13 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std ...@@ -281,13 +282,13 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
if(fs::exists(out)) if(fs::exists(out))
return {read_buffer(out.string())}; return {read_buffer(out.string())};
} }
return compile_hip_src_with_hiprtc(std::move(hsrcs), std::move(params), arch); return compile_hip_src_with_hiprtc(std::move(hsrcs), params, arch);
} }
#else // MIGRAPHX_USE_HIPRTC #else // MIGRAPHX_USE_HIPRTC
std::vector<std::vector<char>> compile_hip_src_with_hiprtc(std::vector<hiprtc_src_file>, // NOLINT std::vector<std::vector<char>> compile_hip_src_with_hiprtc(std::vector<hiprtc_src_file>, // NOLINT
std::string, // NOLINT const std::string&, // NOLINT
const std::string&) const std::string&)
{ {
MIGRAPHX_THROW("Not using hiprtc"); MIGRAPHX_THROW("Not using hiprtc");
...@@ -316,29 +317,15 @@ src_compiler assemble(src_compiler compiler) ...@@ -316,29 +317,15 @@ src_compiler assemble(src_compiler compiler)
return compiler; return compiler;
} }
std::vector<std::vector<char>> std::vector<std::vector<char>> compile_hip_src(const std::vector<src_file>& srcs,
compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std::string& arch) const std::string& params,
const std::string& arch)
{ {
assert(not srcs.empty()); assert(not srcs.empty());
if(not is_hip_clang_compiler()) if(not is_hip_clang_compiler())
MIGRAPHX_THROW("Unknown hip compiler: " MIGRAPHX_HIP_COMPILER); MIGRAPHX_THROW("Unknown hip compiler: " MIGRAPHX_HIP_COMPILER);
if(params.find("-std=") == std::string::npos)
params += " --std=c++17";
params += " -fno-gpu-rdc";
if(enabled(MIGRAPHX_GPU_DEBUG_SYM{}))
params += " -g";
params += " -c";
params += " --offload-arch=" + arch;
params += " --cuda-device-only";
params += " -O" + string_value_of(MIGRAPHX_GPU_OPTIMIZE{}, "3") + " ";
if(enabled(MIGRAPHX_GPU_DEBUG{}))
params += " -DMIGRAPHX_DEBUG";
params += " -Wno-unused-command-line-argument -Wno-cuda-compat ";
params += MIGRAPHX_HIP_COMPILER_FLAGS;
src_compiler compiler; src_compiler compiler;
compiler.flags = params; compiler.flags = params;
compiler.compiler = MIGRAPHX_HIP_COMPILER; compiler.compiler = MIGRAPHX_HIP_COMPILER;
...@@ -346,6 +333,23 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std ...@@ -346,6 +333,23 @@ compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std
if(has_compiler_launcher()) if(has_compiler_launcher())
compiler.launcher = MIGRAPHX_HIP_COMPILER_LAUNCHER; compiler.launcher = MIGRAPHX_HIP_COMPILER_LAUNCHER;
#endif #endif
if(params.find("-std=") == std::string::npos)
compiler.flags += " --std=c++17";
compiler.flags += " -fno-gpu-rdc";
if(enabled(MIGRAPHX_GPU_DEBUG_SYM{}))
compiler.flags += " -g";
compiler.flags += " -c";
compiler.flags += " --offload-arch=" + arch;
compiler.flags += " --cuda-device-only";
compiler.flags += " -O" + string_value_of(MIGRAPHX_GPU_OPTIMIZE{}, "3") + " ";
if(enabled(MIGRAPHX_GPU_DEBUG{}))
compiler.flags += " -DMIGRAPHX_DEBUG";
compiler.flags += " -Wno-unused-command-line-argument -Wno-cuda-compat ";
compiler.flags += MIGRAPHX_HIP_COMPILER_FLAGS;
if(enabled(MIGRAPHX_GPU_DUMP_SRC{})) if(enabled(MIGRAPHX_GPU_DUMP_SRC{}))
{ {
for(const auto& src : srcs) for(const auto& src : srcs)
......
...@@ -200,7 +200,7 @@ operation compile_hip_code_object(const std::string& content, hip_compile_option ...@@ -200,7 +200,7 @@ operation compile_hip_code_object(const std::string& content, hip_compile_option
options.params += " " + join_strings(compiler_warnings(), " "); options.params += " " + join_strings(compiler_warnings(), " ");
options.params += " -ftemplate-backtrace-limit=0"; options.params += " -ftemplate-backtrace-limit=0";
options.params += " -Werror"; options.params += " -Werror";
auto cos = compile_hip_src(srcs, std::move(options.params), get_device_name()); auto cos = compile_hip_src(srcs, options.params, get_device_name());
if(cos.size() != 1) if(cos.size() != 1)
MIGRAPHX_THROW("No code object"); MIGRAPHX_THROW("No code object");
return code_object_op{value::binary{cos.front()}, return code_object_op{value::binary{cos.front()},
......
...@@ -43,24 +43,32 @@ template <index_int N, ...@@ -43,24 +43,32 @@ template <index_int N,
__device__ void block_scan(index idx, Op op, T init, ForStride fs, Input input, Output output) __device__ void block_scan(index idx, Op op, T init, ForStride fs, Input input, Output output)
{ {
using type = decltype(input(deduce_for_stride(fs))); using type = decltype(input(deduce_for_stride(fs)));
MIGRAPHX_DEVICE_SHARED type buffer[N]; MIGRAPHX_DEVICE_SHARED type buffer[2][N];
type x = init; type x = init;
fs([&](auto i) { fs([&](auto i) {
index_int iout = 0;
index_int iin = 1;
if(idx.local == 0) if(idx.local == 0)
buffer[idx.local] = op(input(i), x); buffer[iout][idx.local] = op(input(i), x);
else else
buffer[idx.local] = input(i); buffer[iout][idx.local] = input(i);
__syncthreads(); __syncthreads();
for(index_int s = 1; s < idx.nlocal(); s *= 2) for(index_int s = 1; s < idx.nlocal(); s *= 2)
{ {
if(idx.local + s < idx.nlocal()) iout = 1 - iout;
iin = 1 - iin;
if(idx.local >= s)
{ {
buffer[idx.local + s] = op(buffer[idx.local], buffer[idx.local + s]); buffer[iout][idx.local] = op(buffer[iin][idx.local], buffer[iin][idx.local - s]);
}
else
{
buffer[iout][idx.local] = buffer[iin][idx.local];
} }
__syncthreads(); __syncthreads();
} }
x = buffer[idx.nlocal() - 1]; x = buffer[iout][idx.nlocal() - 1];
output(i, buffer[idx.local]); output(i, buffer[iout][idx.local]);
}); });
} }
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/driver/action.hpp>
#include <migraphx/gpu/time_op.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/gpu/compile_ops.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/program.hpp>
#include <migraphx/instruction.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace driver {
struct precompile_op : action<precompile_op>
{
static program create_preop_program(const operation& preop, std::vector<shape> inputs)
{
program p;
auto* mm = p.get_main_module();
std::vector<instruction_ref> args;
inputs.pop_back();
transform(inputs, range(inputs.size()), std::back_inserter(args), [&](auto input, auto i) {
return mm->add_parameter("x" + std::to_string(i), input);
});
mm->add_instruction(preop, args);
return p;
}
static operation get_code_object(const program& p)
{
MIGRAPHX_TIDY_CONST auto* mm = p.get_main_module();
auto it = std::find_if(mm->begin(), mm->end(), [](const auto& ins) {
return (ins.name() == "gpu::code_object");
});
if(it == mm->end())
MIGRAPHX_THROW("Failed to create code object");
return it->get_operator();
}
static void apply(const parser& p, const value& v)
{
context ctx;
auto inputs = p.parse_shapes(v.at("inputs"));
auto name = v.at("name").to<std::string>();
auto preop = make_op(name);
if(v.contains("fields"))
preop.from_value(v.at("fields"));
bool exhaustive = v.get("exhaustive", false);
auto prog = create_preop_program(preop, inputs);
run_passes(prog, {lowering{}, compile_ops{&ctx, exhaustive}});
auto op = get_code_object(prog);
auto t = time_op(ctx, op, inputs, p.get(v, "iterations", 100));
std::cout << preop << ": " << t << "ms" << std::endl;
}
};
} // namespace driver
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -58,10 +58,10 @@ struct hiprtc_src_file ...@@ -58,10 +58,10 @@ struct hiprtc_src_file
MIGRAPHX_GPU_EXPORT bool hip_has_flags(const std::vector<std::string>& flags); MIGRAPHX_GPU_EXPORT bool hip_has_flags(const std::vector<std::string>& flags);
MIGRAPHX_GPU_EXPORT std::vector<std::vector<char>> compile_hip_src_with_hiprtc( MIGRAPHX_GPU_EXPORT std::vector<std::vector<char>> compile_hip_src_with_hiprtc(
std::vector<hiprtc_src_file> srcs, std::string params, const std::string& arch); std::vector<hiprtc_src_file> srcs, const std::string& params, const std::string& arch);
MIGRAPHX_GPU_EXPORT std::vector<std::vector<char>> MIGRAPHX_GPU_EXPORT std::vector<std::vector<char>> compile_hip_src(
compile_hip_src(const std::vector<src_file>& srcs, std::string params, const std::string& arch); const std::vector<src_file>& srcs, const std::string& params, const std::string& arch);
MIGRAPHX_GPU_EXPORT std::string enum_params(std::size_t count, std::string param); MIGRAPHX_GPU_EXPORT std::string enum_params(std::size_t count, std::string param);
......
...@@ -211,6 +211,12 @@ inline pooling_descriptor make_pooling(const migraphx::op::pooling& op) ...@@ -211,6 +211,12 @@ inline pooling_descriptor make_pooling(const migraphx::op::pooling& op)
ss << op.mode; ss << op.mode;
MIGRAPHX_THROW(ss.str()); MIGRAPHX_THROW(ss.str());
} }
if(not std::all_of(
op.dilations.cbegin(), op.dilations.cend(), [](std::size_t d) { return d == 1; }))
{
MIGRAPHX_THROW("Unsupported dilations for pooling: [" + to_string_range(op.dilations) +
"]");
}
auto p = make_obj<pooling_descriptor>(&miopenCreatePoolingDescriptor); auto p = make_obj<pooling_descriptor>(&miopenCreatePoolingDescriptor);
int kdims = op.kdims(); int kdims = op.kdims();
......
averagepool_dilate_test:
Y
xy" AveragePool*
dilations@*
kernel_shape@*
pads@@*
strides@averagepool_dilate_testZ
x



b
y



B
\ No newline at end of file
...@@ -276,6 +276,22 @@ def averagepool_1d_test(): ...@@ -276,6 +276,22 @@ def averagepool_1d_test():
return ([node], [x], [out]) return ([node], [x], [out])
@onnx_test()
def averagepool_dilate_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4, 3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4, 2])
node = onnx.helper.make_node('AveragePool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2],
strides=[1],
pads=[1, 1],
dilations=[3])
return ([node], [x], [y])
@onnx_test() @onnx_test()
def averagepool_3d_test(): def averagepool_3d_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5]) x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 5, 5, 5])
...@@ -4882,6 +4898,22 @@ def maxpool_notset_test(): ...@@ -4882,6 +4898,22 @@ def maxpool_notset_test():
return ([node], [x], [y]) return ([node], [x], [y])
@onnx_test()
def maxpool_dilate_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 4, 3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 4, 2])
node = onnx.helper.make_node('MaxPool',
inputs=['x'],
outputs=['y'],
kernel_shape=[2],
strides=[1],
pads=[1, 1],
dilations=[3])
return ([node], [x], [y])
@onnx_test() @onnx_test()
def maxpool_same_upper_test(): def maxpool_same_upper_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5]) x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 1, 5, 5])
...@@ -6094,6 +6126,26 @@ def qlinearglobalavgpool_test(): ...@@ -6094,6 +6126,26 @@ def qlinearglobalavgpool_test():
return ([n], [x], [y], [sc_x, z_pt_x, sc_y, z_pt_y]) return ([n], [x], [y], [sc_x, z_pt_x, sc_y, z_pt_y])
@onnx_test()
def qlinearleakyrelu_test():
x = helper.make_tensor_value_info('X', TensorProto.INT8, [64])
sc_x = helper.make_tensor('X_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_x = helper.make_tensor('X_zero_point', TensorProto.INT8, [], [0])
sc_y = helper.make_tensor('Y_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_y = helper.make_tensor('Y_zero_point', TensorProto.INT8, [], [10])
y = helper.make_tensor_value_info('Y', TensorProto.INT8, [64])
node = onnx.helper.make_node(
'QLinearLeakyRelu',
inputs=['X', 'X_scale', 'X_zero_point', 'Y_scale', 'Y_zero_point'],
outputs=['Y'],
alpha=1.1,
)
return ([node], [x], [y], [sc_x, zero_pt_x, sc_y, zero_pt_y])
def qlinearmatmul_1D_test(): def qlinearmatmul_1D_test():
a = helper.make_tensor_value_info('A', TensorProto.UINT8, [8]) a = helper.make_tensor_value_info('A', TensorProto.UINT8, [8])
sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05]) sc_a = helper.make_tensor('A_scale', TensorProto.FLOAT, [], [0.05])
...@@ -6234,6 +6286,26 @@ def qlinearmul_bcast_test(): ...@@ -6234,6 +6286,26 @@ def qlinearmul_bcast_test():
[sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c]) [sc_a, zero_pt_a, sc_b, zero_pt_b, sc_c, zero_pt_c])
@onnx_test()
def qlinearsigmoid_test():
x = helper.make_tensor_value_info('X', TensorProto.INT8, [64])
sc_x = helper.make_tensor('X_scale', TensorProto.FLOAT, [], [0.05])
zero_pt_x = helper.make_tensor('X_zero_point', TensorProto.INT8, [], [0])
sc_y = helper.make_tensor('Y_scale', TensorProto.FLOAT, [], [0.0035])
zero_pt_y = helper.make_tensor('Y_zero_point', TensorProto.INT8, [],
[-128])
y = helper.make_tensor_value_info('Y', TensorProto.INT8, [64])
node = onnx.helper.make_node(
'QLinearSigmoid',
inputs=['X', 'X_scale', 'X_zero_point', 'Y_scale', 'Y_zero_point'],
outputs=['Y'],
)
return ([node], [x], [y], [sc_x, zero_pt_x, sc_y, zero_pt_y])
@onnx_test() @onnx_test()
def quantizelinear_test(): def quantizelinear_test():
arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5]) arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [5])
......
maxpool_dilate_test:
U
xy"MaxPool*
dilations@*
kernel_shape@*
pads@@*
strides@maxpool_dilate_testZ
x



b
y



B
\ No newline at end of file
...@@ -296,13 +296,32 @@ TEST_CASE(averagepool_1d_test) ...@@ -296,13 +296,32 @@ TEST_CASE(averagepool_1d_test)
{{"mode", migraphx::op::pooling_mode::average}, {{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0}}, {"padding", {0, 0}},
{"stride", {1}}, {"stride", {1}},
{"lengths", {3}}}), {"lengths", {3}},
{"dilations", {1}}}),
l0); l0);
auto prog = optimize_onnx("averagepool_1d_test.onnx"); auto prog = optimize_onnx("averagepool_1d_test.onnx");
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(averagepool_dilate_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 4, 3}});
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::average},
{"padding", {1, 1}},
{"stride", {1}},
{"lengths", {2}},
{"dilations", {3}}}),
input);
auto prog = optimize_onnx("averagepool_dilate_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(averagepool_3d_test) TEST_CASE(averagepool_3d_test)
{ {
migraphx::program p; migraphx::program p;
...@@ -312,7 +331,8 @@ TEST_CASE(averagepool_3d_test) ...@@ -312,7 +331,8 @@ TEST_CASE(averagepool_3d_test)
{{"mode", migraphx::op::pooling_mode::average}, {{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0, 0, 0}}, {"padding", {0, 0, 0, 0, 0, 0}},
{"stride", {1, 1, 1}}, {"stride", {1, 1, 1}},
{"lengths", {3, 3, 3}}}), {"lengths", {3, 3, 3}},
{"dilations", {1, 1, 1}}}),
l0); l0);
auto prog = optimize_onnx("averagepool_3d_test.onnx"); auto prog = optimize_onnx("averagepool_3d_test.onnx");
...@@ -332,6 +352,7 @@ TEST_CASE(averagepool_dyn_test) ...@@ -332,6 +352,7 @@ TEST_CASE(averagepool_dyn_test)
{"mode", migraphx::op::pooling_mode::average}, {"mode", migraphx::op::pooling_mode::average},
{"stride", {2, 2, 2}}, {"stride", {2, 2, 2}},
{"lengths", {3, 3, 3}}, {"lengths", {3, 3, 3}},
{"dilations", {1, 1, 1}},
{"padding", {1, 1, 1, 1, 1, 1}}, {"padding", {1, 1, 1, 1, 1, 1}},
{"padding_mode", 0}, {"padding_mode", 0},
}), }),
...@@ -357,6 +378,7 @@ TEST_CASE(averagepool_dyn_autopad_test) ...@@ -357,6 +378,7 @@ TEST_CASE(averagepool_dyn_autopad_test)
{"mode", migraphx::op::pooling_mode::average}, {"mode", migraphx::op::pooling_mode::average},
{"stride", {2, 2, 2}}, {"stride", {2, 2, 2}},
{"lengths", {3, 3, 3}}, {"lengths", {3, 3, 3}},
{"dilations", {1, 1, 1}},
{"padding", {0, 0, 0, 0, 0, 0}}, {"padding", {0, 0, 0, 0, 0, 0}},
{"padding_mode", migraphx::op::padding_mode_t::same_upper}, {"padding_mode", migraphx::op::padding_mode_t::same_upper},
}), }),
...@@ -394,7 +416,8 @@ TEST_CASE(averagepool_notset_test) ...@@ -394,7 +416,8 @@ TEST_CASE(averagepool_notset_test)
{{"mode", migraphx::op::pooling_mode::average}, {{"mode", migraphx::op::pooling_mode::average},
{"padding", {2, 2, 2, 2}}, {"padding", {2, 2, 2, 2}},
{"stride", {2, 2}}, {"stride", {2, 2}},
{"lengths", {6, 6}}}), {"lengths", {6, 6}},
{"dilations", {1, 1}}}),
input); input);
auto ret = mm->add_instruction( auto ret = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {2, 3}}, {"starts", {1, 1}}, {"ends", {2, 2}}}), ins); migraphx::make_op("slice", {{"axes", {2, 3}}, {"starts", {1, 1}}, {"ends", {2, 2}}}), ins);
...@@ -415,7 +438,8 @@ TEST_CASE(averagepool_nt_cip_test) ...@@ -415,7 +438,8 @@ TEST_CASE(averagepool_nt_cip_test)
{{"mode", migraphx::op::pooling_mode::average}, {{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0}}, {"padding", {0, 0, 0, 0}},
{"stride", {2, 2}}, {"stride", {2, 2}},
{"lengths", {6, 6}}}), {"lengths", {6, 6}},
{"dilations", {1, 1}}}),
ins_pad); ins_pad);
mm->add_return({ret}); mm->add_return({ret});
...@@ -437,6 +461,7 @@ TEST_CASE(averagepool_same_lower_test) ...@@ -437,6 +461,7 @@ TEST_CASE(averagepool_same_lower_test)
{"padding", {1, 1, 1, 1}}, {"padding", {1, 1, 1, 1}},
{"stride", {1, 1}}, {"stride", {1, 1}},
{"lengths", {2, 2}}, {"lengths", {2, 2}},
{"dilations", {1, 1}},
{"padding_mode", migraphx::op::padding_mode_t::default_}, {"padding_mode", migraphx::op::padding_mode_t::default_},
}), }),
input); input);
...@@ -459,7 +484,8 @@ TEST_CASE(averagepool_sl_cip_test) ...@@ -459,7 +484,8 @@ TEST_CASE(averagepool_sl_cip_test)
{{"mode", migraphx::op::pooling_mode::average}, {{"mode", migraphx::op::pooling_mode::average},
{"padding", {0, 0, 0, 0}}, {"padding", {0, 0, 0, 0}},
{"stride", {1, 1}}, {"stride", {1, 1}},
{"lengths", {2, 2}}}), {"lengths", {2, 2}},
{"dilations", {1, 1}}}),
ins_pad); ins_pad);
mm->add_return({ret}); mm->add_return({ret});
auto prog = migraphx::parse_onnx("averagepool_sl_cip_test.onnx"); auto prog = migraphx::parse_onnx("averagepool_sl_cip_test.onnx");
...@@ -476,7 +502,8 @@ TEST_CASE(averagepool_same_upper_test) ...@@ -476,7 +502,8 @@ TEST_CASE(averagepool_same_upper_test)
{{"mode", migraphx::op::pooling_mode::average}, {{"mode", migraphx::op::pooling_mode::average},
{"padding", {1, 1, 1, 1}}, {"padding", {1, 1, 1, 1}},
{"stride", {1, 1}}, {"stride", {1, 1}},
{"lengths", {2, 2}}}), {"lengths", {2, 2}},
{"dilations", {1, 1}}}),
input); input);
auto ret = mm->add_instruction( auto ret = mm->add_instruction(
migraphx::make_op("slice", {{"axes", {2, 3}}, {"starts", {1, 1}}, {"ends", {6, 6}}}), ins); migraphx::make_op("slice", {{"axes", {2, 3}}, {"starts", {1, 1}}, {"ends", {6, 6}}}), ins);
...@@ -1307,7 +1334,8 @@ TEST_CASE(conv_bn_relu_maxpool_test) ...@@ -1307,7 +1334,8 @@ TEST_CASE(conv_bn_relu_maxpool_test)
{{"mode", migraphx::op::pooling_mode::max}, {{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 0, 0}}, {"padding", {0, 0, 0, 0}},
{"stride", {2, 2}}, {"stride", {2, 2}},
{"lengths", {2, 2}}}), {"lengths", {2, 2}},
{"dilations", {1, 1}}}),
l7); l7);
auto prog = optimize_onnx("conv_bn_relu_maxpool_test.onnx"); auto prog = optimize_onnx("conv_bn_relu_maxpool_test.onnx");
...@@ -1505,7 +1533,8 @@ TEST_CASE(conv_relu_maxpool_test) ...@@ -1505,7 +1533,8 @@ TEST_CASE(conv_relu_maxpool_test)
{{"mode", migraphx::op::pooling_mode::max}, {{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 0, 0}}, {"padding", {0, 0, 0, 0}},
{"stride", {2, 2}}, {"stride", {2, 2}},
{"lengths", {2, 2}}}), {"lengths", {2, 2}},
{"dilations", {1, 1}}}),
l6); l6);
auto prog = optimize_onnx("conv_relu_maxpool_test.onnx"); auto prog = optimize_onnx("conv_relu_maxpool_test.onnx");
...@@ -1530,7 +1559,8 @@ TEST_CASE(conv_relu_maxpool_x2_test) ...@@ -1530,7 +1559,8 @@ TEST_CASE(conv_relu_maxpool_x2_test)
{{"mode", migraphx::op::pooling_mode::max}, {{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 0, 0}}, {"padding", {0, 0, 0, 0}},
{"stride", {2, 2}}, {"stride", {2, 2}},
{"lengths", {2, 2}}}), {"lengths", {2, 2}},
{"dilations", {1, 1}}}),
l6); l6);
auto l8 = mm->add_parameter("3", {migraphx::shape::float_type, {1, 5, 5, 5}}); auto l8 = mm->add_parameter("3", {migraphx::shape::float_type, {1, 5, 5, 5}});
...@@ -1546,7 +1576,8 @@ TEST_CASE(conv_relu_maxpool_x2_test) ...@@ -1546,7 +1576,8 @@ TEST_CASE(conv_relu_maxpool_x2_test)
{{"mode", migraphx::op::pooling_mode::max}, {{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 0, 0}}, {"padding", {0, 0, 0, 0}},
{"stride", {2, 2}}, {"stride", {2, 2}},
{"lengths", {2, 2}}}), {"lengths", {2, 2}},
{"dilations", {1, 1}}}),
l13); l13);
auto prog = optimize_onnx("conv_relu_maxpool_x2_test.onnx"); auto prog = optimize_onnx("conv_relu_maxpool_x2_test.onnx");
...@@ -4245,6 +4276,7 @@ TEST_CASE(lppool_l1_test) ...@@ -4245,6 +4276,7 @@ TEST_CASE(lppool_l1_test)
{"padding", {0, 0}}, {"padding", {0, 0}},
{"stride", {1}}, {"stride", {1}},
{"lengths", {3}}, {"lengths", {3}},
{"dilations", {1}},
{"lp_order", 1}}), {"lp_order", 1}}),
l0); l0);
auto prog = optimize_onnx("lppool_l1_test.onnx"); auto prog = optimize_onnx("lppool_l1_test.onnx");
...@@ -4261,6 +4293,7 @@ TEST_CASE(lppool_l2_test) ...@@ -4261,6 +4293,7 @@ TEST_CASE(lppool_l2_test)
{"padding", {0, 0}}, {"padding", {0, 0}},
{"stride", {1}}, {"stride", {1}},
{"lengths", {3}}, {"lengths", {3}},
{"dilations", {1}},
{"lp_order", 2}}), {"lp_order", 2}}),
l0); l0);
auto prog = optimize_onnx("lppool_l2_test.onnx"); auto prog = optimize_onnx("lppool_l2_test.onnx");
...@@ -4513,7 +4546,8 @@ TEST_CASE(maxpool_notset_test) ...@@ -4513,7 +4546,8 @@ TEST_CASE(maxpool_notset_test)
{{"mode", migraphx::op::pooling_mode::max}, {{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 1, 1}}, {"padding", {0, 0, 1, 1}},
{"stride", {2, 2}}, {"stride", {2, 2}},
{"lengths", {6, 6}}}), {"lengths", {6, 6}},
{"dilations", {1, 1}}}),
input); input);
auto prog = optimize_onnx("maxpool_notset_test.onnx"); auto prog = optimize_onnx("maxpool_notset_test.onnx");
...@@ -4521,6 +4555,24 @@ TEST_CASE(maxpool_notset_test) ...@@ -4521,6 +4555,24 @@ TEST_CASE(maxpool_notset_test)
EXPECT(p == prog); EXPECT(p == prog);
} }
TEST_CASE(maxpool_dilate_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 4, 3}});
mm->add_instruction(migraphx::make_op("pooling",
{{"mode", migraphx::op::pooling_mode::max},
{"padding", {1, 1}},
{"stride", {1}},
{"lengths", {2}},
{"dilations", {3}}}),
input);
auto prog = optimize_onnx("maxpool_dilate_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(maxpool_same_upper_test) TEST_CASE(maxpool_same_upper_test)
{ {
migraphx::program p; migraphx::program p;
...@@ -4530,7 +4582,8 @@ TEST_CASE(maxpool_same_upper_test) ...@@ -4530,7 +4582,8 @@ TEST_CASE(maxpool_same_upper_test)
{{"mode", migraphx::op::pooling_mode::max}, {{"mode", migraphx::op::pooling_mode::max},
{"padding", {0, 0, 1, 1}}, {"padding", {0, 0, 1, 1}},
{"stride", {1, 1}}, {"stride", {1, 1}},
{"lengths", {2, 2}}}), {"lengths", {2, 2}},
{"dilations", {1, 1}}}),
input); input);
auto prog = optimize_onnx("maxpool_same_upper_test.onnx"); auto prog = optimize_onnx("maxpool_same_upper_test.onnx");
...@@ -5642,6 +5695,46 @@ TEST_CASE(qlinearglobalavgpool_test) ...@@ -5642,6 +5695,46 @@ TEST_CASE(qlinearglobalavgpool_test)
EXPECT(p.sort() == prog.sort()); EXPECT(p.sort() == prog.sort());
} }
TEST_CASE(qlinearleakyrelu_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("X", {migraphx::shape::int8_type, {64}});
auto sc_x = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_x = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {0}});
auto sc_y = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_y = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {10}});
auto scale_x_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_x);
auto z_pt_x_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_x);
auto fp_x =
mm->add_instruction(migraphx::make_op("dequantizelinear"), x, scale_x_bcast, z_pt_x_bcast);
auto fp_y = mm->add_instruction(migraphx::make_op("leaky_relu", {{"alpha", 1.1}}), fp_x);
auto scale_y_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_y);
auto z_pt_y_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_y);
auto y =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_y, scale_y_bcast, z_pt_y_bcast);
mm->add_return({y});
auto prog = migraphx::parse_onnx("qlinearleakyrelu_test.onnx");
EXPECT(p.sort() == prog.sort());
}
TEST_CASE(qlinearmatmul_1D_test) TEST_CASE(qlinearmatmul_1D_test)
{ {
migraphx::program p; migraphx::program p;
...@@ -5807,6 +5900,46 @@ TEST_CASE(qlinearmul_test) ...@@ -5807,6 +5900,46 @@ TEST_CASE(qlinearmul_test)
EXPECT(p.sort() == prog.sort()); EXPECT(p.sort() == prog.sort());
} }
TEST_CASE(qlinearsigmoid_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x = mm->add_parameter("X", {migraphx::shape::int8_type, {64}});
auto sc_x = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.05}});
auto z_pt_x = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {0}});
auto sc_y = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0.0035}});
auto z_pt_y = mm->add_literal(migraphx::literal{migraphx::shape::int8_type, {-128}});
auto scale_x_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_x);
auto z_pt_x_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_x);
auto fp_x =
mm->add_instruction(migraphx::make_op("dequantizelinear"), x, scale_x_bcast, z_pt_x_bcast);
auto fp_y = mm->add_instruction(migraphx::make_op("sigmoid"), fp_x);
auto scale_y_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), sc_y);
auto z_pt_y_bcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {64}}}), z_pt_y);
auto y =
mm->add_instruction(migraphx::make_op("quantizelinear"), fp_y, scale_y_bcast, z_pt_y_bcast);
mm->add_return({y});
auto prog = migraphx::parse_onnx("qlinearsigmoid_test.onnx");
EXPECT(p.sort() == prog.sort());
}
migraphx::instruction_ref insert_quantizelinear_clip(migraphx::module& m, migraphx::instruction_ref insert_quantizelinear_clip(migraphx::module& m,
const migraphx::instruction_ref ins, const migraphx::instruction_ref ins,
const migraphx::instruction_ref round, const migraphx::instruction_ref round,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment