"src/include/gridwise_direct_convolution_1.hip.hpp" did not exist on "c33da3ec1893cbea879031e85fe77c497a0efadf"
Commit 67903751 authored by Shucai Xiao's avatar Shucai Xiao
Browse files

reimlementation of mul_add

parent 287f7e9f
#include "migraphx/gpu/device/launch.hpp"
#include <hip/amd_detail/amd_device_functions.h>
#include <hip/amd_detail/amd_hip_runtime.h>
#include <migraphx/gpu/device/mul_add.hpp>
#include <migraphx/gpu/device/nary.hpp>
#include <hip/hip_runtime.h>
......@@ -21,49 +24,81 @@ namespace device {
// }
//}
__global__ void mul_add_kernel(void* a, int an, void* x, int xn, void* b, int bn, void* r, int n)
// __global__ void mul_add_kernel(void* a, int an, void* x, int xn, void* b, int bn, void* r, int n)
// {
// int id = blockDim.x * blockIdx.x + threadIdx.x;
// __half2* ha = reinterpret_cast<__half2*>(a);
// __half2* hb = reinterpret_cast<__half2*>(b);
// __half2* hx = reinterpret_cast<__half2*>(x);
// __half2* hr = reinterpret_cast<__half2*>(r);
// if(id < n)
// {
// hr[id] = __hadd2(__hmul2(ha[id % an], hx[id % xn]), hb[id % bn]);
// }
// }
__global__ void mul_add_kernel(void* a, void* x, void* b, void* r, int* strides, int elem_num)
{
int id = blockDim.x * blockIdx.x + threadIdx.x;
__shared__ int shared_strides[18];
int tid = threadIdx.x * (blockDim.y * blockDim.z) + threadIdx.y * blockDim.z + threadIdx.z;
if (tid < 18)
{
shared_strides[tid] = strides[tid];
}
__syncthreads();
__half2* ha = reinterpret_cast<__half2*>(a);
__half2* hb = reinterpret_cast<__half2*>(b);
__half2* hx = reinterpret_cast<__half2*>(x);
__half2* hr = reinterpret_cast<__half2*>(r);
if(id < n)
tid = tid + (blockIdx.x * (gridDim.y * gridDim.z) + blockIdx.y * gridDim.z + blockIdx.z) * blockDim.x * blockDim.y * blockDim.z;
if(tid < elem_num)
{
hr[id] = __hadd2(__hmul2(ha[id % an], hx[id % xn]), hb[id % bn]);
int tida = shared_strides[1] * blockIdx.x + shared_strides[2] * blockIdx.y + shared_strides[3] * blockIdx.z + shared_strides[4] * threadIdx.x + shared_strides[5] * threadIdx.y + threadIdx.z;
int tidx = shared_strides[7] * blockIdx.x + shared_strides[8] * blockIdx.y + shared_strides[9] * blockIdx.z + shared_strides[10] * threadIdx.x + shared_strides[11] * threadIdx.y + threadIdx.z;
int tidb = shared_strides[13] * blockIdx.x + shared_strides[14] * blockIdx.y + shared_strides[15] * blockIdx.z + shared_strides[16] * threadIdx.x + shared_strides[17] * threadIdx.y + threadIdx.z;
hr[tid] = __hadd2(__hmul2(ha[tida], hx[tidx]), hb[tidb]);
}
}
// void mul_add(hipStream_t stream,
// const argument& result,
// const argument& arg1,
// const argument& arg2,
// const argument& arg3)
// {
// auto type = result.get_shape().type();
// if(type == shape::half_type)
// {
// std::cout << "case1" << std::endl;
// mul_add_kernel<<<block_num, block_size>>>(
// arg1.data(), s1e, arg2.data(), s2e, arg3.data(), s3e, result.data(), elem_num);
// }
// else
// {
// std::cout << "mul_add" << std::endl;
// nary(stream, result, arg1, arg2, arg3)([](auto x, auto a, auto b)
// __device__ { return a * x + b; });
// }
// }
void mul_add(hipStream_t stream,
const argument& result,
const argument& arg1,
const argument& arg2,
const argument& arg3)
{
auto type = result.get_shape().type();
if(type == shape::half_type)
{
std::cout << "case1" << std::endl;
int s1e = arg1.get_shape().element_space() / 2;
int s2e = arg2.get_shape().element_space() / 2;
int s3e = arg3.get_shape().element_space() / 2;
int elem_num = result.get_shape().elements() / 2;
s1e = (s1e == 0 ? 1 : s1e);
s2e = (s2e == 0 ? 1 : s2e);
s3e = (s3e == 0 ? 1 : s3e);
std::cout << "re =" << elem_num << ", s1e = " << s1e << ", s2e = " << s2e
<< ", s3e = " << s3e << std::endl;
int block_size = 1024;
int block_num = (elem_num + block_size - 1) / block_size;
mul_add_kernel<<<block_num, block_size>>>(
arg1.data(), s1e, arg2.data(), s2e, arg3.data(), s3e, result.data(), elem_num);
}
else
{
std::cout << "case2" << std::endl;
nary(stream, result, arg1, arg2, arg3)([](auto x, auto a, auto b)
__device__ { return a * x + b; });
}
auto sr = result.get_shape();
auto s2 = arg2.get_shape();
auto s3 = arg3.get_shape();
hip_visit_all(result, arg1, arg2, arg3, sr)([&](auto r, auto i1, auto i2, auto i3, auto dsr) {
gs_launch(stream, sr.elements())([=](auto i) __device__ {
auto idx = dsr.multi(i);
r[i] = i1[i] * i2[idx] + i3[idx];
});
});
}
} // namespace device
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment