Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
6598252e
Unverified
Commit
6598252e
authored
Jul 26, 2018
by
Paul Fultz II
Committed by
GitHub
Jul 26, 2018
Browse files
Merge pull request #24 from ROCmSoftwarePlatform/fix-bn-cpu
Fix bn cpu
parents
68d69739
58253f85
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
53 additions
and
22 deletions
+53
-22
.gitignore
.gitignore
+1
-0
src/targets/cpu/cpu_lowering.cpp
src/targets/cpu/cpu_lowering.cpp
+21
-12
test/cpu_ops_test.cpp
test/cpu_ops_test.cpp
+31
-10
No files found.
.gitignore
0 → 100644
View file @
6598252e
*.swp
src/targets/cpu/cpu_lowering.cpp
View file @
6598252e
...
...
@@ -24,11 +24,11 @@ T zero(const T&)
// args[1] -> mini batch mean
// args[2] -> mini batch variance
// args[3] -> gamma
// args[4] -> b
eta
// args[4] -> b
ias
//
// The equation to compute batch norm for inference is:
//
// output[i] = b
eta
+ gamma * (input[i] + mean) / sqrt(variance + epsilon)
// output[i] = b
ias
+ gamma * (input[i] + mean) / sqrt(variance + epsilon)
//
// the input data format should be nchw
//
...
...
@@ -46,17 +46,26 @@ struct cpu_batch_norm_inference
double
epsilon
=
op
.
epsilon
;
auto
input
=
args
[
0
];
auto
mini_batch_mean
=
args
[
1
].
at
<
float
>
();
auto
mini_batch_variance
=
args
[
2
].
at
<
float
>
();
auto
gamma
=
args
[
3
].
at
<
float
>
();
auto
beta
=
args
[
4
].
at
<
float
>
();
visit_all
(
output
,
input
)([
&
](
auto
result
,
auto
buffer
)
{
std
::
transform
(
buffer
.
begin
(),
buffer
.
end
(),
result
.
begin
(),
[
&
](
auto
x
)
{
return
gamma
*
(
x
-
mini_batch_mean
)
/
std
::
sqrt
(
mini_batch_variance
+
epsilon
)
+
beta
;
auto
mini_batch_mean
=
args
[
1
];
auto
mini_batch_variance
=
args
[
2
];
auto
arg_gamma
=
args
[
3
];
auto
arg_bias
=
args
[
4
];
auto
num_batch
=
output_shape
.
lens
()[
0
];
auto
num_channels
=
output_shape
.
lens
()[
1
];
auto
image_height
=
output_shape
.
lens
()[
2
];
auto
image_width
=
output_shape
.
lens
()[
3
];
visit_all
(
output
,
input
,
mini_batch_mean
,
mini_batch_variance
,
arg_gamma
,
arg_bias
)(
[
&
](
auto
result
,
auto
buffer
,
auto
mean
,
auto
variance
,
auto
gamma
,
auto
bias
)
{
dfor
(
num_batch
,
num_channels
,
image_height
,
image_width
)(
[
&
](
std
::
size_t
n
,
std
::
size_t
c
,
std
::
size_t
h
,
std
::
size_t
w
)
{
result
(
n
,
c
,
h
,
w
)
=
gamma
(
c
)
*
(
buffer
(
n
,
c
,
h
,
w
)
-
mean
(
c
))
/
std
::
sqrt
(
variance
(
c
)
+
epsilon
)
+
bias
(
c
);
});
});
});
return
output
;
}
...
...
test/cpu_ops_test.cpp
View file @
6598252e
...
...
@@ -9,19 +9,40 @@
void
batch_norm_inference_test
()
{
migraph
::
program
p
;
migraph
::
shape
s
{
migraph
::
shape
::
float_type
,
{
4
}};
auto
x
=
p
.
add_literal
(
migraph
::
literal
{
s
,
{
1
,
2
,
3
,
4
}});
auto
gamma
=
p
.
add_literal
(
migraph
::
literal
{
s
,
{
1
}});
auto
beta
=
p
.
add_literal
(
migraph
::
literal
{
s
,
{
0
}});
auto
mean
=
p
.
add_literal
(
migraph
::
literal
{
s
,
{
0
}});
auto
variance
=
p
.
add_literal
(
migraph
::
literal
{
s
,
{
1
}});
p
.
add_instruction
(
migraph
::
batch_norm_inference
{},
x
,
mean
,
variance
,
gamma
,
beta
);
const
size_t
width
=
2
,
height
=
2
,
channels
=
4
,
batches
=
2
;
const
float
x_val
=
8.0
f
,
mean_val
=
2.0
f
,
variance_val
=
4.0
f
,
scale_val
=
2.0
f
,
bias_val
=
1.0
f
;
const
float
output_val
=
scale_val
*
(
x_val
-
mean_val
)
/
(
std
::
sqrt
(
variance_val
))
+
bias_val
;
migraph
::
shape
s
{
migraph
::
shape
::
float_type
,
{
batches
,
channels
,
height
,
width
}};
migraph
::
shape
vars
{
migraph
::
shape
::
float_type
,
{
channels
}};
std
::
vector
<
float
>
x_data
(
width
*
height
*
channels
*
batches
);
std
::
vector
<
float
>
scale_data
(
channels
);
std
::
vector
<
float
>
bias_data
(
channels
);
std
::
vector
<
float
>
mean_data
(
channels
);
std
::
vector
<
float
>
variance_data
(
channels
);
std
::
fill
(
x_data
.
begin
(),
x_data
.
end
(),
x_val
);
std
::
fill
(
mean_data
.
begin
(),
mean_data
.
end
(),
mean_val
);
std
::
fill
(
variance_data
.
begin
(),
variance_data
.
end
(),
variance_val
);
std
::
fill
(
scale_data
.
begin
(),
scale_data
.
end
(),
scale_val
);
std
::
fill
(
bias_data
.
begin
(),
bias_data
.
end
(),
bias_val
);
auto
x
=
p
.
add_literal
(
migraph
::
literal
{
s
,
x_data
});
auto
scale
=
p
.
add_literal
(
migraph
::
literal
{
vars
,
scale_data
});
auto
bias
=
p
.
add_literal
(
migraph
::
literal
{
vars
,
bias_data
});
auto
mean
=
p
.
add_literal
(
migraph
::
literal
{
vars
,
mean_data
});
auto
variance
=
p
.
add_literal
(
migraph
::
literal
{
vars
,
variance_data
});
p
.
add_instruction
(
migraph
::
batch_norm_inference
{},
x
,
mean
,
variance
,
scale
,
bias
);
p
.
compile
(
migraph
::
cpu
::
cpu_target
{});
auto
result
=
p
.
eval
({});
std
::
vector
<
float
>
result_vector
(
4
);
std
::
vector
<
float
>
result_vector
(
width
*
height
*
channels
*
batches
);
std
::
vector
<
float
>
gold
(
width
*
height
*
channels
*
batches
);
std
::
fill
(
gold
.
begin
(),
gold
.
end
(),
output_val
);
result
.
visit
([
&
](
auto
output
)
{
result_vector
.
assign
(
output
.
begin
(),
output
.
end
());
});
std
::
vector
<
float
>
gold
=
{
1
/
(
1
+
1.0e-6
),
2
/
(
1
+
1.0e-6
),
3
/
(
1
+
1.0e-6
),
4
/
(
1
+
1.0e-6
)};
EXPECT
(
test
::
verify_range
(
result_vector
,
gold
));
}
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment