"src/include/Sequence.hpp" did not exist on "766b0a9eafe29a5d2a75c350345e54165ceaf405"
Commit 5f37917f authored by Shucai Xiao's avatar Shucai Xiao
Browse files

clang format

parent f50bcff2
...@@ -11,27 +11,28 @@ namespace device { ...@@ -11,27 +11,28 @@ namespace device {
__global__ void add_kernel(__half* a, __half* b, __half* r, int n) __global__ void add_kernel(__half* a, __half* b, __half* r, int n)
{ {
int tid = blockIdx.x * blockDim.x + threadIdx.x; int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < n) if(tid < n)
{ {
r[tid] = a[tid] + b[tid%768]; r[tid] = a[tid] + b[tid % 768];
} }
} }
void add(hipStream_t stream, const argument& result, const argument& arg1, const argument& arg2) void add(hipStream_t stream, const argument& result, const argument& arg1, const argument& arg2)
{ {
auto s2 = arg2.get_shape(); auto s2 = arg2.get_shape();
if (s2.element_space() == 768 and s2.type() == shape::half_type) if(s2.element_space() == 768 and s2.type() == shape::half_type)
{ {
auto elem_num = s2.elements(); auto elem_num = s2.elements();
int block_size = 1024; int block_size = 1024;
int block_num = (elem_num + block_size - 1) / block_size; int block_num = (elem_num + block_size - 1) / block_size;
add_kernel<<<block_num, block_size>>>(reinterpret_cast<__half*>(arg1.data()), add_kernel<<<block_num, block_size>>>(reinterpret_cast<__half*>(arg1.data()),
reinterpret_cast<__half*>(arg2.data()), reinterpret_cast<__half*>(arg2.data()),
reinterpret_cast<__half*>(result.data()), elem_num); reinterpret_cast<__half*>(result.data()),
elem_num);
} }
else else
{ {
nary(stream, result, arg1, arg2)([](auto x, auto y) __device__ { return x + y; }); nary(stream, result, arg1, arg2)([](auto x, auto y) __device__ { return x + y; });
} }
} }
......
...@@ -14,7 +14,7 @@ void contiguous_nonstandard(hipStream_t stream, const argument& result, const ar ...@@ -14,7 +14,7 @@ void contiguous_nonstandard(hipStream_t stream, const argument& result, const ar
visit_all(result, arg)([&](auto output_v, auto input_v) { visit_all(result, arg)([&](auto output_v, auto input_v) {
hip_visit_views(output_v, input_v, s)([&](auto output, auto input, auto standard_shape) { hip_visit_views(output_v, input_v, s)([&](auto output, auto input, auto standard_shape) {
gs_launch(stream, s.elements())([=](auto i) __device__ { gs_launch(stream, s.elements())([=](auto i) __device__ {
auto idx = standard_shape.multi(i); auto idx = standard_shape.multi(i);
output[idx] = input[idx]; output[idx] = input[idx];
}); });
// mi_gs_launch(stream, // mi_gs_launch(stream,
...@@ -34,8 +34,8 @@ void contiguous_packed(hipStream_t stream, const argument& result, const argumen ...@@ -34,8 +34,8 @@ void contiguous_packed(hipStream_t stream, const argument& result, const argumen
// auto* output = device_cast(output_v.data()); // auto* output = device_cast(output_v.data());
// const __half2* input2 = reinterpret_cast<__half2*>(input_v.data()); // const __half2* input2 = reinterpret_cast<__half2*>(input_v.data());
// __half2* output2 = reinterpret_cast<__half2*>(output_v.data()); // __half2* output2 = reinterpret_cast<__half2*>(output_v.data());
// gs_launch(stream, nelements / 2)([=](auto i) __device__ { // gs_launch(stream, nelements / 2)([=](auto i) __device__ {
// output2[i] = input2[i]; // output2[i] = input2[i];
// if (i == 0 and (nelements % 2) == 1) // if (i == 0 and (nelements % 2) == 1)
// { // {
// output[nelements - 1] = input[nelements - 1]; // output[nelements - 1] = input[nelements - 1];
...@@ -45,11 +45,11 @@ void contiguous_packed(hipStream_t stream, const argument& result, const argumen ...@@ -45,11 +45,11 @@ void contiguous_packed(hipStream_t stream, const argument& result, const argumen
// } // }
// else // else
// { // {
visit_all(result, arg)([&](auto output_v, auto input_v) { visit_all(result, arg)([&](auto output_v, auto input_v) {
const auto* input = device_cast(input_v.data()); const auto* input = device_cast(input_v.data());
auto* output = device_cast(output_v.data()); auto* output = device_cast(output_v.data());
gs_launch(stream, nelements)([=](auto i) __device__ { output[i] = input[i]; }); gs_launch(stream, nelements)([=](auto i) __device__ { output[i] = input[i]; });
}); });
// } // }
} }
......
...@@ -57,8 +57,8 @@ inline auto mi_nglobal(const hip_shape<N>& s, index_int nlocal) ...@@ -57,8 +57,8 @@ inline auto mi_nglobal(const hip_shape<N>& s, index_int nlocal)
{ {
assert(s.standard); assert(s.standard);
assert(s.elements() > 0); assert(s.elements() > 0);
index_int n = s.elements(); index_int n = s.elements();
index_int groups = (n + nlocal - 1) / nlocal; index_int groups = (n + nlocal - 1) / nlocal;
// change the max group num to 1 Million // change the max group num to 1 Million
index_int nglobal = std::min<index_int>((1 << 20), groups) * nlocal; index_int nglobal = std::min<index_int>((1 << 20), groups) * nlocal;
......
...@@ -11,28 +11,28 @@ namespace device { ...@@ -11,28 +11,28 @@ namespace device {
__global__ void mul_kernel(__half* a, __half* b, __half* r, int n) __global__ void mul_kernel(__half* a, __half* b, __half* r, int n)
{ {
int tid = blockIdx.x * blockDim.x + threadIdx.x; int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid < n) if(tid < n)
{ {
r[tid] = a[tid] * b[tid%768]; r[tid] = a[tid] * b[tid % 768];
} }
} }
void mul(hipStream_t stream, const argument& result, const argument& arg1, const argument& arg2) void mul(hipStream_t stream, const argument& result, const argument& arg1, const argument& arg2)
{ {
auto s2 = arg2.get_shape(); auto s2 = arg2.get_shape();
if (s2.element_space() == 768 and s2.type() == shape::half_type) if(s2.element_space() == 768 and s2.type() == shape::half_type)
{ {
auto elem_num = s2.elements(); auto elem_num = s2.elements();
int block_size = 1024; int block_size = 1024;
int block_num = (elem_num + block_size - 1) / block_size; int block_num = (elem_num + block_size - 1) / block_size;
mul_kernel<<<block_num, block_size>>>(reinterpret_cast<__half*>(arg1.data()), mul_kernel<<<block_num, block_size>>>(reinterpret_cast<__half*>(arg1.data()),
reinterpret_cast<__half*>(arg2.data()), reinterpret_cast<__half*>(arg2.data()),
reinterpret_cast<__half*>(result.data()), elem_num); reinterpret_cast<__half*>(result.data()),
elem_num);
} }
else else
{ {
nary(stream, result, arg1, arg2)([](auto x, auto y) __device__ { return x * y; }); nary(stream, result, arg1, arg2)([](auto x, auto y) __device__ { return x * y; });
} }
} }
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment