Commit 5ec978eb authored by Shucai Xiao's avatar Shucai Xiao
Browse files

clang format

parent edc23800
......@@ -20,8 +20,7 @@ inline namespace MIGRAPHX_INLINE_NS {
// In this case we need to broadcast the (:,:,1:,:) axis
// of s0 plus the 1st dimension of s1 giving
// output_lens = (3,2,7,5)
std::vector<int> compute_broadcasted_lens(std::vector<int> s0,
std::vector<int> s1)
std::vector<int> compute_broadcasted_lens(std::vector<int> s0, std::vector<int> s1)
{
if(s0 == s1)
return s0;
......
......@@ -34,8 +34,8 @@ void eliminate_concat::apply(module& p) const
// axis OR the sizes to the left of this axis are all equal to 1
// Since we've already checked that the non-axis dimensions are identical
// we only need to check the first input
auto lens = ins->inputs().front()->get_shape().lens();
auto concat_op = concat_opt.get_concat(ins->get_operator());
auto lens = ins->inputs().front()->get_shape().lens();
auto concat_op = concat_opt.get_concat(ins->get_operator());
int axis_index = tune_axis(lens.size(), concat_op.axis, concat_op.name());
if(axis_index == 0 ||
std::all_of(lens.begin(), lens.begin() + axis_index, [](auto x) { return x == 1; }))
......
......@@ -11,8 +11,7 @@ inline namespace MIGRAPHX_INLINE_NS {
struct module;
struct operation;
std::vector<int> compute_broadcasted_lens(std::vector<int> s0,
std::vector<int> s1);
std::vector<int> compute_broadcasted_lens(std::vector<int> s0, std::vector<int> s1);
shape common_shape(const std::vector<shape>& shapes);
instruction_ref insert_common_op(module& m,
......
......@@ -38,7 +38,7 @@ struct concat
std::string name() const { return "concat"; }
std::vector<int> compute_offsets(const shape& output_shape,
const std::vector<argument>& args) const
const std::vector<argument>& args) const
{
auto n_dims = args[0].get_shape().lens().size();
std::vector<int> offsets;
......
......@@ -64,7 +64,7 @@ struct convolution
const shape& input = inputs.at(0);
const shape& weights = inputs.at(1);
int kdims = input_size - 2;
int kdims = input_size - 2;
if(kdims != this->kdims())
{
MIGRAPHX_THROW("convolution: input k-dims does not match attribute size");
......
......@@ -54,7 +54,7 @@ struct deconvolution
const shape& input = inputs.at(0);
const shape& weights = inputs.at(1);
int kdims = input.lens().size() - 2;
int kdims = input.lens().size() - 2;
if(kdims != this->kdims())
{
MIGRAPHX_THROW("deconvolution: input k-dims does not match attribute size");
......
......@@ -41,10 +41,8 @@ struct flatten
{
check_shapes{inputs, *this}.has(1).standard();
auto&& lens = inputs.front().lens();
auto x =
std::accumulate(lens.begin(), lens.begin() + axis, int{1}, std::multiplies<>{});
auto y =
std::accumulate(lens.begin() + axis, lens.end(), int{1}, std::multiplies<>{});
auto x = std::accumulate(lens.begin(), lens.begin() + axis, int{1}, std::multiplies<>{});
auto y = std::accumulate(lens.begin() + axis, lens.end(), int{1}, std::multiplies<>{});
return {inputs.at(0).type(), {x, y}};
}
argument compute(shape output_shape, std::vector<argument> args) const
......
......@@ -20,8 +20,8 @@ struct nonzero
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1).standard();
auto elem_num = inputs[0].elements();
int dim_num = inputs[0].lens().size();
auto elem_num = inputs[0].elements();
int dim_num = inputs[0].lens().size();
std::vector<int> out_lens = {dim_num, elem_num};
return {shape::int64_type, out_lens};
......
......@@ -21,11 +21,11 @@ namespace op {
struct pooling
{
std::string mode = "average";
std::string mode = "average";
std::vector<int> padding = {0, 0};
std::vector<int> stride = {1, 1};
std::vector<int> lengths = {1, 1};
bool ceil_mode = false;
bool ceil_mode = false;
template <class Self, class F>
static auto reflect(Self& self, F f)
......@@ -76,7 +76,7 @@ struct pooling
dim_size = input_lens[i + 2] + padding_factor - lengths[i];
assert(dim_size >= 0);
int len = (ceil_mode) ? ceil_divide<std::ptrdiff_t>(dim_size, stride[i])
: floor_divide<std::ptrdiff_t>(dim_size, stride[i]);
: floor_divide<std::ptrdiff_t>(dim_size, stride[i]);
output_lens.push_back(int(std::max<std::ptrdiff_t>(1, len + 1)));
}
......
......@@ -60,7 +60,7 @@ struct quant_convolution
const shape& input = inputs.at(0);
const shape& weights = inputs.at(1);
auto t = input.type();
int kdims = input.lens().size() - 2;
int kdims = input.lens().size() - 2;
if(kdims != this->kdims())
{
MIGRAPHX_THROW("quant_convolution: input k-dims does not match attribute size");
......
......@@ -66,9 +66,9 @@ struct roialign
}
std::vector<int> out_lens = x_lens;
out_lens[0] = roi_lens[0];
out_lens[2] = output_height;
out_lens[3] = output_width;
out_lens[0] = roi_lens[0];
out_lens[2] = output_height;
out_lens[3] = output_width;
return {type, out_lens};
}
......@@ -92,7 +92,7 @@ struct roialign
shape_for_each(comp_s, [&](auto idx) {
std::array<int, 2> p = {idx[0], idx[1]};
std::array<int, 2> i = {idx[2], idx[3]};
auto index = comp_s.index(idx);
auto index = comp_s.index(idx);
std::array<float, 2> xy{};
std::array<int, 2> low{};
......@@ -182,14 +182,14 @@ struct roialign
argument result{output_shape};
const auto& out_lens = output_shape.lens();
int64_t n_rois = out_lens[0];
int channels = out_lens[1];
int channels = out_lens[1];
// output dims of height and width, in all 2-dim arrays, the first dim
// is for height and second dim is for width
std::array<int, 2> out_dims = {out_lens[2], out_lens[3]};
const auto& x_lens = args.at(0).get_shape().lens();
const auto& x_lens = args.at(0).get_shape().lens();
// input dims of height and width
std::array<int, 2> in_dims = {x_lens[2], x_lens[3]};
auto roi_s = args.at(1).get_shape();
auto roi_s = args.at(1).get_shape();
visit_all(result, args.at(0), args.at(1))([&](auto output, auto x, auto roi) {
const auto* batch_indices = args.at(2).cast<int64_t>();
......
......@@ -58,7 +58,7 @@ struct slice
{
const std::vector<int>& lens = s.lens();
const std::vector<int>& strides = s.strides();
auto offset = 0;
auto offset = 0;
if(!axes.empty())
{
for(int i = 0; i < axes.size(); i++)
......
......@@ -78,8 +78,8 @@ void par_for_impl(int n, int threadsize, F f)
template <class F>
void par_for(int n, int min_grain, F f)
{
const auto threadsize = std::min<int>(std::thread::hardware_concurrency(),
n / std::max<int>(1, min_grain));
const auto threadsize =
std::min<int>(std::thread::hardware_concurrency(), n / std::max<int>(1, min_grain));
par_for_impl(n, threadsize, f);
}
......
......@@ -69,8 +69,7 @@ struct rewrite_rnn
instruction_ref last_cell_output,
op::rnn_direction dirct) const;
int
get_seq_len(const module& prog, instruction_ref input, instruction_ref seq_lens) const;
int get_seq_len(const module& prog, instruction_ref input, instruction_ref seq_lens) const;
instruction_ref pad_hidden_states(module& prog,
instruction_ref seq,
......
......@@ -76,9 +76,7 @@ struct shape
template <class Range1, class Range2>
shape(type_t t, const Range1& l, const Range2& s)
: shape(t,
std::vector<int>(l.begin(), l.end()),
std::vector<int>(s.begin(), s.end()))
: shape(t, std::vector<int>(l.begin(), l.end()), std::vector<int>(s.begin(), s.end()))
{
}
......
......@@ -25,9 +25,9 @@ struct onnx_parser
struct node_info
{
attribute_map attributes{};
int num_outputs = 1;
std::string name = "";
module* mod = nullptr;
int num_outputs = 1;
std::string name = "";
module* mod = nullptr;
instruction_ref make_contiguous(instruction_ref ins) const;
instruction_ref add_bias(const std::vector<instruction_ref>& args,
instruction_ref curr_ins,
......@@ -59,7 +59,7 @@ struct onnx_parser
onnx_parser&, const node_info&, std::vector<instruction_ref>)>;
node_map nodes;
std::unordered_map<std::string, instruction_ref> instructions;
program prog = program();
program prog = program();
int default_dim_value = 1;
std::unordered_map<std::string, std::vector<int>> map_input_dims;
bool skip_unknown_operators = false;
......
......@@ -31,8 +31,7 @@ static literal
create_literal(shape::type_t shape_type, const std::vector<int>& dims, const char* data)
{
// empty input
auto elem_num =
std::accumulate(dims.begin(), dims.end(), int(1), std::multiplies<int>());
auto elem_num = std::accumulate(dims.begin(), dims.end(), int(1), std::multiplies<int>());
if(elem_num == 0)
{
return {};
......@@ -48,8 +47,7 @@ template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
static literal create_literal(shape::type_t shape_type, const std::vector<int>& dims, T data)
{
// empty input
auto elem_num =
std::accumulate(dims.begin(), dims.end(), int(1), std::multiplies<int>());
auto elem_num = std::accumulate(dims.begin(), dims.end(), int(1), std::multiplies<int>());
if(elem_num == 0)
{
return {};
......@@ -400,8 +398,7 @@ literal onnx_parser::parse_tensor(const onnx::TensorProto& t) const
}
MIGRAPHX_THROW("PARSE_TENSOR: Invalid tensor type");
}
shape onnx_parser::parse_type(const onnx::TypeProto& t,
const std::vector<int>& input_dims) const
shape onnx_parser::parse_type(const onnx::TypeProto& t, const std::vector<int>& input_dims) const
{
shape::type_t shape_type = get_type(t.tensor_type().elem_type());
if(!input_dims.empty())
......@@ -411,23 +408,21 @@ shape onnx_parser::parse_type(const onnx::TypeProto& t,
std::vector<int> dims;
auto&& tensor_dims = t.tensor_type().shape().dim();
std::transform(tensor_dims.begin(),
tensor_dims.end(),
std::back_inserter(dims),
[&](auto&& d) -> int {
if(d.has_dim_value())
{
if(static_cast<int>(d.dim_value()) <= 0)
{
return default_dim_value;
}
return d.dim_value();
}
else
{
return default_dim_value;
}
});
std::transform(
tensor_dims.begin(), tensor_dims.end(), std::back_inserter(dims), [&](auto&& d) -> int {
if(d.has_dim_value())
{
if(static_cast<int>(d.dim_value()) <= 0)
{
return default_dim_value;
}
return d.dim_value();
}
else
{
return default_dim_value;
}
});
if(dims.empty())
return {shape_type};
......
......@@ -122,7 +122,7 @@ void check_asym_padding(const onnx_parser::node_info& info,
int count_include_pad,
float pad_val)
{
int pad_ndims = padding.size() / 2;
int pad_ndims = padding.size() / 2;
auto left_pad_it = padding.begin();
auto right_pad_it = left_pad_it + pad_ndims;
......
......@@ -61,12 +61,8 @@ struct parse_convolution : op_parser<parse_convolution>
{
auto weight_lens = weights->get_shape().lens();
std::vector<int> k_lens(weight_lens.begin() + 2, weight_lens.end());
cal_auto_padding_size(info,
values,
k_lens,
values["dilation"].to_vector<int>(),
in_lens,
padding);
cal_auto_padding_size(
info, values, k_lens, values["dilation"].to_vector<int>(), in_lens, padding);
auto auto_pad = info.attributes["auto_pad"].s();
if(auto_pad.find("SAME") != std::string::npos)
{
......
......@@ -33,7 +33,8 @@ struct parse_imagescalar : op_parser<parse_imagescalar>
auto input_type = input_shape.type();
auto scale_val = info.add_literal(literal{shape{input_type}, {scale}});
auto bias_vals = info.add_literal(literal{shape{input_type, {static_cast<int>(bias.size())}}, bias});
auto bias_vals =
info.add_literal(literal{shape{input_type, {static_cast<int>(bias.size())}}, bias});
auto scale_tensor = info.add_instruction(
migraphx::make_op("scalar", {{"scalar_bcst_dims", input_lens}}), scale_val);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment