Unverified Commit 5eae6517 authored by Umang Yadav's avatar Umang Yadav Committed by GitHub
Browse files

Merge branch 'develop' into dot-add

parents 7c6ed581 fa3c21fa
......@@ -37,6 +37,7 @@
#include <migraphx/output_iterator.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/marker.hpp>
#include <migraphx/supported_segments.hpp>
#include <iostream>
#include <sstream>
#include <algorithm>
......@@ -167,13 +168,37 @@ target_assignments program::get_target_assignments(const std::vector<target>& ta
target_assignments p;
const auto* mod = get_main_module();
for(auto it : iterator_for(*mod))
std::vector<std::pair<target, supported_segments>> target_subgraphs;
target_subgraphs.reserve(targets.size());
std::transform(targets.begin(),
targets.end(),
std::back_inserter(target_subgraphs),
[&](const auto& t) { return std::make_pair(t, t.find_supported(mod, m)); });
for(const auto ins : iterator_for(*mod))
{
auto t = std::max_element(
targets.begin(), targets.end(), [it, m](const target& lhs, const target& rhs) {
return lhs.is_supported(it, m) < rhs.is_supported(it, m);
});
p.add_assignment(it, t->name());
if(contains(p, ins))
{
continue;
}
for(const auto& [target, subgraph] : target_subgraphs)
{
// can't pass a structured binding into lambda in C++17 so create a variable for it
const auto& t = target;
for(const auto& segment : subgraph)
{
const auto& instructions = segment.instructions;
if(not contains(instructions, ins))
{
continue;
}
std::transform(instructions.begin(),
instructions.end(),
std::inserter(p, p.end()),
[&](auto instr) { return std::make_pair(instr, t.name()); });
}
}
}
return p;
}
......
......@@ -40,6 +40,7 @@
#include <migraphx/register_target.hpp>
#include <migraphx/json.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/common.hpp>
#ifdef HAVE_GPU
#include <migraphx/gpu/hip.hpp>
......@@ -82,7 +83,7 @@ void visit_py(T x, F f)
{
f(x.template cast<bool>());
}
else if(py::isinstance<py::int_>(x))
else if(py::isinstance<py::int_>(x) || py::hasattr(x, "__index__"))
{
f(x.template cast<int>());
}
......@@ -324,6 +325,7 @@ MIGRAPHX_PYBIND11_MODULE(migraphx, m)
.def("get_parameter_names", &migraphx::program::get_parameter_names)
.def("get_parameter_shapes", &migraphx::program::get_parameter_shapes)
.def("get_output_shapes", &migraphx::program::get_output_shapes)
.def("is_compiled", &migraphx::program::is_compiled)
.def(
"compile",
[](migraphx::program& p, const migraphx::target& t, bool offload_copy, bool fast_math) {
......@@ -358,18 +360,35 @@ MIGRAPHX_PYBIND11_MODULE(migraphx, m)
.def("__ne__", std::not_equal_to<migraphx::program>{})
.def("__repr__", [](const migraphx::program& p) { return migraphx::to_string(p); });
py::class_<migraphx::operation>(m, "op")
.def(py::init([](const std::string& name, py::kwargs kwargs) {
migraphx::value v = migraphx::value::object{};
if(kwargs)
{
v = migraphx::to_value(kwargs);
}
return migraphx::make_op(name, v);
}))
py::class_<migraphx::operation> op(m, "op");
op.def(py::init([](const std::string& name, py::kwargs kwargs) {
migraphx::value v = migraphx::value::object{};
if(kwargs)
{
v = migraphx::to_value(kwargs);
}
return migraphx::make_op(name, v);
}))
.def("name", &migraphx::operation::name);
py::enum_<migraphx::op::pooling_mode>(op, "pooling_mode")
.value("average", migraphx::op::pooling_mode::average)
.value("max", migraphx::op::pooling_mode::max)
.value("lpnorm", migraphx::op::pooling_mode::lpnorm);
py::enum_<migraphx::op::rnn_direction>(op, "rnn_direction")
.value("forward", migraphx::op::rnn_direction::forward)
.value("reverse", migraphx::op::rnn_direction::reverse)
.value("bidirectional", migraphx::op::rnn_direction::bidirectional);
m.def(
"argument_from_pointer",
[](const migraphx::shape shape, const int64_t address) {
return migraphx::argument(shape, reinterpret_cast<void*>(address));
},
py::arg("shape"),
py::arg("address"));
m.def(
"parse_tf",
[](const std::string& filename,
......
......@@ -151,8 +151,11 @@ struct find_transpose
{
auto matcher() const
{
return match::name("transpose")(match::none_of(
match::skip_output(match::name("contiguous"))(match::name("transpose"))));
auto output_not_transpose =
match::none_of(match::skip_output(match::name("contiguous"))(match::name("transpose")));
auto input_has_transpose =
match::args(match::skip(match::name("contiguous"))(match::name("transpose")));
return match::name("transpose")(output_not_transpose, input_has_transpose);
}
void apply(module& m, const match::matcher_result& mr) const
......@@ -664,9 +667,94 @@ struct find_slice_transpose
}
};
struct find_transpose_slice
{
auto matcher() const
{
return match::name("transpose")(match::all_of[match::outputs()](match::name("slice")));
}
static std::vector<int64_t> slice_distance(const op::slice& op)
{
assert(op.starts.size() == op.ends.size());
std::vector<int64_t> result(op.starts.size());
std::transform(
op.ends.begin(), op.ends.end(), op.starts.begin(), result.begin(), std::minus<>{});
return result;
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
auto slices = ins->outputs();
if(slices.empty())
return;
auto slice = any_cast<op::slice>(slices.front()->get_operator());
auto sdistance = slice_distance(slice);
// Check all distances and axes are the same
if(std::any_of(slices.begin(), slices.end(), [&](auto sins) {
auto s = any_cast<op::slice>(sins->get_operator());
return s.axes != slice.axes or slice_distance(s) != sdistance;
}))
return;
// Check distances are divisible by lens of corresponding axes
auto mod_by_distance = [&](const auto& v, auto f) {
return std::inner_product(v.begin(),
v.end(),
sdistance.begin(),
0,
std::plus<>{},
[&](auto x, auto d) -> uint64_t {
if(d == 0)
return 1;
return f(x) % d;
});
};
if(mod_by_distance(slice.axes, [&](auto x) { return ins->get_shape().lens()[x]; }) != 0 or
mod_by_distance(slice.starts, id{}) != 0 or mod_by_distance(slice.ends, id{}) != 0)
return;
// TODO: Handle multiple axes
if(sdistance.size() != 1)
return;
auto axis = slice.axes.front();
// Skip if axis would be packed
if(std::all_of(ins->get_shape().lens().begin(),
ins->get_shape().lens().begin() + axis,
[](auto x) { return x == 1; }))
return;
// Compute axis before transpose to use for unsqueeze
auto perm = ins->get_operator().to_value()["permutation"].to_vector<int64_t>();
auto preaxis = std::find(perm.begin(), perm.end(), axis) - perm.begin();
// Make unsqeeze
auto unsqueeze = m.insert_instruction(
ins, make_op("unsqueeze", {{"axes", {preaxis}}, {"steps", sdistance}}), ins->inputs());
// Make transpose
std::transform(perm.begin(), perm.end(), perm.begin(), [&](auto i) {
if(i > preaxis)
return i + 1;
return i;
});
perm.insert(perm.begin(), preaxis + 1);
auto transpose =
m.insert_instruction(ins, make_op("transpose", {{"permutation", perm}}), unsqueeze);
// Slice and squeeze
for(auto s : slices)
{
auto op = any_cast<op::slice>(s->get_operator());
op.axes = {0};
op.starts = {op.starts.front() / sdistance.front()};
op.ends = {op.ends.front() / sdistance.front()};
auto slice_ins = m.insert_instruction(ins, op, transpose);
auto squeeze =
m.insert_instruction(ins, make_op("squeeze", {{"axes", {0}}}), slice_ins);
m.replace_instruction(s, squeeze);
}
}
};
void simplify_reshapes::apply(module& m) const
{
for(int i = 0; i < 2; i++)
for(int i = 0; i < 4; i++)
{
match::find_matches(m,
find_where_op{},
......@@ -679,6 +767,7 @@ void simplify_reshapes::apply(module& m) const
find_nested_convert{},
find_nested_slice{},
find_nested_concat{},
find_transpose_slice{},
find_slice_transpose{},
find_transpose_contiguous_reshaper_unary{});
dead_code_elimination{}.apply(m);
......
......@@ -30,6 +30,7 @@
#include <migraphx/compile_options.hpp>
#include <migraphx/fpga/context.hpp>
#include <migraphx/config.hpp>
#include <migraphx/supported_segments.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -41,7 +42,7 @@ struct target
std::string name() const;
std::vector<pass> get_passes(migraphx::context& ctx, const compile_options&) const;
migraphx::context get_context() const { return context{}; }
float is_supported(instruction_ref ins, support_metric m);
supported_segments find_supported(const_module_ref mod, support_metric m) const;
argument copy_to(const argument& arg) const { return arg; }
argument copy_from(const argument& arg) const { return arg; }
......
......@@ -34,6 +34,7 @@
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/normalize_ops.hpp>
#include <migraphx/iterator_for.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -62,12 +63,17 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
argument target::allocate(const shape& s) const { return fill_argument(s, 0); }
float is_supported(instruction_ref ins, support_metric m)
supported_segments target::find_supported(const_module_ref mod, support_metric m) const
{
// for now, not using the ins and metric to return a value
(void)ins;
(void)m;
return 1.0;
supported_segment instrs;
for(const auto ins : iterator_for(*mod))
{
instrs.instructions.insert(ins);
}
instrs.metric = 1; // arbitrary value
return {instrs};
}
MIGRAPHX_REGISTER_TARGET(target);
......
......@@ -25,6 +25,13 @@
#include <migraphx/shape.hpp>
#include <migraphx/permutation.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/module.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
#include <migraphx/cpp_generator.hpp>
#include <migraphx/pass_manager.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
......@@ -75,25 +82,25 @@ std::string vectorize::str() const
preload preload::broadcasts(std::size_t axis, const std::vector<shape>& inputs)
{
const std::size_t max_lds_bytes = 4096;
std::vector<bool> result;
std::transform(inputs.begin(),
inputs.end(),
std::back_inserter(result),
[&](const shape& input) { return input.strides()[axis] == 0; });
auto bytes = std::inner_product(inputs.begin(),
inputs.end(),
result.begin(),
std::size_t{0},
std::plus<>{},
[](const shape& s, bool b) -> std::size_t {
if(b)
return s.bytes();
return 0;
});
if(bytes < max_lds_bytes)
return {result};
// TODO: Try to partially preload items
std::fill(result.begin(), result.end(), false);
std::vector<bool> result(inputs.size());
std::vector<std::size_t> preloaded;
auto idxs = range(inputs.size());
std::copy_if(idxs.begin(), idxs.end(), std::back_inserter(preloaded), [&](auto i) {
return inputs[i].strides()[axis] == 0;
});
std::sort(preloaded.begin(), preloaded.end(), by(std::less<>{}, [&](auto i) {
return inputs[i].bytes();
}));
std::size_t bytes = 0;
for(auto i : preloaded)
{
auto input = inputs[i];
bytes += input.bytes();
if(bytes > max_lds_bytes)
break;
result[i] = true;
}
return {result};
}
......@@ -125,6 +132,45 @@ std::string make_transformer_args(std::vector<std::string> transformers)
return join_strings(std::move(transformers), ", ");
}
std::string generate_pointwise(const module& pm, const std::string& name)
{
module m = pm;
run_passes(m, {eliminate_common_subexpression{}, dead_code_elimination{}});
cpp_generator g;
g.fmap([](const std::string& fname) { return "migraphx::" + fname; });
g.add_point_op("where", "${function:where}(${0}, ${1}, ${2})");
g.add_point_op("prelu", "${function:where}(${0} < 0, ${0} * ${1}, ${0})");
g.add_point_op("sign", "${function:where}(${0} > 0, 1, ${function:where}(${0} < 0, -1, 0))");
g.add_point_op("equal", "migraphx::abs(${0} == ${1})");
g.add_point_op("less", "migraphx::abs(${0} < ${1})");
g.add_point_op("greater", "migraphx::abs(${0} > ${1})");
g.add_point_op("not", "migraphx::abs(not ${0})");
// Add explict conversions
g.fresult(
[](const shape& s) { return "migraphx::convert<" + shape::cpp_type(s.type()) + ">"; });
g.create_function(
g.generate_module(m).set_attributes({"__device__"}).set_generic_types(m).set_name(name));
return g.str();
}
static std::vector<std::string> get_op_names(const module& m)
{
std::vector<std::string> result;
for(auto& ins : m)
{
if(starts_with(ins.name(), "@"))
continue;
result.push_back(ins.name());
}
return result;
}
std::string generate_name_from_ops(const module& m)
{
auto op_names = get_op_names(m);
return join_strings(op_names, "_");
}
} // namespace gen
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
......
......@@ -834,13 +834,14 @@ void apply_conv_bias(context& ctx, module& m, const match::matcher_result& r)
m.replace_instruction(ins, cb, input_ins, weights_ins, old_ws_ins, bias_ins, alloc_ins);
}
inline auto precompile_name(std::string s) // NOLINT
template <class... Strings>
inline auto precompile_name(Strings... names) // NOLINT
{
return match::make_basic_pred_matcher([=](instruction_ref ins) {
if(ins->name() != "gpu::precompile_op")
return false;
auto op = from_value<operation>(ins->get_operator().to_value().at("op"));
return (op.name() == s);
return (contains({names...}, op.name()));
});
}
......@@ -1160,6 +1161,31 @@ struct find_contiguous_pointwise
}
};
struct find_layernorm_pointwise
{
auto matcher() const
{
return precompile_name("pointwise")(match::arg(0)(
precompile_name("gpu::prelayernorm", "gpu::preadd_layernorm").bind("layernorm")));
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
auto layernorm = r.instructions["layernorm"];
auto* pm = ins->module_inputs().front();
if(not layernorm->module_inputs().empty())
return;
auto inputs = layernorm->inputs();
inputs.pop_back();
inputs.insert(inputs.end(), ins->inputs().begin() + 1, ins->inputs().end());
m.replace_instruction(ins, layernorm->get_operator(), inputs, {pm});
}
};
void fuse_ops::apply(module& m) const
{
match::find_matches(m, find_contiguous_pointwise{}, find_gelu{}, find_gelu_new{fast_math});
......@@ -1182,6 +1208,7 @@ void fuse_ops::apply(module& m) const
match::find_matches(m,
find_triadd_layernorm{},
find_gemm_add{},
find_layernorm_pointwise{},
find_gemm_pointwise{},
find_contiguous_tranpose_gemm{},
find_commutative_broadcast{});
......
......@@ -25,6 +25,7 @@
#define MIGRAPHX_GUARD_GPU_COMPILE_GEN_HPP
#include <migraphx/config.hpp>
#include <migraphx/module_ref.hpp>
#include <string>
#include <unordered_map>
#include <vector>
......@@ -62,6 +63,10 @@ std::string make_transformer_args(Ts... xs)
return make_transformer_args({xs.str()...});
}
std::string generate_pointwise(const module& pm, const std::string& name);
std::string generate_name_from_ops(const module& m);
} // namespace gen
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/gpu/compiler.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/compile_hip_code_object.hpp>
#include <migraphx/gpu/compile_hip.hpp>
#include <migraphx/gpu/compile_gen.hpp>
#include <migraphx/cpp_generator.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/reduce_dims.hpp>
#include <migraphx/stringutils.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
using namespace migraphx::gpu::gen; // NOLINT
static const char* const layernorm_kernel = R"__migraphx__(
#include <migraphx/kernels/index.hpp>
#include <migraphx/kernels/layernorm.hpp>
#include <migraphx/kernels/vectorize.hpp>
#include <migraphx/kernels/preload.hpp>
#include <args.hpp>
namespace migraphx {
${preamble}
extern "C" {
__global__ void ${kernel}(${params})
{
auto idx = make_index();
transform_args(make_tensors(), rotate_last(), ${transformers})(${args})([](auto... xs) {
${layernorm}<${axis}>(${post}, xs...);
});
}
}
} // namespace migraphx
)__migraphx__";
struct layernorm_compiler : compiler<layernorm_compiler>
{
std::vector<std::string> names() const
{
return {"layernorm", "gpu::prelayernorm", "gpu::preadd_layernorm"};
}
operation compile_op(context& ctx, const std::vector<shape>& inputs, const value& v) const
{
// TODO: Use reduce_dims
auto axis = inputs.front().lens().size() - 1;
auto faxis = find_fast_axis({inputs.front()});
vectorize vec{};
// Vectorize if the axis is a reduction axis
if(axis == faxis)
{
vec = vectorize::elements(faxis, inputs);
}
auto preloads = preload::broadcasts(axis, inputs);
auto relements = inputs[0].lens()[axis] / vec.size;
auto nelements = (inputs.back().elements() / inputs[0].lens()[axis]);
auto block_size = compute_block_size(relements, 256);
hip_compile_options options;
options.set_launch_params(
v, compute_global_for(ctx, nelements * block_size, 256), block_size);
options.output = inputs.back();
options.inputs = inputs;
options.kernel_name = v.get("kernel", "layernorm_kernel");
auto src = interpolate_string(layernorm_kernel,
{{"kernel", options.kernel_name},
{"params", enum_params(inputs.size(), "void * private_p")},
{"args", enum_params(inputs.size(), "private_p")},
{"transformers", make_transformer_args(preloads, vec)},
{"post", v.get("post", std::string{"op::id{}"})},
{"preamble", v.get("preamble", std::string{})},
{"layernorm", v.get("layernorm", std::string{"layernorm"})},
{"axis", to_string(axis)}});
return compile_hip_code_object(src, options);
}
compiler_replace compile(context& ctx, instruction_ref ins, const operation& op) const
{
auto v = op.to_value();
v["layernorm"] = "layernorm";
v["kernel"] = "layernorm_kernel";
if(op.name() == "gpu::preadd_layernorm")
{
v["layernorm"] = "add_layernorm";
v["kernel"] = "add_layernorm_kernel";
}
if(not ins->module_inputs().empty())
{
auto* pm = ins->module_inputs().front();
v["preamble"] = generate_pointwise(*pm, "post_layernorm");
v["post"] = "MIGRAPHX_LIFT(post_layernorm)";
v["kernel"] =
v["layernorm"].to<std::string>() + "_" + generate_name_from_ops(*pm) + "_kernel";
}
return replace(compile_op(ctx, to_shapes(ins->inputs()), v));
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -65,18 +65,6 @@ __global__ void ${kernel}(${params})
)__migraphx__";
static std::vector<std::string> get_op_names(const module& m)
{
std::vector<std::string> result;
for(auto& ins : m)
{
if(starts_with(ins.name(), "@"))
continue;
result.push_back(ins.name());
}
return result;
}
struct pointwise_compiler : compiler<pointwise_compiler>
{
std::vector<std::string> names() const { return {"pointwise", "contiguous"}; }
......@@ -126,34 +114,14 @@ struct pointwise_compiler : compiler<pointwise_compiler>
else
{
assert(not ins->module_inputs().empty());
auto* pm = ins->module_inputs().front();
run_passes(*pm, {eliminate_common_subexpression{}, dead_code_elimination{}});
cpp_generator g;
g.fmap([](const std::string& fname) { return "migraphx::" + fname; });
g.add_point_op("where", "${function:where}(${0}, ${1}, ${2})");
g.add_point_op("prelu", "${function:where}(${0} < 0, ${0} * ${1}, ${0})");
g.add_point_op("sign",
"${function:where}(${0} > 0, 1, ${function:where}(${0} < 0, -1, 0))");
g.add_point_op("equal", "migraphx::abs(${0} == ${1})");
g.add_point_op("less", "migraphx::abs(${0} < ${1})");
g.add_point_op("greater", "migraphx::abs(${0} > ${1})");
g.add_point_op("not", "migraphx::abs(not ${0})");
g.add_point_op("mod", "migraphx::mod(${0}, ${1})");
g.add_point_op("fmod", "migraphx::fmod(${0}, ${1})");
// Add explict conversions
g.fresult([](const shape& s) {
return "migraphx::convert<" + shape::cpp_type(s.type()) + ">";
});
auto name = g.create_function(
g.generate_module(*pm).set_attributes({"__device__"}).set_generic_types(*pm));
std::string lambda = "MIGRAPHX_LIFT(" + name + ")";
auto op_names = get_op_names(*pm);
op_names.push_back("kernel");
auto op_name_string = join_strings(op_names, "_");
return replace(compile_op(
ctx,
to_shapes(ins->inputs()),
{{"lambda", lambda}, {"preamble", g.str()}, {"kernel", op_name_string}}));
auto* pm = ins->module_inputs().front();
auto pf = generate_pointwise(*pm, "inner_pointwise");
std::string lambda = "MIGRAPHX_LIFT(inner_pointwise)";
auto kernel_name = generate_name_from_ops(*pm) + "_kernel";
return replace(
compile_op(ctx,
to_shapes(ins->inputs()),
{{"lambda", lambda}, {"preamble", pf}, {"kernel", kernel_name}}));
}
}
};
......
......@@ -31,8 +31,9 @@
->decltype(__VA_ARGS__) { return __VA_ARGS__; }
// NOLINTNEXTLINE
#define MIGRAPHX_LIFT(...) \
[](auto&&... xs) MIGRAPHX_RETURNS((__VA_ARGS__)(static_cast<decltype(xs)>(xs)...))
#define MIGRAPHX_LIFT(...) \
[](auto&&... private_lisft_xs) MIGRAPHX_RETURNS( \
(__VA_ARGS__)(static_cast<decltype(private_lisft_xs)>(private_lisft_xs)...))
namespace migraphx {
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_KERNELS_LAYERNORM_HPP
#define MIGRAPHX_GUARD_KERNELS_LAYERNORM_HPP
#include <migraphx/kernels/reduce.hpp>
#include <migraphx/kernels/ops.hpp>
#include <migraphx/kernels/print.hpp>
namespace migraphx {
template <index_int Axis,
class F,
class BinOp,
class Output,
class Input1,
class Input2,
class... Inputs>
__device__ void generic_binary_layernorm(
F compute, BinOp op, Output output, Input1 input1, Input2 input2, Inputs... inputs)
{
using reduce_output = reduce::with_axis<Input1, Axis>;
reduce::block::run<reduce_output>([&](auto, auto r) {
using value_type = typename Input1::type;
constexpr auto relements = r.template elements<Input1>();
auto mean = [&](auto f) {
return r.reduce(op::sum{}, 0, [&](auto x1, auto x2) {
return f(x1, x2) / value_type{relements};
})(input1, input2);
};
// mean(x)
auto mean_x = mean(op);
// mean(m ^ 2)
auto mean_m2 = mean([&](auto x1, auto x2) {
auto m = op(x1, x2) - mean_x;
return m * m;
});
r.inner([&](auto& y, auto x1, auto x2, auto... xs) {
auto m = op(x1, x2) - mean_x;
// m * rsqrt(mean(m ^ 2) + 1e-12)
y = compute(m * rsqrt(mean_m2 + value_type{1e-12}), xs...);
})(output, input1, input2, inputs...);
});
}
template <index_int Axis, class F, class Output, class Input, class... Inputs>
__device__ void layernorm(F compute, Output output, Input input, Inputs... inputs)
{
generic_binary_layernorm<Axis>(
compute, [](auto x, auto) { return x; }, output, input, input, inputs...);
}
template <index_int Axis, class F, class Output, class Input1, class Input2, class... Inputs>
__device__ void
add_layernorm(F compute, Output output, Input1 input1, Input2 input2, Inputs... inputs)
{
generic_binary_layernorm<Axis>(
compute, [](auto x1, auto x2) { return x1 + x2; }, output, input1, input2, inputs...);
}
} // namespace migraphx
#endif // MIGRAPHX_GUARD_KERNELS_LAYERNORM_HPP
......@@ -224,6 +224,18 @@ struct block
idx.local_stride(x.get_shape().elements(), [&](auto j) { f(x[j], xs[j]...); });
});
}
template <class Input>
constexpr auto elements() const
{
using reduce_type = decltype(slicer(Input{}));
using value_type = typename Input::type;
constexpr auto relements = get_shape_c<reduce_type>{}.elements();
if constexpr(vec_size<value_type>() > 1)
return relements * vec_size<value_type>();
else
return relements;
}
};
template <class Slicer>
......@@ -281,6 +293,13 @@ struct lane
}
});
}
template <class Input>
constexpr auto elements() const
{
using reduce_type = decltype(slicer(Input{}));
return get_shape_c<reduce_type>{}.elements();
}
};
template <class Slicer>
......
......@@ -175,7 +175,7 @@ template <class T, class Op>
constexpr auto vec_reduce(T x, Op op)
{
if constexpr(vec_size<T>() < 2)
return x;
return vec_type<T>{x};
else
{
vec_type<T> result = x[0];
......
......@@ -24,12 +24,53 @@
#include <migraphx/gpu/prefuse_ops.hpp>
#include <migraphx/match/layernorm.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/register_op.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace {
template <class Derived, std::size_t N>
struct layernorm_base
{
shape compute_shape(std::vector<shape> inputs, std::vector<module_ref> mods) const
{
std::size_t nargs = 1;
if(not mods.empty())
{
auto* pm = mods.front();
nargs = pm->get_parameter_names().size();
}
check_shapes{inputs, static_cast<const Derived&>(*this)}.has(nargs + N);
auto s = inputs.at(0);
if(s.scalar())
{
return s;
}
else if(s.broadcasted())
{
return {s.type(), s.lens()};
}
else
{
return s.with_lens(s.lens());
}
}
};
struct layernorm : layernorm_base<layernorm, 0>
{
std::string name() const { return "gpu::prelayernorm"; }
};
MIGRAPHX_REGISTER_OP(layernorm);
struct add_layernorm : layernorm_base<add_layernorm, 1>
{
std::string name() const { return "gpu::preadd_layernorm"; }
};
MIGRAPHX_REGISTER_OP(add_layernorm);
struct find_layernorm
{
auto matcher() const { return match::layernorm(); }
......@@ -39,59 +80,30 @@ struct find_layernorm
auto ins = r.result;
auto x_ins = r.instructions["x"];
if(not x_ins->get_shape().standard())
x_ins = m.insert_instruction(ins, make_op("contiguous"), x_ins);
auto relements = x_ins->get_shape().lens().back();
if(relements > 1024 or (relements % 4 != 0 and relements > 256))
return;
auto a = m.insert_instruction(
ins, make_op("hip::allocate", {{"shape", to_value(x_ins->get_shape())}}));
m.replace_instruction(ins, make_op("gpu::layernorm"), x_ins, a);
m.replace_instruction(ins, layernorm{}, x_ins);
}
};
struct find_triaddlayernorm
struct find_add_layernorm
{
auto matcher() const
{
auto add1 =
match::name("add")(match::none_of(match::is_constant()),
match::args(match::any().bind("z1"), match::any().bind("z2")));
auto add2 = match::name("add")(match::either_arg(0, 1)(add1, match::any().bind("z3")));
return match::layernorm()(match::var("x")(add2));
return match::layernorm()(match::var("x")(match::name("add").bind("add")));
}
void apply(module& m, const match::matcher_result& r) const
{
auto ins = r.result;
auto x_ins = r.instructions["z1"];
auto y_ins = r.instructions["z2"];
auto z_ins = r.instructions["z3"];
for(auto* pins : {&x_ins, &y_ins, &z_ins})
{
if(not(*pins)->get_shape().standard())
*pins = m.insert_instruction(ins, make_op("contiguous"), *pins);
}
auto relements = x_ins->get_shape().lens().back();
if(relements > 1024 or (relements % 4 != 0 and relements > 256))
return;
auto ins = r.result;
auto add_ins = r.instructions["add"];
auto a = m.insert_instruction(
ins, make_op("hip::allocate", {{"shape", to_value(x_ins->get_shape())}}));
m.replace_instruction(ins, make_op("gpu::triadd_layernorm"), x_ins, y_ins, z_ins, a);
m.replace_instruction(ins, add_layernorm{}, add_ins->inputs());
}
};
} // namespace
void prefuse_ops::apply(module& m) const
{
match::find_matches(m, find_triaddlayernorm{}, find_layernorm{});
match::find_matches(m, find_add_layernorm{}, find_layernorm{});
}
} // namespace gpu
......
......@@ -244,7 +244,6 @@ struct ref_convolution : auto_register_op<ref_convolution<Op>>
auto weights_lens = args[1].get_shape().lens();
std::vector<std::size_t> k_lens{weights_lens.begin() + 2, weights_lens.end()};
padding = calc_dyn_auto_pad(img_lens, k_lens, op.stride, op.dilation);
std::cout << "[ ";
output_shape =
compute_padded_shape({args.at(0).get_shape(), args.at(1).get_shape()}, padding);
}
......
......@@ -26,8 +26,9 @@
#include <migraphx/make_op.hpp>
#include <migraphx/program.hpp>
#include <migraphx/register_target.hpp>
#include <migraphx/ref/target.hpp>
#include <migraphx/fpga/target.hpp>
#include <migraphx/target_assignments.hpp>
#include <migraphx/iterator_for.hpp>
migraphx::program create_program()
{
......@@ -37,8 +38,8 @@ migraphx::program create_program()
auto x = mm->add_parameter("x", s);
auto y = mm->add_parameter("y", s);
auto z = mm->add_parameter("z", s);
auto diff = mm->add_instruction(migraphx::make_op("div"), x, y);
mm->add_instruction(migraphx::make_op("div"), diff, z);
auto diff = mm->add_instruction(migraphx::make_op("add"), x, y);
mm->add_instruction(migraphx::make_op("add"), diff, z);
return p;
}
......@@ -47,14 +48,16 @@ TEST_CASE(is_supported)
auto p = create_program();
auto targets = migraphx::get_targets();
EXPECT(!targets.empty());
auto first_target = targets[0];
auto t = migraphx::make_target(first_target);
auto t = migraphx::make_target("fpga");
const auto assignments = p.get_target_assignments({t});
for(const auto& [ins, target] : assignments)
const auto* mod = p.get_main_module();
EXPECT(mod->size() == assignments.size());
for(const auto ins : iterator_for(*mod))
{
(void)ins;
EXPECT(target == first_target);
const auto& target = assignments.at(ins);
EXPECT(target == "fpga");
}
}
......
......@@ -108,15 +108,7 @@ struct function
};
template <class Stream, class Iterator>
inline Stream& stream_range(Stream& s, Iterator start, Iterator last)
{
if(start != last)
{
s << *start;
std::for_each(std::next(start), last, [&](auto&& x) { s << ", " << x; });
}
return s;
}
Stream& stream_range(Stream& s, Iterator start, Iterator last);
template <class Stream>
inline Stream& operator<<(Stream& s, std::nullptr_t)
......@@ -136,6 +128,17 @@ inline auto operator<<(Stream& s, const Range& v) -> decltype(stream_range(s, v.
return s;
}
template <class Stream, class Iterator>
inline Stream& stream_range(Stream& s, Iterator start, Iterator last)
{
if(start != last)
{
s << *start;
std::for_each(std::next(start), last, [&](auto&& x) { s << ", " << x; });
}
return s;
}
template <class T>
const T& get_value(const T& x)
{
......
......@@ -3589,7 +3589,7 @@ def nms_test():
st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
[1])
out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
[6, 3])
[None, 3])
node = onnx.helper.make_node('NonMaxSuppression',
inputs=[
......@@ -3603,6 +3603,108 @@ def nms_test():
return ([node], [b, s, mo, iou, st], [out])
@onnx_test
def nms_use_dyn_output_false_test():
b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
s = helper.make_tensor_value_info('scores', TensorProto.FLOAT, [1, 1, 6])
mo = helper.make_tensor_value_info('max_output_boxes_per_class',
TensorProto.INT64, [1])
iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
[1])
st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
[1])
out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
[None, 3])
node = onnx.helper.make_node('NonMaxSuppression',
inputs=[
'boxes', 'scores',
'max_output_boxes_per_class',
'iou_threshold', 'score_threshold'
],
outputs=['selected_indices'],
use_dyn_output=0)
return ([node], [b, s, mo, iou, st], [out])
@onnx_test
def nms_dynamic_batch_test():
b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [None, 6, 4])
s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
[None, 1, 6])
mo = helper.make_tensor_value_info('max_output_boxes_per_class',
TensorProto.INT64, [1])
iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
[1])
st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
[1])
out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
[None, 3])
node = onnx.helper.make_node('NonMaxSuppression',
inputs=[
'boxes', 'scores',
'max_output_boxes_per_class',
'iou_threshold', 'score_threshold'
],
outputs=['selected_indices'],
center_point_box=1,
use_dyn_output=1)
return ([node], [b, s, mo, iou, st], [out])
@onnx_test
def nms_dynamic_boxes_test():
b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, None, 4])
s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
[1, 1, None])
mo = helper.make_tensor_value_info('max_output_boxes_per_class',
TensorProto.INT64, [1])
iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
[1])
st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
[1])
out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
[None, 3])
node = onnx.helper.make_node('NonMaxSuppression',
inputs=[
'boxes', 'scores',
'max_output_boxes_per_class',
'iou_threshold', 'score_threshold'
],
outputs=['selected_indices'])
return ([node], [b, s, mo, iou, st], [out])
@onnx_test
def nms_dynamic_classes_test():
b = helper.make_tensor_value_info('boxes', TensorProto.FLOAT, [1, 6, 4])
s = helper.make_tensor_value_info('scores', TensorProto.FLOAT,
[1, None, 6])
mo = helper.make_tensor_value_info('max_output_boxes_per_class',
TensorProto.INT64, [1])
iou = helper.make_tensor_value_info('iou_threshold', TensorProto.FLOAT,
[1])
st = helper.make_tensor_value_info('score_threshold', TensorProto.FLOAT,
[1])
out = helper.make_tensor_value_info('selected_indices', TensorProto.INT64,
[None, 3])
node = onnx.helper.make_node('NonMaxSuppression',
inputs=[
'boxes', 'scores',
'max_output_boxes_per_class',
'iou_threshold', 'score_threshold'
],
outputs=['selected_indices'])
return ([node], [b, s, mo, iou, st], [out])
@onnx_test
def not_test():
x = helper.make_tensor_value_info('0', TensorProto.INT32, [4])
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment