Commit 5af79bd7 authored by turneram's avatar turneram
Browse files

Remove layernorm op

parent 89068ad1
......@@ -117,7 +117,6 @@ register_migraphx_ops(
if_op
im2col
isnan
layernorm
leaky_relu
less
load
......
#ifndef MIGRAPHX_GUARD_OPERATORS_LAYERNORMALIZATION_HPP
#define MIGRAPHX_GUARD_OPERATORS_LAYERNORMALIZATION_HPP
#include <array>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/par_for.hpp>
#include <cmath>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct layernorm
{
float epsilon = 1e-3;
int64_t axis = -1;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.epsilon, "epsilon"), f(self.axis, "axis"));
}
value attributes() const
{
value normalize;
normalize["axis"] = value::array{normalize_attribute::include_min};
return {{"normalize_axes", normalize}};
}
std::string name() const { return "layernorm"; }
shape normalize_compute_shape(std::vector<shape> inputs) const
{
if(inputs.size() == 2)
{
if(inputs.at(1).lens().front() != inputs.front().lens().at(axis))
MIGRAPHX_THROW("LAYERNORM: weights have wrong shape");
}
if(inputs.size() == 3)
{
if(inputs.at(2).lens().front() != inputs.front().lens().at(axis))
MIGRAPHX_THROW("LAYERNORM: bias has wrong shape");
}
return inputs.front();
}
argument compute(const shape& output_shape, std::vector<argument> args) const
{
argument result{output_shape};
auto x_lens = args.front().get_shape().lens();
auto norm_count = std::accumulate(
x_lens.begin(), x_lens.begin() + axis, std::size_t{1}, std::multiplies<std::size_t>());
auto norm_size = std::accumulate(
x_lens.begin() + axis, x_lens.end(), std::size_t{1}, std::multiplies<std::size_t>());
if(args.size() == 3)
{
visit_all(result, args[0], args[1], args[2])(
[&](auto output, auto data, auto weights, auto bias) {
par_for(norm_count, [&](auto idx) {
auto offset = idx * norm_size;
double mean = 0;
double mean_square = 0;
for(std::size_t i = 0; i < norm_size; ++i)
{
mean += data[offset + i];
mean_square += data[offset + i] * data[offset + i];
}
mean /= norm_size;
mean_square = sqrt(mean_square / norm_size - mean * mean + epsilon);
for(std::size_t i = 0; i < norm_size; ++i)
{
if(args.size() == 3)
output[offset + i] =
(data[offset + i] - mean) / mean_square * weights[i] + bias[i];
else
output[offset + i] =
(data[offset + i] - mean) / mean_square * weights[i];
}
});
});
}
else
{
visit_all(result, args[0])([&](auto output, auto data) {
par_for(norm_count, [&](auto idx) {
auto offset = idx * norm_size;
double mean = 0;
double mean_square = 0;
for(std::size_t i = 0; i < norm_size; ++i)
{
mean += data[offset + i];
mean_square += data[offset + i] * data[offset + i];
}
mean /= norm_size;
mean_square = sqrt(mean_square / norm_size - mean * mean + epsilon);
for(std::size_t i = 0; i < norm_size; ++i)
{
output[offset + i] = (data[offset + i] - mean) / mean_square;
// scale and bias handled by pointwise ops
}
});
});
}
return result;
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -43,7 +43,6 @@
#include <migraphx/op/if_op.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/isnan.hpp>
#include <migraphx/op/layernorm.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/less.hpp>
#include <migraphx/op/load.hpp>
......
#include <migraphx/onnx/op_parser.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/op/layernorm.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/instruction.hpp>
......
......@@ -148,7 +148,6 @@ add_library(migraphx_gpu
int8_conv_pack.cpp
int8_gemm_pack.cpp
kernel.cpp
layernorm.cpp
lowering.cpp
logsoftmax.cpp
loop.cpp
......@@ -205,7 +204,6 @@ register_migraphx_gpu_ops(hip_
floor
gather
greater
layernorm
less
log
logsoftmax
......
#ifndef MIGRAPHX_GUARD_RTGLIB_LAYERNORM_HPP
#define MIGRAPHX_GUARD_RTGLIB_LAYERNORM_HPP
#include <migraphx/op/layernorm.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/reflect.hpp>
#include <migraphx/argument.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct context;
struct hip_layernorm
{
op::layernorm op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
std::string name() const { return "gpu::layernorm"; }
shape compute_shape(std::vector<shape> inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
void finalize(context&, const shape&, const std::vector<shape>&);
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{
return shapes.size() - 1;
}
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#include <migraphx/gpu/layernorm.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/device/layernorm.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape hip_layernorm::compute_shape(std::vector<shape> inputs) const
{
inputs.pop_back();
return op.normalize_compute_shape(inputs);
}
argument hip_layernorm::compute(context& ctx, const shape&, const std::vector<argument>& args) const
{
device::layernorm(ctx.get_stream().get(), args.back(), args[0]);
return args.back();
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -11,7 +11,6 @@
#include <migraphx/op/dot.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/if_op.hpp>
#include <migraphx/op/layernorm.hpp>
#include <migraphx/op/leaky_relu.hpp>
#include <migraphx/op/lrn.hpp>
#include <migraphx/op/pooling.hpp>
......@@ -30,7 +29,6 @@
#include <migraphx/gpu/gemm.hpp>
#include <migraphx/gpu/greater.hpp>
#include <migraphx/gpu/int8_conv_pack.hpp>
#include <migraphx/gpu/layernorm.hpp>
#include <migraphx/gpu/leaky_relu.hpp>
#include <migraphx/gpu/less.hpp>
#include <migraphx/gpu/logical_and.hpp>
......@@ -141,7 +139,6 @@ struct miopen_apply
add_generic_op("exp");
add_generic_op("floor");
add_generic_op("greater");
add_generic_op("layernorm");
add_generic_op("less");
add_generic_op("log");
add_generic_op("logical_and");
......
......@@ -2644,22 +2644,6 @@ def layernorm_test():
bias_add], [x, scale, bias], [y], [pow_tensor, epsilon_tensor])
@onnx_test
def layernorm_op_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 2, 3])
w = helper.make_tensor_value_info('w', TensorProto.FLOAT, [3])
b = helper.make_tensor_value_info('b', TensorProto.FLOAT, [3])
output = helper.make_tensor_value_info('output', TensorProto.FLOAT,
[1, 2, 3])
node = onnx.helper.make_node('LayerNormalization',
inputs=['x', 'w', 'b'],
outputs=["output"],
epsilon=1e-5)
return ([node], [x, w, b], [output])
@onnx_test
def leaky_relu_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
......
layernorm_op_test:
8
x
w
boutput"LayerNormalization*
epsilon'7layernorm_op_testZ
x



Z
w

Z
b

b
output



B
\ No newline at end of file
......@@ -472,31 +472,6 @@ TEST_CASE(instance_norm_3d_test)
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(layernorm_op_test)
{
migraphx::program p = migraphx::parse_onnx("layernorm_op_test.onnx");
p.compile(migraphx::ref::target{});
migraphx::shape sx{migraphx::shape::float_type, {1, 2, 3}};
migraphx::shape swb{migraphx::shape::float_type, {3}};
std::vector<float> x_vec{1.0, 2.0, 3.0, 4.0, 5.0, 6.0};
std::vector<float> w_vec{1.0, 1.0, 1.0};
std::vector<float> b_vec{0.0, 0.0, 0.0};
migraphx::parameter_map pp;
pp["x"] = migraphx::argument(sx, x_vec.data());
pp["w"] = migraphx::argument(swb, w_vec.data());
pp["b"] = migraphx::argument(swb, b_vec.data());
auto result = p.eval(pp).back();
std::vector<float> result_vector(6);
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });
std::vector<float> gold{-1.22474f, 0.0f, 1.22474f, -1.22474f, 0.0f, 1.22474f};
EXPECT(migraphx::verify_range(result_vector, gold));
}
TEST_CASE(lessorequal_test)
{
migraphx::program p = migraphx::parse_onnx("lessorequal_test.onnx");
......
......@@ -2435,50 +2435,6 @@ TEST_CASE(imagescaler_test)
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(layernorm_test)
{
{
// with scale and bias
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sx{migraphx::shape::float_type, {1, 2, 3}};
migraphx::shape swb{migraphx::shape::float_type, {3}};
std::vector<float> x_vec{1.0, 2.0, 3.0, 4.0, 5.0, 6.0};
auto x = mm->add_literal(migraphx::literal{sx, x_vec});
auto w = mm->add_literal(migraphx::literal{swb, {1.0, 1.0, 1.0}});
auto b = mm->add_literal(migraphx::literal{swb, {0.0, 0.0, 0.0}});
mm->add_instruction(migraphx::make_op("layernorm", {{"epsilon", 1e-5}}), x, w, b);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(1 * 2 * 3);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {-1.22474f, 0.0f, 1.22474f, -1.22474f, 0.0f, 1.22474f};
for(auto&& i : results_vector)
std::cout << i << ", ";
std::cout << std::endl;
EXPECT(migraphx::verify_range(results_vector, gold));
}
{
// without scale and bias
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sx{migraphx::shape::float_type, {1, 2, 3}};
std::vector<float> x_vec{1.0, 2.0, 3.0, 4.0, 5.0, 6.0};
auto x = mm->add_literal(migraphx::literal{sx, x_vec});
mm->add_instruction(migraphx::make_op("layernorm", {{"epsilon", 1e-5}}), x);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<float> results_vector(1 * 2 * 3);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {-1.22474f, 0.0f, 1.22474f, -1.22474f, 0.0f, 1.22474f};
for(auto&& i : results_vector)
std::cout << i << ", ";
std::cout << std::endl;
EXPECT(migraphx::verify_range(results_vector, gold));
}
}
TEST_CASE(leaky_relu_test)
{
migraphx::program p;
......
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_layernorm_op : verify_program<test_layernorm_op>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto x =
mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 384, 768}});
mm->add_instruction(migraphx::make_op("layernorm", {{"axis", -1}, {"epsilon", 1e-12}}), x);
return p;
}
};
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment