Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
5a1feb14
Unverified
Commit
5a1feb14
authored
Jan 09, 2023
by
Ted Themistokleous
Committed by
GitHub
Jan 09, 2023
Browse files
Merge branch 'develop' into fix_parse_if
parents
cfbd5e8b
03c39761
Changes
77
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
350 additions
and
138 deletions
+350
-138
.github/workflows/add-to-project.yaml
.github/workflows/add-to-project.yaml
+19
-0
.github/workflows/performance.yaml
.github/workflows/performance.yaml
+4
-4
Dockerfile
Dockerfile
+1
-1
Jenkinsfile
Jenkinsfile
+18
-8
examples/migraphx/migraphx_driver/README.md
examples/migraphx/migraphx_driver/README.md
+1
-0
examples/nlp/python_bert_squad/requirements_bertsquad.txt
examples/nlp/python_bert_squad/requirements_bertsquad.txt
+1
-1
src/common.cpp
src/common.cpp
+1
-2
src/dead_code_elimination.cpp
src/dead_code_elimination.cpp
+2
-2
src/driver/main.cpp
src/driver/main.cpp
+8
-2
src/file_buffer.cpp
src/file_buffer.cpp
+16
-8
src/include/migraphx/check_shapes.hpp
src/include/migraphx/check_shapes.hpp
+1
-1
src/include/migraphx/file_buffer.hpp
src/include/migraphx/file_buffer.hpp
+1
-1
src/include/migraphx/instruction.hpp
src/include/migraphx/instruction.hpp
+2
-0
src/include/migraphx/literal.hpp
src/include/migraphx/literal.hpp
+6
-15
src/include/migraphx/module.hpp
src/include/migraphx/module.hpp
+6
-0
src/include/migraphx/op/argmax.hpp
src/include/migraphx/op/argmax.hpp
+19
-11
src/include/migraphx/op/dot.hpp
src/include/migraphx/op/dot.hpp
+51
-22
src/include/migraphx/op/flatten.hpp
src/include/migraphx/op/flatten.hpp
+39
-9
src/include/migraphx/op/pooling.hpp
src/include/migraphx/op/pooling.hpp
+115
-36
src/include/migraphx/op/reduce_op.hpp
src/include/migraphx/op/reduce_op.hpp
+39
-15
No files found.
.github/workflows/add-to-project.yaml
0 → 100644
View file @
5a1feb14
name
:
Add PRs and issues to GitHub projects
on
:
pull_request
:
types
:
-
opened
issues
:
types
:
-
opened
jobs
:
add-to-project
:
name
:
Add PRs and issues to MIGX project
runs-on
:
ubuntu-latest
steps
:
-
uses
:
actions/add-to-project@v0.4.0
with
:
project-url
:
https://github.com/orgs/ROCmSoftwarePlatform/projects/20
github-token
:
$${{ secrets.MIGRAPHX_BOT_TOKEN }}
.github/workflows/performance.yaml
View file @
5a1feb14
...
...
@@ -5,14 +5,14 @@ on:
branches
:
[
develop
]
types
:
[
opened
,
synchronize
,
closed
]
schedule
:
-
cron
:
"
0
5
*
*
1-6"
-
cron
:
"
0
6
*
*
1-6"
workflow_dispatch
:
inputs
:
rocm_release
:
description
:
ROCm Version
required
:
true
default
:
'
5.
2
'
default
:
'
5.
3
'
performance_reports_repo
:
description
:
Result repository
required
:
true
...
...
@@ -30,9 +30,9 @@ concurrency: "perftest-${{ github.head_ref || github.base_ref || 'schedule' }}"
jobs
:
release
:
uses
:
rocms
oftware
p
latform/migraphx-benchmark/.github/workflows/perf-test.yml@main
uses
:
ROCmS
oftware
P
latform/migraphx-benchmark/.github/workflows/perf-test.yml@main
with
:
rocm_release
:
${{ github.event.inputs.rocm_release || '5.
2
' }}
rocm_release
:
${{ github.event.inputs.rocm_release || '5.
3
' }}
result_number
:
${{ github.event.inputs.result_number || '10' }}
flags
:
${{ github.event.inputs.flags || '-s' }}
performance_reports_repo
:
${{ github.event.inputs.performance_reports_repo || 'ROCmSoftwarePlatform/migraphx-reports' }}
...
...
Dockerfile
View file @
5a1feb14
...
...
@@ -87,7 +87,7 @@ RUN git clone --single-branch --branch ${ONNXRUNTIME_BRANCH} --recursive ${ONNXR
ADD
tools/build_and_test_onnxrt.sh /onnxruntime/build_and_test_onnxrt.sh
RUN
cget
-p
/usr/local
install
ROCmSoftwarePlatform/
llvm-project-mlir@c0723a7e50043d973cb73ae51dc30d36679ee7e5
-DBUILD_MIXR_TARGET
=
On
RUN
cget
-p
/usr/local
install
ROCmSoftwarePlatform/
rocMLIR@78b706fe9879587ab98b6614ae539265374a3fae
-DBUILD_MIXR_TARGET
=
On
-DLLVM_ENABLE_ZSTD
=
Off
-DLLVM_ENABLE_THREADS
=
Off
ENV
MIOPEN_FIND_DB_PATH=/tmp/miopen/find-db
ENV
MIOPEN_USER_DB_PATH=/tmp/miopen/user-db
...
...
Jenkinsfile
View file @
5a1feb14
...
...
@@ -11,16 +11,22 @@ def rocmtestnode(Map conf) {
def
image
=
'migraphxlib'
env
.
CCACHE_COMPRESSLEVEL
=
7
env
.
CCACHE_DIR
=
ccache
def
cmake_build
=
{
compiler
,
flags
->
def
cmake_build
=
{
bconf
->
def
compiler
=
bconf
.
get
(
"compiler"
,
"/opt/rocm/llvm/bin/clang++"
)
def
flags
=
bconf
.
get
(
"flags"
,
""
)
def
gpu_debug
=
bconf
.
get
(
"gpu_debug"
,
"0"
)
def
cmd
=
"""
env
ulimit -c unlimited
echo "leak:dnnl::impl::malloc" > suppressions.txt
export LSAN_OPTIONS="suppressions=\$(pwd)/suppressions.txt"
export MIGRAPHX_GPU_DEBUG=${gpu_debug}
export CXX=${compiler}
export CXXFLAGS='-Werror'
env
rm -rf build
mkdir build
cd build
CXX=${compiler} CXXFLAGS='-Werror'
cmake -DCMAKE_C_COMPILER_LAUNCHER=ccache -DCMAKE_CXX_COMPILER_LAUNCHER=ccache ${flags} ..
cmake -DCMAKE_C_COMPILER_LAUNCHER=ccache -DCMAKE_CXX_COMPILER_LAUNCHER=ccache ${flags} ..
make -j\$(nproc) generate all doc package check VERBOSE=1
"""
echo
cmd
...
...
@@ -93,28 +99,32 @@ rocmtest clang_debug: rocmnode('vega') { cmake_build ->
stage
(
'Hip Clang Debug'
)
{
def
sanitizers
=
"undefined"
def
debug_flags
=
"-g -O2 -fsanitize=${sanitizers} -fno-sanitize-recover=${sanitizers}"
cmake_build
(
"/opt/rocm/llvm/bin/clang++"
,
"-DCMAKE_BUILD_TYPE=debug -DMIGRAPHX_ENABLE_PYTHON=Off -DCMAKE_CXX_FLAGS_DEBUG='${debug_flags}' -DCMAKE_C_FLAGS_DEBUG='${debug_flags}'"
)
cmake_build
(
flags:
"-DCMAKE_BUILD_TYPE=debug -DMIGRAPHX_ENABLE_PYTHON=Off -DCMAKE_CXX_FLAGS_DEBUG='${debug_flags}' -DCMAKE_C_FLAGS_DEBUG='${debug_flags}'"
)
}
},
clang_gpu_debug:
rocmnode
(
'vega'
)
{
cmake_build
->
stage
(
'Hip Clang GPU Debug'
)
{
cmake_build
(
flags:
"-DCMAKE_BUILD_TYPE=release"
,
gpu_debug:
true
)
}
},
clang_release:
rocmnode
(
'vega'
)
{
cmake_build
->
stage
(
'Hip Clang Release'
)
{
cmake_build
(
"/opt/rocm/llvm/bin/clang++"
,
"-DCMAKE_BUILD_TYPE=release"
)
cmake_build
(
flags:
"-DCMAKE_BUILD_TYPE=release"
)
stash
includes:
'build/*.deb'
,
name:
'migraphx-package'
}
},
mlir_debug:
rocmnode
(
'vega'
)
{
cmake_build
->
stage
(
'MLIR Debug'
)
{
def
sanitizers
=
"undefined"
def
debug_flags
=
"-g -O2 -fsanitize=${sanitizers} -fno-sanitize-recover=${sanitizers}"
cmake_build
(
"/opt/rocm/llvm/bin/clang++"
,
"-DCMAKE_BUILD_TYPE=debug -DMIGRAPHX_ENABLE_PYTHON=Off -DMIGRAPHX_ENABLE_MLIR=On -DCMAKE_CXX_FLAGS_DEBUG='${debug_flags}' -DCMAKE_C_FLAGS_DEBUG='${debug_flags}'"
)
cmake_build
(
flags:
"-DCMAKE_BUILD_TYPE=debug -DMIGRAPHX_ENABLE_PYTHON=Off -DMIGRAPHX_ENABLE_MLIR=On -DCMAKE_CXX_FLAGS_DEBUG='${debug_flags}' -DCMAKE_C_FLAGS_DEBUG='${debug_flags}'"
)
}
},
clang_asan:
rocmnode
(
'nogpu'
)
{
cmake_build
->
stage
(
'Clang ASAN'
)
{
def
sanitizers
=
"undefined,address"
def
debug_flags
=
"-g -O2 -fno-omit-frame-pointer -fsanitize=${sanitizers} -fno-sanitize-recover=${sanitizers}"
cmake_build
(
"/opt/rocm/llvm/bin/clang++"
,
"-DCMAKE_BUILD_TYPE=debug -DMIGRAPHX_ENABLE_PYTHON=Off -DMIGRAPHX_ENABLE_GPU=Off -DMIGRAPHX_ENABLE_CPU=On -DCMAKE_CXX_FLAGS_DEBUG='${debug_flags}' -DCMAKE_C_FLAGS_DEBUG='${debug_flags}'"
)
cmake_build
(
flags:
"-DCMAKE_BUILD_TYPE=debug -DMIGRAPHX_ENABLE_PYTHON=Off -DMIGRAPHX_ENABLE_GPU=Off -DMIGRAPHX_ENABLE_CPU=On -DCMAKE_CXX_FLAGS_DEBUG='${debug_flags}' -DCMAKE_C_FLAGS_DEBUG='${debug_flags}'"
)
}
}
//, clang_release_navi: rocmnode('navi21') { cmake_build ->
// stage('HIP Clang Release Navi') {
// cmake_build(
"/opt/rocm/llvm/bin/clang++",
"-DCMAKE_BUILD_TYPE=release")
// cmake_build(
flags:
"-DCMAKE_BUILD_TYPE=release")
// }
//}
...
...
examples/migraphx/migraphx_driver/README.md
View file @
5a1feb14
...
...
@@ -29,6 +29,7 @@ See below for a comprehensive list of commands and option arguments, as well as
| --tf | Load file as a tensorflow graph |
| --migraphx | Load file as a migraphx graph |
| --migraphx-json | Load file as a migraphx JSON graph |
| --batch | Set batch size for the model |
| --nhwc | Treat tensorflow format as nhwc |
| --nchw | Treat tensorflow format as nchw |
| --skip-unknown-operators | Skip unknown operators when parsing and continue to parse |
...
...
examples/nlp/python_bert_squad/requirements_bertsquad.txt
View file @
5a1feb14
...
...
@@ -21,6 +21,6 @@
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#####################################################################################
tensorflow==2.
7.2
tensorflow==2.
9.3
onnxruntime
tokenizers
\ No newline at end of file
src/common.cpp
View file @
5a1feb14
...
...
@@ -77,7 +77,6 @@ std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, sha
}
auto
offset
=
s1
.
ndim
()
-
s0
.
ndim
();
std
::
vector
<
shape
::
dynamic_dimension
>
out_dims
(
s1
.
dyn_dims
());
shape
::
dynamic_dimension
one_dyn_dim
{
1
,
1
,
0
};
std
::
transform
(
s0
.
dyn_dims
().
cbegin
(),
s0
.
dyn_dims
().
cend
(),
...
...
@@ -88,7 +87,7 @@ std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, sha
{
return
a
;
}
else
if
(
a
==
one_dyn_dim
or
b
==
one_dyn_dim
)
else
if
(
a
==
1
or
b
==
1
)
{
// setting opt to 0, may need to be changed
return
shape
::
dynamic_dimension
{
std
::
max
(
a
.
min
,
b
.
min
),
std
::
max
(
a
.
max
,
b
.
max
),
0
};
...
...
src/dead_code_elimination.cpp
View file @
5a1feb14
...
...
@@ -51,8 +51,8 @@ void dead_code_elimination::apply(module& m) const
// Skip instruction with empty shape as output unless its [dynamic, builtin, undefined,
// identity, allocate]
if
((
not
i
->
get_shape
().
dynamic
()
and
i
->
get_shape
().
elements
()
==
0
)
and
i
->
name
().
front
()
!
=
'@'
and
not
contains
({
"undefined"
,
"identity"
,
"allocate"
},
i
->
name
()
))
not
(
i
->
name
().
front
()
=
=
'@'
)
and
not
contains
({
"identity"
,
"allocate"
},
i
->
name
())
and
not
i
->
is_undefined
(
))
continue
;
assert
(
std
::
distance
(
m
.
begin
(),
i
)
<=
std
::
distance
(
m
.
begin
(),
last
));
std
::
unordered_set
<
instruction_ref
>
visited
;
...
...
src/driver/main.cpp
View file @
5a1feb14
...
...
@@ -109,8 +109,12 @@ struct loader
ap
(
brief
,
{
"--brief"
},
ap
.
help
(
"Make the output brief."
),
ap
.
set_value
(
true
));
ap
(
output_type
,
{
"--cpp"
},
ap
.
help
(
"Print out the program as
cpp
program."
),
ap
.
help
(
"Print out the program as
C++
program."
),
ap
.
set_value
(
"cpp"
));
ap
(
output_type
,
{
"--python"
,
"--py"
},
ap
.
help
(
"Print out the program as python program."
),
ap
.
set_value
(
"py"
));
ap
(
output_type
,
{
"--json"
},
ap
.
help
(
"Print out program as json."
),
ap
.
set_value
(
"json"
));
ap
(
output_type
,
{
"--text"
},
...
...
@@ -259,7 +263,9 @@ struct loader
type
=
"binary"
;
}
if
(
type
==
"cpp"
)
if
(
type
==
"py"
)
p
.
print_py
(
*
os
);
else
if
(
type
==
"cpp"
)
p
.
print_cpp
(
*
os
);
else
if
(
type
==
"graphviz"
)
p
.
print_graph
(
*
os
,
brief
);
...
...
src/file_buffer.cpp
View file @
5a1feb14
...
...
@@ -30,23 +30,31 @@ namespace migraphx {
inline
namespace
MIGRAPHX_INLINE_NS
{
template
<
class
T
>
T
generic_read_file
(
const
std
::
string
&
filename
)
T
generic_read_file
(
const
std
::
string
&
filename
,
size_t
offset
=
0
,
size_t
nbytes
=
0
)
{
std
::
ifstream
is
(
filename
,
std
::
ios
::
binary
|
std
::
ios
::
ate
);
std
::
streamsize
size
=
is
.
tellg
();
if
(
size
<
1
)
if
(
nbytes
==
0
)
{
// if there is a non-zero offset and nbytes is not set,
// calculate size of remaining bytes to read
nbytes
=
is
.
tellg
();
if
(
offset
>
nbytes
)
MIGRAPHX_THROW
(
"offset is larger than file size"
);
nbytes
-=
offset
;
}
if
(
nbytes
<
1
)
MIGRAPHX_THROW
(
"Invalid size for: "
+
filename
);
is
.
seekg
(
0
,
std
::
ios
::
beg
);
is
.
seekg
(
offset
,
std
::
ios
::
beg
);
T
buffer
(
size
,
0
);
if
(
not
is
.
read
(
&
buffer
[
0
],
size
))
T
buffer
(
nbytes
,
0
);
if
(
not
is
.
read
(
&
buffer
[
0
],
nbytes
))
MIGRAPHX_THROW
(
"Error reading file: "
+
filename
);
return
buffer
;
}
std
::
vector
<
char
>
read_buffer
(
const
std
::
string
&
filename
)
std
::
vector
<
char
>
read_buffer
(
const
std
::
string
&
filename
,
size_t
offset
,
size_t
nbytes
)
{
return
generic_read_file
<
std
::
vector
<
char
>>
(
filename
);
return
generic_read_file
<
std
::
vector
<
char
>>
(
filename
,
offset
,
nbytes
);
}
std
::
string
read_string
(
const
std
::
string
&
filename
)
...
...
src/include/migraphx/check_shapes.hpp
View file @
5a1feb14
...
...
@@ -198,7 +198,7 @@ struct check_shapes
*/
const
check_shapes
&
same_ndims
()
const
{
if
(
not
this
->
same
([](
const
shape
&
s
)
{
return
s
.
max_lens
().
size
();
}))
if
(
not
this
->
same
([](
const
shape
&
s
)
{
return
s
.
ndim
();
}))
MIGRAPHX_THROW
(
prefix
()
+
"Number of dimensions do not match"
);
return
*
this
;
}
...
...
src/include/migraphx/file_buffer.hpp
View file @
5a1feb14
...
...
@@ -31,7 +31,7 @@
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
std
::
vector
<
char
>
read_buffer
(
const
std
::
string
&
filename
);
std
::
vector
<
char
>
read_buffer
(
const
std
::
string
&
filename
,
size_t
offset
=
0
,
size_t
nbytes
=
0
);
std
::
string
read_string
(
const
std
::
string
&
filename
);
void
write_buffer
(
const
std
::
string
&
filename
,
const
char
*
buffer
,
std
::
size_t
size
);
...
...
src/include/migraphx/instruction.hpp
View file @
5a1feb14
...
...
@@ -121,6 +121,8 @@ struct instruction
bool
can_eval
()
const
;
bool
is_undefined
()
const
;
argument
eval
(
bool
check_eval
=
true
)
const
;
void
finalize
(
context
&
ctx
);
...
...
src/include/migraphx/literal.hpp
View file @
5a1feb14
...
...
@@ -80,6 +80,7 @@ struct literal : raw_data<literal>
fill
(
start
,
end
);
}
// Directly copies buffer of x
template
<
class
T
,
MIGRAPHX_REQUIRES
(
sizeof
(
T
)
==
1
)>
literal
(
const
shape
&
s
,
T
*
x
)
:
buffer
(
make_shared_array
<
char
>
(
s
.
bytes
())),
m_shape
(
s
)
{
...
...
@@ -107,25 +108,15 @@ struct literal : raw_data<literal>
std
::
shared_ptr
<
char
>
buffer
;
shape
m_shape
;
// Keeps the same data ordering as the given container
template
<
class
Iterator
>
void
fill
(
Iterator
start
,
Iterator
end
)
{
assert
(
std
::
distance
(
start
,
end
)
==
m_shape
.
elements
());
if
(
m_shape
.
standard
())
{
m_shape
.
visit_type
([
&
](
auto
as
)
{
std
::
copy
(
start
,
end
,
as
.
from
(
buffer
.
get
()));
});
}
else
{
auto
it
=
start
;
m_shape
.
visit_type
([
&
](
auto
as
)
{
auto
output
=
make_view
(
m_shape
,
as
.
from
(
buffer
.
get
()));
shape_for_each
(
output
.
get_shape
(),
[
&
](
const
auto
&
idx
)
{
output
(
idx
.
begin
(),
idx
.
end
())
=
*
it
;
// NOLINT(bugprone-signed-char-misuse)
it
++
;
});
});
}
m_shape
.
visit_type
([
&
](
auto
as
)
{
auto
output
=
make_view
(
m_shape
,
as
.
from
(
buffer
.
get
()));
std
::
copy
(
start
,
end
,
output
.
begin
());
});
}
};
...
...
src/include/migraphx/module.hpp
View file @
5a1feb14
...
...
@@ -205,6 +205,12 @@ struct module
void
print_graph
(
std
::
ostream
&
os
,
bool
brief
=
false
)
const
;
void
print_py
(
std
::
ostream
&
os
)
const
;
std
::
unordered_map
<
instruction_ref
,
std
::
string
>
print_py
(
std
::
ostream
&
os
,
const
std
::
string
&
mname
,
std
::
unordered_map
<
instruction_ref
,
std
::
string
>
names
)
const
;
void
print_cpp
(
std
::
ostream
&
os
)
const
;
std
::
unordered_map
<
instruction_ref
,
std
::
string
>
print_cpp
(
std
::
ostream
&
os
,
...
...
src/include/migraphx/op/argmax.hpp
View file @
5a1feb14
...
...
@@ -30,6 +30,7 @@
#include <migraphx/config.hpp>
#include <migraphx/value.hpp>
#include <migraphx/op/normalize_attribute.hpp>
#include <migraphx/dyn_output.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -56,12 +57,20 @@ struct argmax
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
lens
=
inputs
[
0
].
lens
();
lens
[
axis
]
=
1
;
return
{
shape
::
int64_type
,
lens
};
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
const
auto
&
s0
=
inputs
[
0
];
if
(
s0
.
dynamic
())
{
auto
dyn_dims
=
s0
.
dyn_dims
();
dyn_dims
[
axis
]
=
{
1
,
1
,
0
};
return
{
shape
::
int64_type
,
dyn_dims
};
}
else
{
auto
lens
=
s0
.
lens
();
lens
[
axis
]
=
1
;
return
{
shape
::
int64_type
,
lens
};
}
}
template
<
class
T
>
...
...
@@ -79,19 +88,18 @@ struct argmax
max_index
=
i
;
}
}
return
max_index
;
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
out
put_shape
};
argument
result
{
dyn_out
.
com
put
ed
_shape
};
auto
batch_item_num
=
args
.
front
().
get_shape
().
lens
()[
axis
];
result
.
visit
([
&
](
auto
output
)
{
args
[
0
].
visit
([
&
](
auto
input
)
{
par_for
(
out
put_shape
.
elements
(),
[
&
](
auto
i
)
{
auto
data_idx
=
out
put_shape
.
multi
(
i
);
par_for
(
dyn_out
.
com
put
ed
_shape
.
elements
(),
[
&
](
auto
i
)
{
auto
data_idx
=
dyn_out
.
com
put
ed
_shape
.
multi
(
i
);
output
[
i
]
=
this
->
calc_argmax
(
input
,
data_idx
,
batch_item_num
);
});
});
...
...
src/include/migraphx/op/dot.hpp
View file @
5a1feb14
...
...
@@ -28,6 +28,7 @@
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/gemm.hpp>
#include <migraphx/dyn_output.hpp>
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
...
...
@@ -38,41 +39,69 @@ struct dot
std
::
string
name
()
const
{
return
"dot"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
same_type
().
has
(
2
);
check_shapes
{
inputs
,
*
this
,
true
}.
same_type
().
same_ndims
().
has
(
2
);
const
shape
&
a
=
inputs
.
at
(
0
);
const
shape
&
b
=
inputs
.
at
(
1
);
auto
t
=
a
.
type
();
if
(
not
std
::
all_of
(
inputs
.
begin
(),
inputs
.
end
(),
[](
auto
s
)
{
return
s
.
lens
().
size
()
>=
2
;
}))
if
(
not
std
::
all_of
(
inputs
.
begin
(),
inputs
.
end
(),
[](
auto
s
)
{
return
s
.
ndim
()
>=
2
;
}))
{
MIGRAPHX_THROW
(
"DOT: dot only accept 2 or more dim
s operands
"
);
MIGRAPHX_THROW
(
"DOT: dot only accept
s operands with
2 or more dim
ensions
"
);
}
// only handle the case that the batch size of a and b are the same
if
(
not
std
::
equal
(
a
.
lens
().
rbegin
()
+
2
,
a
.
lens
().
rend
(),
b
.
lens
().
rbegin
()
+
2
,
b
.
lens
().
rend
()))
if
(
a
.
dynamic
()
or
b
.
dynamic
())
{
MIGRAPHX_THROW
(
"DOT: batch size of A and B mismatch: {"
+
to_string_range
(
a
.
lens
())
+
"} x {"
+
to_string_range
(
b
.
lens
())
+
"}"
);
auto
s0
=
a
.
to_dynamic
();
auto
s1
=
b
.
to_dynamic
();
if
(
not
std
::
equal
(
s0
.
dyn_dims
().
rbegin
()
+
2
,
s0
.
dyn_dims
().
rend
(),
s1
.
dyn_dims
().
rbegin
()
+
2
,
s1
.
dyn_dims
().
rend
()))
{
MIGRAPHX_THROW
(
"DOT: dynamic outer dimensions of A and B mismatch: {"
+
to_string_range
(
s0
.
dyn_dims
())
+
"} x {"
+
to_string_range
(
s1
.
dyn_dims
())
+
"}"
);
}
std
::
size_t
dim_0
=
s0
.
ndim
()
-
2
;
std
::
size_t
dim_1
=
s0
.
ndim
()
-
1
;
if
(
s0
.
dyn_dims
()[
dim_1
]
!=
s1
.
dyn_dims
()[
dim_0
])
{
MIGRAPHX_THROW
(
"DOT: dynamic inner dimensions do not match: {"
+
to_string_range
(
s0
.
dyn_dims
())
+
"} x {"
+
to_string_range
(
s1
.
dyn_dims
())
+
"}"
);
}
auto
out_dyn_dims
=
s0
.
dyn_dims
();
out_dyn_dims
[
dim_1
]
=
s1
.
dyn_dims
()[
dim_1
];
return
{
t
,
out_dyn_dims
};
}
std
::
size_t
dim_0
=
a
.
lens
().
size
()
-
2
;
std
::
size_t
dim_1
=
a
.
lens
().
size
()
-
1
;
if
(
a
.
lens
()[
dim_1
]
!=
b
.
lens
()[
dim_0
])
else
{
MIGRAPHX_THROW
(
"DOT: inner dimensions do not match: {"
+
to_string_range
(
a
.
lens
())
+
"} x {"
+
to_string_range
(
b
.
lens
())
+
"}"
);
}
// only handle the case that all the dimensions except the last two are the same
if
(
not
std
::
equal
(
a
.
lens
().
rbegin
()
+
2
,
a
.
lens
().
rend
(),
b
.
lens
().
rbegin
()
+
2
,
b
.
lens
().
rend
()))
{
MIGRAPHX_THROW
(
"DOT: static outer dimensions of A and B mismatch: {"
+
to_string_range
(
a
.
lens
())
+
"} x {"
+
to_string_range
(
b
.
lens
())
+
"}"
);
}
auto
out_lens
=
a
.
lens
();
out_lens
[
dim_1
]
=
b
.
lens
()[
dim_1
];
return
{
t
,
out_lens
};
std
::
size_t
dim_0
=
a
.
ndim
()
-
2
;
std
::
size_t
dim_1
=
a
.
ndim
()
-
1
;
if
(
a
.
lens
()[
dim_1
]
!=
b
.
lens
()[
dim_0
])
{
MIGRAPHX_THROW
(
"DOT: static inner dimensions do not match: {"
+
to_string_range
(
a
.
lens
())
+
"} x {"
+
to_string_range
(
b
.
lens
())
+
"}"
);
}
auto
out_lens
=
a
.
lens
();
out_lens
[
dim_1
]
=
b
.
lens
()[
dim_1
];
return
{
t
,
out_lens
};
}
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
=
argument
{
out
put_shape
};
argument
result
=
argument
{
dyn_out
.
com
put
ed
_shape
};
visit_all
(
result
,
args
[
0
],
args
[
1
])(
[
&
](
auto
cmat
,
auto
amat
,
auto
bmat
)
{
gemm
(
cmat
,
amat
,
bmat
,
1.0
f
,
0.0
f
);
});
return
result
;
...
...
src/include/migraphx/op/flatten.hpp
View file @
5a1feb14
...
...
@@ -55,17 +55,47 @@ struct flatten
std
::
string
name
()
const
{
return
"flatten"
;
}
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
).
standard
();
auto
&&
lens
=
inputs
.
front
().
lens
();
auto
x
=
std
::
accumulate
(
lens
.
begin
(),
lens
.
begin
()
+
axis
,
std
::
size_t
{
1
},
std
::
multiplies
<>
{});
auto
y
=
std
::
accumulate
(
lens
.
begin
()
+
axis
,
lens
.
end
(),
std
::
size_t
{
1
},
std
::
multiplies
<>
{});
return
{
inputs
.
at
(
0
).
type
(),
{
x
,
y
}};
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
auto
s
=
inputs
[
0
];
if
(
s
.
dynamic
())
{
auto
min_lens
=
s
.
min_lens
();
auto
max_lens
=
s
.
max_lens
();
auto
opt_lens
=
s
.
opt_lens
();
// If any of the opt values is 0, output opt will be 0
shape
::
dynamic_dimension
x
=
{
std
::
accumulate
(
min_lens
.
begin
(),
min_lens
.
begin
()
+
axis
,
std
::
size_t
{
1
},
std
::
multiplies
<>
{}),
std
::
accumulate
(
max_lens
.
begin
(),
max_lens
.
begin
()
+
axis
,
std
::
size_t
{
1
},
std
::
multiplies
<>
{}),
std
::
accumulate
(
opt_lens
.
begin
(),
opt_lens
.
begin
()
+
axis
,
std
::
size_t
{
1
},
std
::
multiplies
<>
{})};
shape
::
dynamic_dimension
y
=
{
std
::
accumulate
(
min_lens
.
begin
()
+
axis
,
min_lens
.
end
(),
std
::
size_t
{
1
},
std
::
multiplies
<>
{}),
std
::
accumulate
(
max_lens
.
begin
()
+
axis
,
max_lens
.
end
(),
std
::
size_t
{
1
},
std
::
multiplies
<>
{}),
std
::
accumulate
(
opt_lens
.
begin
()
+
axis
,
opt_lens
.
end
(),
std
::
size_t
{
1
},
std
::
multiplies
<>
{}),
};
return
{
s
.
type
(),
{
x
,
y
}};
}
else
{
check_shapes
{
inputs
,
*
this
}.
standard
();
auto
&&
lens
=
s
.
lens
();
auto
x
=
std
::
accumulate
(
lens
.
begin
(),
lens
.
begin
()
+
axis
,
std
::
size_t
{
1
},
std
::
multiplies
<>
{});
auto
y
=
std
::
accumulate
(
lens
.
begin
()
+
axis
,
lens
.
end
(),
std
::
size_t
{
1
},
std
::
multiplies
<>
{});
return
{
s
.
type
(),
{
x
,
y
}};
}
}
argument
compute
(
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
return
args
[
0
].
reshape
(
out
put_shape
);
return
args
[
0
].
reshape
(
dyn_out
.
com
put
ed
_shape
);
}
std
::
ptrdiff_t
output_alias
(
const
std
::
vector
<
shape
>&
)
const
{
return
0
;
}
};
...
...
src/include/migraphx/op/pooling.hpp
View file @
5a1feb14
...
...
@@ -31,7 +31,7 @@
#include <migraphx/argument.hpp>
#include <migraphx/par_for.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/
int_divide
.hpp>
#include <migraphx/
dyn_output
.hpp>
#include <cmath>
#include <utility>
...
...
@@ -49,6 +49,9 @@ struct pooling
bool
ceil_mode
=
false
;
int
lp_order
=
2
;
// Global pooling with dynamic shape input
bool
dyn_global
=
false
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
...
...
@@ -57,7 +60,8 @@ struct pooling
f
(
self
.
stride
,
"stride"
),
f
(
self
.
lengths
,
"lengths"
),
f
(
self
.
ceil_mode
,
"ceil_mode"
),
f
(
self
.
lp_order
,
"lp_order"
));
f
(
self
.
lp_order
,
"lp_order"
),
f
(
self
.
dyn_global
,
"dyn_global"
));
}
std
::
string
name
()
const
{
return
"pooling"
;
}
...
...
@@ -65,51 +69,111 @@ struct pooling
void
check_attribute_size
()
const
{
if
((
padding
.
size
()
!=
stride
.
size
()
and
(
padding
.
size
()
/
2
)
!=
stride
.
size
())
or
stride
.
size
()
!=
lengths
.
size
())
(
not
dyn_global
and
stride
.
size
()
!=
lengths
.
size
())
)
{
MIGRAPHX_THROW
(
"POOLING: inconsistent attribute sizes"
);
}
}
size_t
kdims
()
const
{
check_attribute_size
();
return
stride
.
size
();
}
value
attributes
()
const
{
return
{{
"normalize_padding"
,
"padding"
}};
}
std
::
vector
<
std
::
size_t
>
calc_spatial_dim_out
(
const
std
::
vector
<
std
::
size_t
>&
input_lens
,
std
::
size_t
kdims
)
const
{
std
::
vector
<
std
::
size_t
>
output_lens
{};
for
(
size_t
i
=
0
;
i
<
kdims
;
++
i
)
{
if
(
input_lens
[
i
+
2
]
==
0
)
{
// handle opt = 0
output_lens
.
push_back
(
0
);
}
else
{
std
::
size_t
padding_factor
=
2
*
padding
[
i
];
if
(
padding
.
size
()
==
2
*
kdims
)
padding_factor
=
padding
[
i
]
+
padding
[
i
+
kdims
];
assert
(
input_lens
[
i
+
2
]
+
padding_factor
>=
lengths
[
i
]);
std
::
size_t
dim_size
=
input_lens
[
i
+
2
]
+
padding_factor
-
lengths
[
i
];
std
::
size_t
len
=
(
ceil_mode
)
?
dim_size
/
stride
[
i
]
+
static_cast
<
std
::
size_t
>
((
dim_size
%
stride
[
i
]
!=
0
))
// ceil uint divide
:
dim_size
/
stride
[
i
];
// floor divide
output_lens
.
push_back
(
len
+
1
);
}
}
return
output_lens
;
}
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
check_attribute_size
();
const
shape
&
input
=
inputs
.
at
(
0
);
auto
input_lens
=
input
.
lens
();
size_t
kdims
=
input_lens
.
size
()
-
2
;
auto
input_size
=
inputs
[
0
].
lens
().
size
();
auto
padding_size
=
padding
.
size
();
if
(
input_size
!=
padding_size
/
2
+
2
and
input_size
!=
padding_size
+
2
)
auto
padding_size
=
padding
.
size
();
size_t
kdims
=
input
.
ndim
()
-
2
;
if
(
input
.
ndim
()
!=
padding_size
/
2
+
2
and
input
.
ndim
()
!=
padding_size
+
2
)
{
MIGRAPHX_THROW
(
"POOLING: input and attribute size mismatch!"
);
}
std
::
vector
<
std
::
size_t
>
output_lens
(
input_lens
.
begin
(),
input_lens
.
begin
()
+
2
);
for
(
size_t
i
=
0
;
i
<
kdims
;
i
++
)
if
(
input
.
dynamic
())
{
std
::
ptrdiff_t
dim_size
;
auto
padding_factor
=
2
*
padding
[
i
];
if
(
padding_size
==
2
*
kdims
)
padding_factor
=
padding
[
i
]
+
padding
[
i
+
kdims
];
dim_size
=
input_lens
[
i
+
2
]
+
padding_factor
-
lengths
[
i
];
assert
(
dim_size
>=
0
);
std
::
size_t
len
=
(
ceil_mode
)
?
ceil_divide
<
std
::
ptrdiff_t
>
(
dim_size
,
stride
[
i
])
:
floor_divide
<
std
::
ptrdiff_t
>
(
dim_size
,
stride
[
i
]);
output_lens
.
push_back
(
std
::
size_t
(
std
::
max
<
std
::
ptrdiff_t
>
(
1
,
len
+
1
)));
auto
input_dyn_dims
=
input
.
dyn_dims
();
std
::
vector
<
shape
::
dynamic_dimension
>
output_dyn_dims
(
input_dyn_dims
.
begin
(),
input_dyn_dims
.
begin
()
+
2
);
if
(
dyn_global
)
{
for
(
size_t
i
=
0
;
i
<
kdims
;
++
i
)
{
output_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
1
,
1
,
1
});
}
return
{
input
.
type
(),
output_dyn_dims
};
}
else
{
auto
min_spatial_dims
=
calc_spatial_dim_out
(
input
.
min_lens
(),
kdims
);
auto
max_spatial_dims
=
calc_spatial_dim_out
(
input
.
max_lens
(),
kdims
);
auto
opt_spatial_dims
=
calc_spatial_dim_out
(
input
.
opt_lens
(),
kdims
);
for
(
size_t
i
=
0
;
i
<
kdims
;
++
i
)
{
output_dyn_dims
.
push_back
(
shape
::
dynamic_dimension
{
min_spatial_dims
[
i
],
max_spatial_dims
[
i
],
opt_spatial_dims
[
i
]});
}
return
{
input
.
type
(),
output_dyn_dims
};
}
}
return
inputs
[
0
].
with_lens
(
output_lens
);
}
else
{
auto
input_lens
=
input
.
lens
();
size_t
kdims
()
const
{
check_attribute_size
();
return
stride
.
size
();
std
::
vector
<
std
::
size_t
>
output_lens
(
input_lens
.
begin
(),
input_lens
.
begin
()
+
2
);
// Used for when normalize_compute_shape() is called again at model eval time
// for an originally dynamic shape. Since kernel shape is not used with dyn_global.
if
(
dyn_global
)
{
for
(
size_t
i
=
0
;
i
<
kdims
;
++
i
)
{
output_lens
.
push_back
(
1
);
}
return
{
input
.
type
(),
output_lens
};
}
else
{
auto
output_spatial_lens
=
calc_spatial_dim_out
(
input_lens
,
kdims
);
output_lens
.
insert
(
output_lens
.
end
(),
output_spatial_lens
.
begin
(),
output_spatial_lens
.
end
());
return
inputs
[
0
].
with_lens
(
output_lens
);
}
}
}
struct
lpnorm_pool
...
...
@@ -158,7 +222,11 @@ struct pooling
};
template
<
class
Type
,
class
Out
,
class
In
,
class
Op
>
void
calc_pooling
(
const
shape
&
output_shape
,
Out
&
output
,
const
In
&
input
,
Op
op
)
const
void
calc_pooling
(
const
shape
&
output_shape
,
Out
&
output
,
const
In
&
input
,
const
std
::
vector
<
std
::
size_t
>&
kernel_dims
,
Op
op
)
const
{
auto
in_s
=
input
.
get_shape
();
auto
in_lens
=
in_s
.
lens
();
...
...
@@ -172,7 +240,7 @@ struct pooling
auto
d_2
=
dim
-
2
;
int
start
=
static_cast
<
int
>
(
idx_o
[
dim
]
*
stride
[
d_2
])
-
static_cast
<
int
>
(
padding
[
d_2
]);
int
end
=
std
::
min
(
start
+
length
s
[
d_2
],
in_lens
[
dim
]);
int
end
=
std
::
min
(
start
+
kernel_dim
s
[
d_2
],
in_lens
[
dim
]);
start
=
std
::
max
(
start
,
0
);
win_start
.
push_back
(
start
);
win_size
.
push_back
(
end
-
start
);
...
...
@@ -198,21 +266,32 @@ struct pooling
});
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
argument
result
{
dyn_out
.
computed_shape
};
auto
input_lens
=
args
[
0
].
get_shape
().
lens
();
std
::
vector
<
std
::
size_t
>
kernel_dims
;
if
(
dyn_global
)
{
kernel_dims
.
insert
(
kernel_dims
.
end
(),
input_lens
.
begin
()
+
2
,
input_lens
.
end
());
}
else
{
kernel_dims
=
this
->
lengths
;
}
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
input
)
{
using
type
=
typename
decltype
(
output
)
::
value_type
;
switch
(
mode
)
{
case
migraphx
::
op
::
pooling_mode
::
average
:
calc_pooling
<
type
>
(
out
put_shape
,
output
,
input
,
avg_pool
{});
calc_pooling
<
type
>
(
dyn_out
.
com
put
ed
_shape
,
output
,
input
,
kernel_dims
,
avg_pool
{});
break
;
case
migraphx
::
op
::
pooling_mode
::
max
:
calc_pooling
<
type
>
(
out
put_shape
,
output
,
input
,
max_pool
{});
calc_pooling
<
type
>
(
dyn_out
.
com
put
ed
_shape
,
output
,
input
,
kernel_dims
,
max_pool
{});
break
;
case
migraphx
::
op
::
pooling_mode
::
lpnorm
:
calc_pooling
<
type
>
(
output_shape
,
output
,
input
,
lpnorm_pool
{
lp_order
});
calc_pooling
<
type
>
(
dyn_out
.
computed_shape
,
output
,
input
,
kernel_dims
,
lpnorm_pool
{
lp_order
});
break
;
}
});
...
...
src/include/migraphx/op/reduce_op.hpp
View file @
5a1feb14
...
...
@@ -26,6 +26,7 @@
#include <migraphx/op/name.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/tensor_view.hpp>
#include <migraphx/shape_for_each.hpp>
...
...
@@ -105,18 +106,41 @@ struct reduce_op : op_name<Derived>
return
tuned_axes
;
}
/**
* @brief returns a shape in which the axis or axes named
* for reduction by this op are set, to size 1.
*
* @param inputs list of input shapes
* @return shape
*/
shape
normalize_compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
auto
s
=
inputs
.
at
(
0
);
auto
lens
=
s
.
lens
();
auto
tuned_axes
=
tune_axes
(
lens
.
size
());
for
(
auto
axis
:
tuned_axes
)
check_shapes
{
inputs
,
*
this
,
true
}.
has
(
1
);
auto
s
=
inputs
.
at
(
0
);
if
(
s
.
dynamic
())
{
lens
[
axis
]
=
1
;
auto
output_dyn_dims
=
s
.
dyn_dims
();
auto
tuned_axes
=
tune_axes
(
output_dyn_dims
.
size
());
for
(
const
auto
&
axis
:
tuned_axes
)
{
// At the time of writing, there's no functional difference between
// optimum of 0 (no opt) or 1.
output_dyn_dims
[
axis
]
=
{
1
,
1
,
0
};
}
return
shape
{
s
.
type
(),
output_dyn_dims
};
}
else
{
auto
lens
=
s
.
lens
();
auto
tuned_axes
=
tune_axes
(
lens
.
size
());
for
(
const
auto
&
axis
:
tuned_axes
)
{
lens
[
axis
]
=
1
;
}
return
inputs
[
0
].
with_lens
(
lens
);
}
return
inputs
[
0
].
with_lens
(
lens
);
}
template
<
class
T
>
...
...
@@ -124,7 +148,7 @@ struct reduce_op : op_name<Derived>
const
std
::
vector
<
T
>&
in_lens
,
std
::
vector
<
T
>&
out_lens
)
const
{
for
(
auto
axis
:
tuned_axes
)
for
(
const
auto
&
axis
:
tuned_axes
)
{
out_lens
[
axis
]
=
in_lens
[
axis
];
}
...
...
@@ -151,17 +175,17 @@ struct reduce_op : op_name<Derived>
static_cast
<
const
Derived
&>
(
*
this
).
output
(
batch_shape
)(
val
);
}
argument
compute
(
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
const
dyn_output
&
dyn_out
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
out
put_shape
};
argument
result
{
dyn_out
.
com
put
ed
_shape
};
auto
arg_lens
=
args
.
front
().
get_shape
().
lens
();
auto
tuned_axes
=
tune_axes
(
arg_lens
.
size
());
std
::
vector
<
std
::
size_t
>
batch_lens
(
out
put_shape
.
lens
().
size
(),
1
);
std
::
vector
<
std
::
size_t
>
batch_lens
(
dyn_out
.
com
put
ed
_shape
.
lens
().
size
(),
1
);
tune_dims
(
tuned_axes
,
arg_lens
,
batch_lens
);
shape
batch_shape
{
out
put_shape
.
type
(),
batch_lens
};
shape
batch_shape
{
dyn_out
.
com
put
ed
_shape
.
type
(),
batch_lens
};
visit_all
(
result
,
args
[
0
])([
&
](
auto
output
,
auto
input
)
{
par_for
(
out
put_shape
.
elements
(),
[
&
](
auto
i
)
{
auto
out_idx
=
out
put_shape
.
multi
(
i
);
par_for
(
dyn_out
.
com
put
ed
_shape
.
elements
(),
[
&
](
auto
i
)
{
auto
out_idx
=
dyn_out
.
com
put
ed
_shape
.
multi
(
i
);
this
->
reduce
(
input
,
batch_shape
,
tuned_axes
,
out_idx
,
output
);
});
});
...
...
Prev
1
2
3
4
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment