Commit 5571a352 authored by Shucai Xiao's avatar Shucai Xiao
Browse files

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/AMDMIGraphX into gru_operator

parents 8f39f349 009cf895
...@@ -60,6 +60,30 @@ struct batch_norm_inference ...@@ -60,6 +60,30 @@ struct batch_norm_inference
} }
}; };
struct lrn
{
float alpha = 0.0001;
float beta = 0.75;
float bias = 1.0;
int size = 1;
std::string name() const { return "lrn"; }
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.alpha, "alpha"),
f(self.beta, "beta"),
f(self.bias, "bias"),
f(self.size, "size"));
}
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
return inputs.front();
}
};
struct convolution struct convolution
{ {
std::array<std::size_t, 2> padding = {{0, 0}}; std::array<std::size_t, 2> padding = {{0, 0}};
......
...@@ -64,6 +64,7 @@ struct onnx_parser ...@@ -64,6 +64,7 @@ struct onnx_parser
add_variadic_op("Max", op::max{}); add_variadic_op("Max", op::max{});
add_variadic_op("Min", op::min{}); add_variadic_op("Min", op::min{});
add_mem_op("LRN", &onnx_parser::parse_lrn);
add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler); add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu); add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
add_mem_op("Elu", &onnx_parser::parse_elu); add_mem_op("Elu", &onnx_parser::parse_elu);
...@@ -537,6 +538,25 @@ struct onnx_parser ...@@ -537,6 +538,25 @@ struct onnx_parser
return prog.add_instruction(op, args.front()); return prog.add_instruction(op, args.front());
} }
instruction_ref
parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
{
float alpha = 0.0001;
float beta = 0.75;
float bias = 1.0;
int size = 1;
if(contains(attributes, "alpha"))
alpha = parse_value(attributes.at("alpha")).at<float>();
if(contains(attributes, "beta"))
beta = parse_value(attributes.at("beta")).at<float>();
if(contains(attributes, "bias"))
bias = parse_value(attributes.at("bias")).at<float>();
if(contains(attributes, "size"))
size = parse_value(attributes.at("size")).at<int>();
op::lrn op{alpha, beta, bias, size};
return prog.add_instruction(op, args.front());
}
instruction_ref parse_imagescaler(const std::string&, instruction_ref parse_imagescaler(const std::string&,
attribute_map attributes, attribute_map attributes,
std::vector<instruction_ref> args) std::vector<instruction_ref> args)
......
...@@ -103,6 +103,43 @@ struct cpu_batch_norm_inference ...@@ -103,6 +103,43 @@ struct cpu_batch_norm_inference
} }
}; };
struct cpu_lrn
{
op::lrn op;
std::string name() const { return "cpu::lrn"; }
shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
argument compute(context&, shape output_shape, std::vector<argument> args) const
{
argument result{output_shape};
visit_all(result, args[0])([&](auto output, auto input) {
int n_batch = output_shape.lens()[0];
int channels = output_shape.lens()[1];
int height = output_shape.lens()[2];
int width = output_shape.lens()[3];
float alphaoverarea = op.alpha / op.size;
int radius = (op.size - 1) / 2;
par_dfor(n_batch, height, width)([&](int b, int h, int w) {
float scale = 0;
dfor(channels)([&](int c) {
auto start = (c - radius) < 0 ? 0 : (c - radius);
auto end = (c + radius) > channels ? channels : (c + radius);
for(auto k = start; k < end; ++k)
{
scale += std::pow(input(b, k, h, w), 2);
}
scale *= alphaoverarea;
scale += op.bias;
scale = std::pow(scale, -op.beta);
output(b, c, h, w) = input(b, c, h, w) * scale;
});
});
});
return result;
}
};
struct cpu_convolution struct cpu_convolution
{ {
op::convolution op; op::convolution op;
...@@ -681,6 +718,7 @@ struct cpu_apply ...@@ -681,6 +718,7 @@ struct cpu_apply
apply_map["dot"] = extend_op<cpu_gemm, op::dot>(); apply_map["dot"] = extend_op<cpu_gemm, op::dot>();
apply_map["batch_norm_inference"] = apply_map["batch_norm_inference"] =
extend_op<cpu_batch_norm_inference, op::batch_norm_inference>(); extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
apply_map["lrn"] = extend_op<cpu_lrn, op::lrn>();
apply_map["contiguous"] = extend_op<cpu_contiguous, op::contiguous>(); apply_map["contiguous"] = extend_op<cpu_contiguous, op::contiguous>();
apply_map["pad"] = extend_op<cpu_pad, op::pad>(); apply_map["pad"] = extend_op<cpu_pad, op::pad>();
apply_map["concat"] = extend_op<cpu_concat, op::concat>(); apply_map["concat"] = extend_op<cpu_concat, op::concat>();
......
...@@ -61,6 +61,7 @@ add_library(migraphx_gpu ...@@ -61,6 +61,7 @@ add_library(migraphx_gpu
elu.cpp elu.cpp
pad.cpp pad.cpp
gather.cpp gather.cpp
lrn.cpp
) )
set_target_properties(migraphx_gpu PROPERTIES EXPORT_NAME gpu) set_target_properties(migraphx_gpu PROPERTIES EXPORT_NAME gpu)
rocm_clang_tidy_check(migraphx_gpu) rocm_clang_tidy_check(migraphx_gpu)
......
#ifndef MIGRAPHX_GUARD_RTGLIB_LRN_HPP
#define MIGRAPHX_GUARD_RTGLIB_LRN_HPP
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <migraphx/gpu/hip.hpp>
#include <migraphx/dfor.hpp>
#include <migraphx/gpu/device/contiguous.hpp>
#include <migraphx/gpu/device/add.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/gpu/rocblas.hpp>
#include <migraphx/gpu/context.hpp>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
struct miopen_lrn
{
shared<lrn_descriptor> ldesc;
std::string name() const { return "gpu::lrn"; }
shape compute_shape(const std::vector<shape>& inputs) const;
argument
compute(context& ctx, const shape& output_shape, const std::vector<argument>& args) const;
int output_alias(const std::vector<shape>& shapes) const { return shapes.size() - 1; }
};
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
...@@ -23,6 +23,8 @@ using fusion_plan_descriptor = MIGRAPHX_MANAGE_PTR(miopenFusionPlanDescriptor_t, ...@@ -23,6 +23,8 @@ using fusion_plan_descriptor = MIGRAPHX_MANAGE_PTR(miopenFusionPlanDescriptor_t,
miopenDestroyFusionPlan); miopenDestroyFusionPlan);
using fused_operator_args = MIGRAPHX_MANAGE_PTR(miopenOperatorArgs_t, miopenDestroyOperatorArgs); using fused_operator_args = MIGRAPHX_MANAGE_PTR(miopenOperatorArgs_t, miopenDestroyOperatorArgs);
using lrn_descriptor = MIGRAPHX_MANAGE_PTR(miopenLRNDescriptor_t, miopenDestroyLRNDescriptor);
template <class Result, class F, class... Ts> template <class Result, class F, class... Ts>
Result make_obj(F f, Ts... xs) Result make_obj(F f, Ts... xs)
{ {
...@@ -89,6 +91,13 @@ inline pooling_descriptor make_pooling(const migraphx::op::pooling& op) ...@@ -89,6 +91,13 @@ inline pooling_descriptor make_pooling(const migraphx::op::pooling& op)
return p; return p;
} }
inline lrn_descriptor make_lrn(const migraphx::op::lrn& op)
{
auto ldesc = make_obj<lrn_descriptor>(&miopenCreateLRNDescriptor);
miopenSetLRNDescriptor(ldesc.get(), miopenLRNCrossChannel, op.size, op.alpha, op.beta, op.bias);
return ldesc;
}
inline activation_descriptor make_relu() inline activation_descriptor make_relu()
{ {
auto ad = make_obj<activation_descriptor>(&miopenCreateActivationDescriptor); auto ad = make_obj<activation_descriptor>(&miopenCreateActivationDescriptor);
......
...@@ -43,6 +43,7 @@ ...@@ -43,6 +43,7 @@
#include <migraphx/gpu/concat.hpp> #include <migraphx/gpu/concat.hpp>
#include <migraphx/gpu/pad.hpp> #include <migraphx/gpu/pad.hpp>
#include <migraphx/gpu/gather.hpp> #include <migraphx/gpu/gather.hpp>
#include <migraphx/gpu/lrn.hpp>
#include <utility> #include <utility>
#include <functional> #include <functional>
#include <algorithm> #include <algorithm>
...@@ -99,6 +100,7 @@ struct miopen_apply ...@@ -99,6 +100,7 @@ struct miopen_apply
add_extend_op<hip_gather, op::gather>("gather"); add_extend_op<hip_gather, op::gather>("gather");
add_extend_op<hip_pad, op::pad>("pad"); add_extend_op<hip_pad, op::pad>("pad");
add_lrn_op();
add_convolution_op(); add_convolution_op();
add_pooling_op(); add_pooling_op();
add_batch_norm_inference_op(); add_batch_norm_inference_op();
...@@ -159,6 +161,17 @@ struct miopen_apply ...@@ -159,6 +161,17 @@ struct miopen_apply
}); });
} }
void add_lrn_op()
{
apply_map.emplace("lrn", [=](instruction_ref ins) {
auto&& op = any_cast<op::lrn>(ins->get_operator());
auto ldesc = make_lrn(op);
auto output = insert_allocation(ins, ins->get_shape());
return prog->replace_instruction(
ins, miopen_lrn{std::move(ldesc)}, ins->inputs().at(0), output);
});
}
template <class T> template <class T>
void add_generic_op(std::string name) void add_generic_op(std::string name)
{ {
......
#include <migraphx/gpu/lrn.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/manage_ptr.hpp>
#include <migraphx/gpu/miopen.hpp>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape miopen_lrn::compute_shape(const std::vector<shape>& inputs) const
{
check_shapes{inputs, *this}.has(2).not_broadcasted();
return inputs.at(1);
}
argument miopen_lrn::compute(context& ctx,
const shape& output_shape,
const std::vector<argument>& args) const
{
float alpha = 1;
float beta = 0;
auto x_desc = make_tensor(args[0].get_shape());
auto y_desc = make_tensor(output_shape);
miopenLRNForward(ctx.get_stream().get_miopen(),
ldesc.get(),
&alpha,
x_desc.get(),
args[0].implicit(),
&beta,
y_desc.get(),
args[1].implicit(),
false,
nullptr);
return args[1];
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
...@@ -732,6 +732,20 @@ TEST_CASE(leaky_relu_test) ...@@ -732,6 +732,20 @@ TEST_CASE(leaky_relu_test)
EXPECT(migraphx::verify_range(results_vector, gold)); EXPECT(migraphx::verify_range(results_vector, gold));
} }
TEST_CASE(lrn_test)
{
migraphx::program p;
migraphx::shape s{migraphx::shape::float_type, {1, 5, 1, 1}};
auto l = p.add_literal(migraphx::literal{s, {-2.0f, 1.0f, 0.f, 1.0f, 2.0f}});
p.add_instruction(migraphx::op::lrn{0.0001, 0.75, 1, 5}, l);
p.compile(migraphx::cpu::target{});
auto result = p.eval({});
std::vector<float> results_vector(5);
result.visit([&](auto output) { results_vector.assign(output.begin(), output.end()); });
std::vector<float> gold = {-2 / 1.000075, 1 / 1.00009, 0 / 1.000145, 1 / 1.00009, 2 / 1.000075};
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(imagescaler_test) TEST_CASE(imagescaler_test)
{ {
migraphx::program p; migraphx::program p;
......
...@@ -669,6 +669,18 @@ struct test_elu ...@@ -669,6 +669,18 @@ struct test_elu
} }
}; };
struct test_relu_lrn
{
migraphx::program create_program() const
{
migraphx::program p;
auto x = p.add_parameter("x", migraphx::shape{migraphx::shape::float_type, {1, 5, 2, 2}});
auto y = p.add_instruction(migraphx::op::relu{}, x);
p.add_instruction(migraphx::op::lrn{0.0001, 0.75, 1.0, 5}, y);
return p;
}
};
struct test_conv_pooling struct test_conv_pooling
{ {
migraphx::program create_program() const migraphx::program create_program() const
...@@ -2090,6 +2102,7 @@ struct test_gru_bidirct_default_actv1 ...@@ -2090,6 +2102,7 @@ struct test_gru_bidirct_default_actv1
int main() int main()
{ {
verify_program<test_relu_lrn>();
verify_program<test_pooling_autopad>(); verify_program<test_pooling_autopad>();
verify_program<test_abs>(); verify_program<test_abs>();
verify_program<test_concat>(); verify_program<test_concat>();
......
...@@ -1192,4 +1192,18 @@ TEST_CASE(pad_test) ...@@ -1192,4 +1192,18 @@ TEST_CASE(pad_test)
migraphx::parse_onnx("pad_test.onnx"); migraphx::parse_onnx("pad_test.onnx");
} }
TEST_CASE(lrn_test)
{
migraphx::program p;
auto l0 = p.add_parameter("0", migraphx::shape{migraphx::shape::float_type, {1, 28, 24, 24}});
migraphx::op::lrn op;
op.size = 5;
op.alpha = 0.0001;
op.beta = 0.75;
op.bias = 1.0;
p.add_instruction(op, l0);
migraphx::parse_onnx("lrn_test.onnx");
}
int main(int argc, const char* argv[]) { test::run(argc, argv); } int main(int argc, const char* argv[]) { test::run(argc, argv); }
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment