Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
52585d4f
Unverified
Commit
52585d4f
authored
Nov 10, 2023
by
Chris Austen
Committed by
GitHub
Nov 10, 2023
Browse files
Merge branch 'develop' into enable_navi_32_ci
parents
f0370072
d8011adf
Changes
81
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
761 additions
and
30 deletions
+761
-30
src/targets/gpu/include/migraphx/gpu/gemm_impl.hpp
src/targets/gpu/include/migraphx/gpu/gemm_impl.hpp
+51
-13
src/targets/gpu/include/migraphx/gpu/rocblas.hpp
src/targets/gpu/include/migraphx/gpu/rocblas.hpp
+1
-1
src/targets/gpu/kernels/include/migraphx/kernels/math.hpp
src/targets/gpu/kernels/include/migraphx/kernels/math.hpp
+6
-0
test/api/test_cpu.cpp
test/api/test_cpu.cpp
+25
-0
test/api/test_gpu.cpp
test/api/test_gpu.cpp
+55
-0
test/gpu/codegen_literal.cpp
test/gpu/codegen_literal.cpp
+1
-1
test/gpu/gemm_tune.cpp
test/gpu/gemm_tune.cpp
+225
-0
test/onnx/.onnxrt-commit
test/onnx/.onnxrt-commit
+1
-1
test/onnx/gen_onnx.py
test/onnx/gen_onnx.py
+155
-3
test/onnx/isinf_double_pos_test.onnx
test/onnx/isinf_double_pos_test.onnx
+0
-0
test/onnx/isinf_half_neg_test.onnx
test/onnx/isinf_half_neg_test.onnx
+0
-0
test/onnx/isinf_half_pos_test.onnx
test/onnx/isinf_half_pos_test.onnx
+0
-0
test/onnx/isinf_half_test.onnx
test/onnx/isinf_half_test.onnx
+12
-0
test/onnx/isinf_neg_test.onnx
test/onnx/isinf_neg_test.onnx
+0
-0
test/onnx/isinf_no_detect_test.onnx
test/onnx/isinf_no_detect_test.onnx
+0
-0
test/onnx/loop_test_implicit_tripcnt.onnx
test/onnx/loop_test_implicit_tripcnt.onnx
+73
-0
test/onnx/onnx_test.cpp
test/onnx/onnx_test.cpp
+126
-11
test/onnx/reshape_variable_input_test0.onnx
test/onnx/reshape_variable_input_test0.onnx
+17
-0
test/onnx/reshape_variable_input_test1.onnx
test/onnx/reshape_variable_input_test1.onnx
+0
-0
test/onnx/round_half_test.onnx
test/onnx/round_half_test.onnx
+13
-0
No files found.
src/targets/gpu/include/migraphx/gpu/gemm_impl.hpp
View file @
52585d4f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
@@ -24,26 +24,64 @@
#ifndef MIGRAPHX_GUARD_RTGLIB_GEMM_IMPL_HPP
#define MIGRAPHX_GUARD_RTGLIB_GEMM_IMPL_HPP
#include <iterator>
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/gpu/context.hpp>
// Set this environment variable to "true" to perform GEMM tuning even when the
// --exhaustive-tune option isn't set. Can be used to skip slow convolution tuning.
MIGRAPHX_DECLARE_ENV_VAR
(
MIGRAPHX_ENABLE_GEMM_TUNING
);
using
milliseconds
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
;
using
microseconds
=
std
::
chrono
::
duration
<
double
,
std
::
micro
>
;
namespace
migraphx
{
inline
namespace
MIGRAPHX_INLINE_NS
{
namespace
gpu
{
void
gemm
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
,
float
alpha
,
float
beta
,
bool
compute_fp32
);
void
gemm
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
,
int32_t
alpha
,
int32_t
beta
,
bool
compute_fp32
);
/**
* @brief Templated implementations of the compute() and finalize() methods of the Gemm operator.
* For each function there are overloads using either float or int32_t for the arguments
* alpha and beta.
*
* @param ctx .
* @param output_shape .
* @param args .
* @param alpha .
* @param beta .
* @param compute_fp32 .
*/
void
gemm_compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
,
float
alpha
,
float
beta
,
bool
compute_fp32
,
int32_t
solution_idx
);
void
gemm_compute
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
,
int32_t
alpha
,
int32_t
beta
,
bool
compute_fp32
,
int32_t
solution_idx
);
int32_t
gemm_finalize
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
shape
>&
input_shapes
,
float
alpha
,
float
beta
,
bool
compute_fp32
);
int32_t
gemm_finalize
(
context
&
ctx
,
const
shape
&
output_shape
,
const
std
::
vector
<
shape
>&
input_shapes
,
int32_t
alpha
,
int32_t
beta
,
bool
compute_fp32
,
int32_t
solution_idx
);
}
// namespace gpu
}
// namespace MIGRAPHX_INLINE_NS
...
...
src/targets/gpu/include/migraphx/gpu/rocblas.hpp
View file @
52585d4f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-202
2
Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-202
3
Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
...
...
src/targets/gpu/kernels/include/migraphx/kernels/math.hpp
View file @
52585d4f
...
...
@@ -101,7 +101,9 @@ MIGRAPHX_DEVICE_MATH(erf, ::erf)
MIGRAPHX_DEVICE_MATH
(
exp
,
::
exp
)
MIGRAPHX_DEVICE_MATH
(
floor
,
::
floor
)
MIGRAPHX_DEVICE_MATH
(
isnan
,
::
isnan
)
MIGRAPHX_DEVICE_MATH
(
isinf
,
::
isinf
)
MIGRAPHX_DEVICE_MATH
(
log
,
::
log
)
MIGRAPHX_DEVICE_MATH
(
nearbyint
,
::
nearbyint
)
MIGRAPHX_DEVICE_MATH
(
pow
,
::
pow
)
MIGRAPHX_DEVICE_MATH
(
remainder
,
::
remainder
)
MIGRAPHX_DEVICE_MATH
(
round
,
::
round
)
...
...
@@ -135,6 +137,7 @@ MIGRAPHX_DEVICE_MATH_FOR(migraphx::half, ceil, ::hceil)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
cos
,
::
hcos
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
exp
,
::
hexp
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
floor
,
::
hfloor
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
isinf
,
::
__hisinf
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
isnan
,
::
__hisnan
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
log
,
::
hlog
)
MIGRAPHX_DEVICE_MATH_FOR
(
migraphx
::
half
,
rsqrt
,
::
hrsqrt
)
...
...
@@ -150,6 +153,7 @@ MIGRAPHX_DEVICE_MATH_HALF(atan, ::atan)
MIGRAPHX_DEVICE_MATH_HALF
(
atanh
,
::
atanh
)
MIGRAPHX_DEVICE_MATH_HALF
(
cosh
,
::
cosh
)
MIGRAPHX_DEVICE_MATH_HALF
(
erf
,
::
erf
)
MIGRAPHX_DEVICE_MATH_HALF
(
nearbyint
,
::
nearbyint
)
MIGRAPHX_DEVICE_MATH_HALF
(
pow
,
::
pow
)
MIGRAPHX_DEVICE_MATH_HALF
(
remainder
,
::
remainder
)
MIGRAPHX_DEVICE_MATH_HALF
(
round
,
::
round
)
...
...
@@ -229,10 +233,12 @@ MIGRAPHX_DEVICE_MATH_VEC(erf)
MIGRAPHX_DEVICE_MATH_VEC
(
exp
)
MIGRAPHX_DEVICE_MATH_VEC
(
floor
)
MIGRAPHX_DEVICE_MATH_VEC
(
fmod
)
MIGRAPHX_DEVICE_MATH_VEC
(
isinf
)
MIGRAPHX_DEVICE_MATH_VEC
(
isnan
)
MIGRAPHX_DEVICE_MATH_VEC
(
log
)
MIGRAPHX_DEVICE_MATH_VEC
(
max
)
MIGRAPHX_DEVICE_MATH_VEC
(
min
)
MIGRAPHX_DEVICE_MATH_VEC
(
nearbyint
)
MIGRAPHX_DEVICE_MATH_VEC
(
pow
)
MIGRAPHX_DEVICE_MATH_VEC
(
remainder
)
MIGRAPHX_DEVICE_MATH_VEC
(
round
)
...
...
test/api/test_cpu.cpp
View file @
52585d4f
...
...
@@ -198,4 +198,29 @@ TEST_CASE(set_loop_default_iter_num)
EXPECT
(
out_shapes
[
1
].
lengths
()
==
out_lens1
);
}
TEST_CASE
(
set_loop_limit_iterations
)
{
migraphx
::
onnx_options
option
;
option
.
set_default_loop_iterations
(
15
);
option
.
set_limit_loop_iterations
(
10
);
auto
p
=
migraphx
::
parse_onnx
(
"loop_default_test.onnx"
,
option
);
auto
out_shapes
=
p
.
get_output_shapes
();
std
::
vector
<
std
::
size_t
>
out_lens0
=
{
1
};
EXPECT
(
out_shapes
[
0
].
lengths
()
==
out_lens0
);
std
::
vector
<
std
::
size_t
>
out_lens1
=
{
10
,
1
};
EXPECT
(
out_shapes
[
1
].
lengths
()
==
out_lens1
);
}
TEST_CASE
(
set_loop_limit_iterations2
)
{
migraphx
::
onnx_options
option
;
option
.
set_limit_loop_iterations
(
10
);
auto
p
=
migraphx
::
parse_onnx
(
"loop_test_implicit_tripcnt.onnx"
,
option
);
auto
out_shapes
=
p
.
get_output_shapes
();
std
::
vector
<
std
::
size_t
>
out_lens0
=
{
1
};
EXPECT
(
out_shapes
[
0
].
lengths
()
==
out_lens0
);
std
::
vector
<
std
::
size_t
>
out_lens1
=
{
10
,
1
};
EXPECT
(
out_shapes
[
1
].
lengths
()
==
out_lens1
);
}
int
main
(
int
argc
,
const
char
*
argv
[])
{
test
::
run
(
argc
,
argv
);
}
test/api/test_gpu.cpp
View file @
52585d4f
...
...
@@ -317,4 +317,59 @@ TEST_CASE(loop_test)
}
}
TEST_CASE
(
loop_test_limit_max_iter
)
{
auto
run_prog
=
[
&
](
int64_t
limit_max_iterations
)
{
migraphx
::
onnx_options
parse_options
;
parse_options
.
set_limit_loop_iterations
(
limit_max_iterations
);
auto
p
=
migraphx
::
parse_onnx
(
"loop_test_implicit_tripcnt.onnx"
,
parse_options
);
auto
shapes_before
=
p
.
get_output_shapes
();
migraphx
::
compile_options
options
;
options
.
set_offload_copy
();
p
.
compile
(
migraphx
::
target
(
"gpu"
),
options
);
auto
shapes_after
=
p
.
get_output_shapes
();
CHECK
(
shapes_before
.
size
()
==
2
);
CHECK
(
bool
{
shapes_before
.
front
()
==
shapes_after
.
front
()});
migraphx
::
program_parameters
pp
;
auto
param_shapes
=
p
.
get_parameter_shapes
();
auto
aas
=
param_shapes
[
"a"
];
std
::
vector
<
float
>
xd
=
{
1.0
f
};
pp
.
add
(
"a"
,
migraphx
::
argument
(
aas
,
xd
.
data
()));
auto
bbs
=
param_shapes
[
"b"
];
std
::
vector
<
float
>
yd
=
{
2.0
};
pp
.
add
(
"b"
,
migraphx
::
argument
(
bbs
,
yd
.
data
()));
auto
cs
=
param_shapes
[
"keep_going_cond"
];
bool
cond
=
true
;
pp
.
add
(
"keep_going_cond"
,
migraphx
::
argument
(
cs
,
&
cond
));
auto
outputs
=
p
.
eval
(
pp
);
auto
output
=
outputs
[
0
];
std
::
vector
<
std
::
vector
<
float
>>
ret
;
ret
.
push_back
(
output
.
as_vector
<
float
>
());
output
=
outputs
[
1
];
ret
.
push_back
(
output
.
as_vector
<
float
>
());
return
ret
;
};
{
auto
result_vector
=
run_prog
(
5
);
std
::
vector
<
float
>
gold0
=
{
2.0
f
};
EXPECT
(
result_vector
.
at
(
0
)
==
gold0
);
std
::
vector
<
float
>
gold1
=
{
-
2
,
4
,
0
,
0
,
0
};
EXPECT
(
result_vector
.
at
(
1
)
==
gold1
);
}
{
auto
result_vector
=
run_prog
(
20
);
std
::
vector
<
float
>
gold0
=
{
2.0
f
};
EXPECT
(
result_vector
.
at
(
0
)
==
gold0
);
std
::
vector
<
float
>
gold1
=
{
-
2
,
4
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
};
EXPECT
(
result_vector
.
at
(
1
)
==
gold1
);
}
}
int
main
(
int
argc
,
const
char
*
argv
[])
{
test
::
run
(
argc
,
argv
);
}
test/gpu/codegen_literal.cpp
View file @
52585d4f
...
...
@@ -64,7 +64,7 @@ TEST_CASE(mul_literal_round_test)
auto
l1
=
mm
->
add_literal
(
1
/
0.00787402
f
);
auto
mul
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"mul"
),
l0
,
l1
);
auto
round
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"
round
"
),
mul
);
auto
round
=
mm
->
add_instruction
(
migraphx
::
make_op
(
"
nearbyint
"
),
mul
);
mm
->
add_return
({
round
});
...
...
test/gpu/gemm_tune.cpp
0 → 100644
View file @
52585d4f
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <iostream>
#include <vector>
#include <migraphx/gpu/gemm.hpp>
#include <hip/hip_runtime_api.h>
#include <migraphx/gpu/target.hpp>
#include <migraphx/verify.hpp>
#include <test.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/iterator_for.hpp>
// includes needed for run_lowering
#include <migraphx/gpu/lowering.hpp>
#include <migraphx/auto_contiguous.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/pass_manager.hpp>
// Abbreviated lowering; we don't need the usual cleanup passes for this test
void
run_lowering
(
migraphx
::
program
&
p
,
bool
offload_copy
=
false
)
{
auto
ctx
=
migraphx
::
gpu
::
context
{};
migraphx
::
run_passes
(
*
p
.
get_main_module
(),
{
migraphx
::
auto_contiguous
{},
migraphx
::
gpu
::
lowering
{
&
ctx
,
offload_copy
}});
}
/**
* Tests the automatic GEMM tuning feature. In the finalize() method of the gemm op,
* rocBLAS API functions are called to quickly benchmark all the GEMM solutions
* available in the currently installed rocBLAS library and choose the index of the fastest.
*/
TEST_CASE
(
gemm_tune_with_rocblas
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
sa
{
migraphx
::
shape
::
float_type
,
{
4
,
2
}};
migraphx
::
shape
sb
{
migraphx
::
shape
::
float_type
,
{
2
,
3
}};
auto
a
=
mm
->
add_parameter
(
"a"
,
sa
);
auto
b
=
mm
->
add_parameter
(
"b"
,
sb
);
migraphx
::
operation
dot_op
=
migraphx
::
make_op
(
"dot"
);
mm
->
add_instruction
(
dot_op
,
a
,
b
);
// lowering adds gemm implementation for dot operator
run_lowering
(
p
);
migraphx
::
target
gpu_t
=
migraphx
::
gpu
::
target
{};
migraphx
::
compile_options
options
;
options
.
exhaustive_tune
=
true
;
p
.
compile
(
gpu_t
,
options
);
migraphx
::
value
solution_idx
(
0
);
for
(
auto
ins
:
iterator_for
(
*
p
.
get_main_module
()))
{
if
(
ins
->
name
()
==
"gpu::gemm"
)
{
auto
gemm_op
=
migraphx
::
get_operation
(
ins
);
// tuned solution index is not deterministic, but anything other than 0
// (default, invalid, or not available) is good.
// gemm_op.to_value().debug_print();
solution_idx
=
gemm_op
.
to_value
()[
"solution_idx"
];
break
;
}
}
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
EXPECT
(
0
!=
solution_idx
.
to
<
std
::
size_t
>
());
#else
EXPECT
(
0
==
solution_idx
.
to
<
std
::
size_t
>
());
#endif
}
// GEMM tuning of a strided-batch matrix; invokes rocblas_gemm_strided_batched_ex
TEST_CASE
(
gemm_tune_strided
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
sa
{
migraphx
::
shape
::
float_type
,
{
4
,
2
,
2
}};
migraphx
::
shape
sb
{
migraphx
::
shape
::
float_type
,
{
4
,
2
,
2
}};
migraphx
::
shape
s_output
{
migraphx
::
shape
::
float_type
,
{
4
,
2
,
2
}};
auto
a
=
mm
->
add_parameter
(
"a"
,
sa
);
auto
b
=
mm
->
add_parameter
(
"b"
,
sb
);
auto
output
=
mm
->
add_parameter
(
"out"
,
s_output
);
auto
gemm_oper
=
migraphx
::
make_op
(
"gpu::gemm"
,
{{
"beta"
,
2
}});
mm
->
add_instruction
(
gemm_oper
,
a
,
b
,
output
);
migraphx
::
target
gpu_t
=
migraphx
::
gpu
::
target
{};
migraphx
::
compile_options
options
;
options
.
exhaustive_tune
=
true
;
p
.
compile
(
gpu_t
,
options
);
migraphx
::
value
solution_idx
(
0
);
for
(
auto
ins
:
iterator_for
(
*
p
.
get_main_module
()))
{
if
(
ins
->
name
()
==
"gpu::gemm"
)
{
auto
gemm_op
=
migraphx
::
get_operation
(
ins
);
auto
gemmv
=
gemm_op
.
to_value
();
// tuned solution index is not deterministic, but anything other than 0
// (default, invalid, or not available) is good.
solution_idx
=
gemm_op
.
to_value
()[
"solution_idx"
];
break
;
}
}
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
EXPECT
(
0
!=
solution_idx
.
to
<
std
::
size_t
>
());
#else
EXPECT
(
0
==
solution_idx
.
to
<
std
::
size_t
>
());
#endif
}
// GEMM tuning of a strided-batch matrix; created by lowering
TEST_CASE
(
gemm_tune_strided_lowered
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
// At time of writing this test, gemm_impl considers a shape is strided if it has
// at least three dimensions and the 3rd-to-last is nonzero, invoking
// rocblas_gemm_strided_batched_ex. Also, DOT operator requires all dimensions except the last
// two to be equal.
migraphx
::
shape
sa
{
migraphx
::
shape
::
float_type
,
{
4
,
2
,
5
}};
migraphx
::
shape
sb
{
migraphx
::
shape
::
float_type
,
{
4
,
5
,
3
}};
auto
a
=
mm
->
add_parameter
(
"a"
,
sa
);
auto
b
=
mm
->
add_parameter
(
"b"
,
sb
);
migraphx
::
operation
dot_op
=
migraphx
::
make_op
(
"dot"
);
mm
->
add_instruction
(
dot_op
,
a
,
b
);
// lowering adds gemm implementation for dot operator
run_lowering
(
p
);
migraphx
::
target
gpu_t
=
migraphx
::
gpu
::
target
{};
migraphx
::
compile_options
options
;
options
.
exhaustive_tune
=
true
;
p
.
compile
(
gpu_t
,
options
);
migraphx
::
value
solution_idx
(
0
);
for
(
auto
ins
:
iterator_for
(
*
p
.
get_main_module
()))
{
if
(
ins
->
name
()
==
"gpu::gemm"
)
{
auto
gemm_op
=
migraphx
::
get_operation
(
ins
);
// tuned solution index is not deterministic, but anything other than 0
// (default, invalid, or not available) is good.
solution_idx
=
gemm_op
.
to_value
()[
"solution_idx"
];
break
;
}
}
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
EXPECT
(
0
!=
solution_idx
.
to
<
std
::
size_t
>
());
#else
EXPECT
(
0
==
solution_idx
.
to
<
std
::
size_t
>
());
#endif
}
TEST_CASE
(
gemm_tune_invalid_sol_index
)
{
migraphx
::
program
p
;
auto
*
mm
=
p
.
get_main_module
();
migraphx
::
shape
sa
{
migraphx
::
shape
::
float_type
,
{
4
,
2
}};
migraphx
::
shape
sb
{
migraphx
::
shape
::
float_type
,
{
2
,
3
}};
migraphx
::
shape
s_output
{
migraphx
::
shape
::
float_type
,
{
4
,
3
}};
auto
a
=
mm
->
add_parameter
(
"a"
,
sa
);
auto
b
=
mm
->
add_parameter
(
"b"
,
sb
);
auto
output
=
mm
->
add_parameter
(
"out"
,
s_output
);
auto
gemm_oper
=
migraphx
::
make_op
(
"gpu::gemm"
,
{{
"solution_idx"
,
987654321
}});
mm
->
add_instruction
(
gemm_oper
,
a
,
b
,
output
);
migraphx
::
target
gpu_t
=
migraphx
::
gpu
::
target
{};
migraphx
::
compile_options
options
;
options
.
exhaustive_tune
=
true
;
p
.
compile
(
gpu_t
,
options
);
migraphx
::
value
solution_idx
(
0
);
for
(
auto
ins
:
iterator_for
(
*
p
.
get_main_module
()))
{
if
(
ins
->
name
()
==
"gpu::gemm"
)
{
auto
gemm_op
=
migraphx
::
get_operation
(
ins
);
auto
gemmv
=
gemm_op
.
to_value
();
// given invalid starting index, should return default 0
solution_idx
=
gemm_op
.
to_value
()[
"solution_idx"
];
break
;
}
}
#ifdef MIGRAPHX_USE_ROCBLAS_TUNING_API
EXPECT
(
0
==
solution_idx
.
to
<
std
::
size_t
>
());
#else
EXPECT
(
0
!=
solution_idx
.
to
<
std
::
size_t
>
());
#endif
}
int
main
(
int
argc
,
const
char
*
argv
[])
{
test
::
run
(
argc
,
argv
);
}
test/onnx/.onnxrt-commit
View file @
52585d4f
2eeafc37bca21dc8bf337dda7020b486543162d7
b7b8b5b2ce80edb33990c7ae0fedac6ae3c623f4
test/onnx/gen_onnx.py
View file @
52585d4f
...
...
@@ -3858,6 +3858,64 @@ def instance_norm_val_3d_test():
return
([
node
],
[],
[
y
],
[
x_tensor
,
scale_tensor
,
bias_tensor
])
@
onnx_test
()
def
isinf_half_test
():
t1
=
helper
.
make_tensor_value_info
(
't1'
,
TensorProto
.
FLOAT16
,
[
2
,
3
])
t2
=
helper
.
make_tensor_value_info
(
't2'
,
TensorProto
.
BOOL
,
[
2
,
3
])
node
=
onnx
.
helper
.
make_node
(
'IsInf'
,
inputs
=
[
't1'
],
outputs
=
[
't2'
],
)
return
([
node
],
[
t1
],
[
t2
])
@
onnx_test
()
def
isinf_neg_test
():
t1
=
helper
.
make_tensor_value_info
(
't1'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
t2
=
helper
.
make_tensor_value_info
(
't2'
,
TensorProto
.
BOOL
,
[
2
,
3
])
node
=
onnx
.
helper
.
make_node
(
'IsInf'
,
detect_negative
=
[
1
],
detect_positive
=
[
0
],
inputs
=
[
't1'
],
outputs
=
[
't2'
],
)
return
([
node
],
[
t1
],
[
t2
])
@
onnx_test
()
def
isinf_double_pos_test
():
t1
=
helper
.
make_tensor_value_info
(
't1'
,
TensorProto
.
DOUBLE
,
[
2
,
3
])
t2
=
helper
.
make_tensor_value_info
(
't2'
,
TensorProto
.
BOOL
,
[
2
,
3
])
node
=
onnx
.
helper
.
make_node
(
'IsInf'
,
detect_negative
=
[
0
],
detect_positive
=
[
1
],
inputs
=
[
't1'
],
outputs
=
[
't2'
],
)
return
([
node
],
[
t1
],
[
t2
])
@
onnx_test
()
def
isinf_no_detect_test
():
t1
=
helper
.
make_tensor_value_info
(
't1'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
t2
=
helper
.
make_tensor_value_info
(
't2'
,
TensorProto
.
BOOL
,
[
2
,
3
])
node
=
onnx
.
helper
.
make_node
(
'IsInf'
,
detect_negative
=
[
0
],
detect_positive
=
[
0
],
inputs
=
[
't1'
],
outputs
=
[
't2'
],
)
return
([
node
],
[
t1
],
[
t2
])
@
onnx_test
()
def
isnan_float_test
():
t1
=
helper
.
make_tensor_value_info
(
't1'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
...
...
@@ -4276,6 +4334,50 @@ def loop_test():
return
([
node
],
[
iter
,
cond
,
a
,
b
],
[
b_loop
,
uout
])
@
onnx_test
()
def
loop_test_implicit_tripcnt
():
body
=
helper
.
make_graph
([
helper
.
make_node
(
"Add"
,
[
"a"
,
"b_in"
],
[
"my_local"
]),
helper
.
make_node
(
"Sub"
,
[
"a"
,
"b_in"
],
[
"a_sub_b_in"
]),
helper
.
make_node
(
"Greater"
,
[
"my_local"
,
"a_sub_b_in"
],
[
"keep_going"
]),
helper
.
make_node
(
"Add"
,
[
"a_sub_b_in"
,
"a_sub_b_in"
],
[
"user_defined_vals"
]),
],
"body"
,
[
helper
.
make_tensor_value_info
(
'iteration_num'
,
TensorProto
.
INT64
,
[
1
]),
helper
.
make_tensor_value_info
(
'keep_going_inp'
,
TensorProto
.
BOOL
,
[
1
]),
helper
.
make_tensor_value_info
(
'b_in'
,
TensorProto
.
FLOAT
,
[
1
])
],
[
helper
.
make_tensor_value_info
(
'keep_going'
,
TensorProto
.
BOOL
,
[
1
]),
helper
.
make_tensor_value_info
(
'a_sub_b_in'
,
TensorProto
.
FLOAT
,
[
1
]),
helper
.
make_tensor_value_info
(
'my_local'
,
TensorProto
.
FLOAT
,
[
1
]),
helper
.
make_tensor_value_info
(
'user_defined_vals'
,
TensorProto
.
FLOAT
,
[
1
]),
])
iter
=
helper
.
make_tensor
(
name
=
'max_trip_count'
,
data_type
=
TensorProto
.
INT64
,
dims
=
[
1
],
vals
=
[
15
])
node
=
helper
.
make_node
(
"Loop"
,
inputs
=
[
"max_trip_count"
,
"keep_going_cond"
,
"b"
],
outputs
=
[
"b_loop"
,
"my_local_loop"
,
"user_defined_vals_loop"
],
body
=
body
)
a
=
helper
.
make_tensor_value_info
(
'a'
,
TensorProto
.
FLOAT
,
[
1
])
b
=
helper
.
make_tensor_value_info
(
'b'
,
TensorProto
.
FLOAT
,
[
1
])
cond
=
helper
.
make_tensor_value_info
(
'keep_going_cond'
,
TensorProto
.
BOOL
,
[
1
])
b_loop
=
helper
.
make_tensor_value_info
(
'b_loop'
,
TensorProto
.
FLOAT
,
[
1
])
uout
=
helper
.
make_tensor_value_info
(
'user_defined_vals_loop'
,
TensorProto
.
FLOAT
,
[
2
,
1
])
return
([
node
],
[
cond
,
a
,
b
],
[
b_loop
,
uout
],
[
iter
])
@
onnx_test
()
def
lpnormalization_axis_error_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT
,
[
2
,
3
])
...
...
@@ -6985,6 +7087,16 @@ def roialign_test():
return
([
node
],
[
x
,
roi
,
bi
],
[
y
])
@
onnx_test
()
def
round_half_test
():
x
=
helper
.
make_tensor_value_info
(
'x'
,
TensorProto
.
FLOAT16
,
[
4
,
4
])
y
=
helper
.
make_tensor_value_info
(
'y'
,
TensorProto
.
FLOAT16
,
[
4
,
4
])
node
=
onnx
.
helper
.
make_node
(
'Round'
,
inputs
=
[
'x'
],
outputs
=
[
'y'
])
return
([
node
],
[
x
],
[
y
])
@
onnx_test
()
def
scatter_add_test
():
x
=
helper
.
make_tensor_value_info
(
'data'
,
TensorProto
.
FLOAT
,
[
3
,
4
,
5
,
6
])
...
...
@@ -7904,6 +8016,32 @@ def slice_var_input_dyn1():
return
([
node
],
[
data
,
starts
,
ends
,
axes
],
[
output
])
@
onnx_test
()
def
slice_var_input_default_steps
():
step
=
np
.
array
([
1
,
1
])
step_tensor
=
helper
.
make_tensor
(
name
=
"step"
,
data_type
=
TensorProto
.
INT64
,
dims
=
step
.
shape
,
vals
=
step
.
astype
(
int
))
arg_step
=
helper
.
make_node
(
"Constant"
,
inputs
=
[],
outputs
=
[
'arg_step'
],
value
=
step_tensor
)
data
=
helper
.
make_tensor_value_info
(
'data'
,
TensorProto
.
FLOAT
,
[
None
,
2
])
starts
=
helper
.
make_tensor_value_info
(
'starts'
,
TensorProto
.
INT64
,
[
2
])
ends
=
helper
.
make_tensor_value_info
(
'ends'
,
TensorProto
.
INT64
,
[
2
])
axes
=
helper
.
make_tensor_value_info
(
'axes'
,
TensorProto
.
INT64
,
[
2
])
output
=
helper
.
make_tensor_value_info
(
'output'
,
TensorProto
.
FLOAT
,
[
1
,
2
])
node
=
onnx
.
helper
.
make_node
(
'Slice'
,
inputs
=
[
'data'
,
'starts'
,
'ends'
,
'axes'
,
'arg_step'
],
outputs
=
[
'output'
])
return
([
arg_step
,
node
],
[
data
,
starts
,
ends
,
axes
],
[
output
])
@
onnx_test
()
def
slice_var_input_steps_error
():
step
=
np
.
array
([
2
,
1
])
...
...
@@ -7917,9 +8055,9 @@ def slice_var_input_steps_error():
value
=
step_tensor
)
data
=
helper
.
make_tensor_value_info
(
'data'
,
TensorProto
.
FLOAT
,
[
3
,
2
])
starts
=
helper
.
make_tensor_value_info
(
'starts'
,
TensorProto
.
FLOAT
,
[
2
])
ends
=
helper
.
make_tensor_value_info
(
'ends'
,
TensorProto
.
FLOAT
,
[
2
])
axes
=
helper
.
make_tensor_value_info
(
'axes'
,
TensorProto
.
FLOAT
,
[
2
])
starts
=
helper
.
make_tensor_value_info
(
'starts'
,
TensorProto
.
INT64
,
[
2
])
ends
=
helper
.
make_tensor_value_info
(
'ends'
,
TensorProto
.
INT64
,
[
2
])
axes
=
helper
.
make_tensor_value_info
(
'axes'
,
TensorProto
.
INT64
,
[
2
])
output
=
helper
.
make_tensor_value_info
(
'output'
,
TensorProto
.
FLOAT
,
[
1
,
2
])
node
=
onnx
.
helper
.
make_node
(
...
...
@@ -8929,6 +9067,20 @@ def upsample_test():
return
([
node
],
[
X
],
[
Y
],
[
scale_tensor
])
@
onnx_test
()
def
upsample_ver7_test
():
X
=
helper
.
make_tensor_value_info
(
'X'
,
TensorProto
.
FLOAT
,
[
1
,
1
,
2
,
2
])
Y
=
helper
.
make_tensor_value_info
(
'Y'
,
TensorProto
.
FLOAT
,
[
1
,
1
,
4
,
6
])
node
=
onnx
.
helper
.
make_node
(
'Upsample'
,
inputs
=
[
'X'
],
outputs
=
[
'Y'
],
mode
=
'nearest'
,
scales
=
[
1.0
,
1.0
,
2.0
,
3.0
])
return
([
node
],
[
X
],
[
Y
])
@
onnx_test
()
def
variable_batch_test
():
x
=
helper
.
make_tensor_value_info
(
'0'
,
TensorProto
.
FLOAT
,
...
...
test/onnx/isinf_double_pos_test.onnx
0 → 100644
View file @
52585d4f
File added
test/onnx/isinf_half_neg_test.onnx
0 → 100644
View file @
52585d4f
File added
test/onnx/isinf_half_pos_test.onnx
0 → 100644
View file @
52585d4f
File added
test/onnx/isinf_half_test.onnx
0 → 100644
View file @
52585d4f
isinf_half_test:N
t1t2"IsInfisinf_half_testZ
t1
b
t2
B
\ No newline at end of file
test/onnx/isinf_neg_test.onnx
0 → 100644
View file @
52585d4f
File added
test/onnx/isinf_no_detect_test.onnx
0 → 100644
View file @
52585d4f
File added
test/onnx/loop_test_implicit_tripcnt.onnx
0 → 100644
View file @
52585d4f
loop_test_implicit_tripcnt:
max_trip_count
keep_going_cond
bb_loop my_local_loopuser_defined_vals_loop"Loop*
body2
a
b_inmy_local"Add
a
b_in
a_sub_b_in"Sub
+
my_local
a_sub_b_in
keep_going"Greater
0
a_sub_b_in
a_sub_b_inuser_defined_vals"AddbodyZ
iteration_num
Z
keep_going_inp
Z
b_in
b
keep_going
b
a_sub_b_in
b
my_local
b
user_defined_vals
loop_test_implicit_tripcnt*:Bmax_trip_countZ
keep_going_cond
Z
a
Z
b
b
b_loop
b(
user_defined_vals_loop
B
\ No newline at end of file
test/onnx/onnx_test.cpp
View file @
52585d4f
...
...
@@ -3413,6 +3413,82 @@ TEST_CASE(if_tuple_test)
EXPECT(p == prog);
}
TEST_CASE(isinf_half_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::half_type, {2, 3}};
auto t1 = mm->add_parameter("t1", s);
auto ret = mm->add_instruction(migraphx::make_op("isinf"), t1);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("isinf_half_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(isinf_neg_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
auto t1 = mm->add_parameter("t1", s);
auto is_inf = mm->add_instruction(migraphx::make_op("isinf"), t1);
auto zero_l = mm->add_literal(migraphx::literal{migraphx::shape::float_type, {0}});
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), zero_l);
auto is_neg = mm->add_instruction(migraphx::make_op("less"), t1, mb_zero);
if(is_neg->get_shape().type() != migraphx::shape::bool_type)
{
is_neg = mm->add_instruction(
migraphx::make_op("convert", {{"target_type", migraphx::shape::bool_type}}), is_neg);
}
auto ret = mm->add_instruction(migraphx::make_op("logical_and"), is_inf, is_neg);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("isinf_neg_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(isinf_double_pos_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::double_type, {2, 3}};
auto t1 = mm->add_parameter("t1", s);
auto is_inf = mm->add_instruction(migraphx::make_op("isinf"), t1);
auto zero_l = mm->add_literal(migraphx::literal{migraphx::shape::double_type, {0}});
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), zero_l);
auto is_neg = mm->add_instruction(migraphx::make_op("greater"), t1, mb_zero);
if(is_neg->get_shape().type() != migraphx::shape::bool_type)
{
is_neg = mm->add_instruction(
migraphx::make_op("convert", {{"target_type", migraphx::shape::bool_type}}), is_neg);
}
auto ret = mm->add_instruction(migraphx::make_op("logical_and"), is_inf, is_neg);
mm->add_return({ret});
auto prog = migraphx::parse_onnx("isinf_double_pos_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(isinf_no_detect_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
mm->add_parameter("t1", s);
auto ret = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}),
mm->add_literal(migraphx::literal{migraphx::shape{migraphx::shape::bool_type}, {false}}));
mm->add_return({ret});
auto prog = migraphx::parse_onnx("isinf_no_detect_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(isnan_float_test)
{
migraphx::program p;
...
...
@@ -5712,9 +5788,9 @@ TEST_CASE(quantizelinear_test)
auto l1_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), l1);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto
round
= mm->add_instruction(migraphx::make_op("
round
"), div);
auto s
= round
->get_shape();
auto clip = insert_quantizelinear_clip(*mm, div,
round
, s, 0, 255);
auto
nearbyint
= mm->add_instruction(migraphx::make_op("
nearbyint
"), div);
auto s
= nearbyint
->get_shape();
auto clip
= insert_quantizelinear_clip(*mm, div,
nearbyint
, s, 0, 255);
mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::uint8_type)}}),
...
...
@@ -5737,9 +5813,9 @@ TEST_CASE(quantizelinear_int32_test)
{{"target_type", migraphx::to_value(migraphx::shape::float_type)}}),
l0);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto
round
= mm->add_instruction(migraphx::make_op("
round
"), div);
auto s
= round
->get_shape();
auto clip = insert_quantizelinear_clip(*mm, div,
round
, s, 0, 255);
auto
nearbyint
= mm->add_instruction(migraphx::make_op("
nearbyint
"), div);
auto s
= nearbyint
->get_shape();
auto clip
= insert_quantizelinear_clip(*mm, div,
nearbyint
, s, 0, 255);
mm->add_instruction(
migraphx::make_op("convert",
{{"target_type", migraphx::to_value(migraphx::shape::uint8_type)}}),
...
...
@@ -5759,7 +5835,7 @@ TEST_CASE(quantizelinear_zero_point_test)
auto l1_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), l1);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_mbcast);
auto round = mm->add_instruction(migraphx::make_op("
round
"), div);
auto round = mm->add_instruction(migraphx::make_op("
nearbyint
"), div);
auto l2_mbcast =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {5}}}), l2);
l2_mbcast = mm->add_instruction(
...
...
@@ -5792,7 +5868,7 @@ migraphx::program make_quantizelinear_axis_prog()
migraphx::make_op("broadcast", {{"axis", axis}, {"out_lens", input_lens}}), l1);
auto div = mm->add_instruction(migraphx::make_op("div"), l0, l1_bcast);
auto round = mm->add_instruction(migraphx::make_op("
round
"), div);
auto round = mm->add_instruction(migraphx::make_op("
nearbyint
"), div);
auto l2_bcast = mm->add_instruction(
migraphx::make_op("broadcast", {{"axis", axis}, {"out_lens", input_lens}}), l2);
l2_bcast = mm->add_instruction(
...
...
@@ -6481,9 +6557,8 @@ TEST_CASE(resize_nonstd_input_test)
auto tx =
mm->add_instruction(migraphx::make_op("transpose", {{"permutation", {0, 1, 3, 2}}}), inx);
mm->add_instruction(migraphx::make_op("undefined"));
auto tx_cont = mm->add_instruction(migraphx::make_op("contiguous"), tx);
auto lrsp = mm->add_instruction(migraphx::make_op("reshape", {{"dims", {8}}}), tx
_cont
);
auto lrsp = mm->add_instruction(migraphx::make_op("reshape", {{"dims", {8}}}), tx);
auto r = mm->add_instruction(migraphx::make_op("gather", {{"axis", 0}}), lrsp, li);
mm->add_return({r});
...
...
@@ -6922,7 +6997,7 @@ TEST_CASE(round_test)
migraphx::program p;
auto* mm = p.get_main_module();
auto input = mm->add_parameter("x", migraphx::shape{migraphx::shape::double_type, {10, 5}});
mm->add_instruction(migraphx::make_op("
round
"), input);
mm->add_instruction(migraphx::make_op("
nearbyint
"), input);
auto prog = optimize_onnx("round_test.onnx");
EXPECT(p == prog);
...
...
@@ -7578,6 +7653,25 @@ TEST_CASE(slice_var_input_dyn1)
EXPECT(p == prog);
}
TEST_CASE(slice_var_input_default_steps)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto data =
mm->add_parameter("data", migraphx::shape{migraphx::shape::float_type, {{3, 8}, {2, 2}}});
auto starts = mm->add_parameter("starts", migraphx::shape{migraphx::shape::int64_type, {2}});
auto ends = mm->add_parameter("ends", migraphx::shape{migraphx::shape::int64_type, {2}});
auto axes = mm->add_parameter("axes", migraphx::shape{migraphx::shape::int64_type, {2}});
mm->add_literal({{migraphx::shape::int64_type, {2}}, {1, 1}});
auto ret = mm->add_instruction(migraphx::make_op("slice"), data, starts, ends, axes);
mm->add_return({ret});
migraphx::onnx_options options;
options.default_dyn_dim_value = {3, 8};
auto prog = parse_onnx("slice_var_input_default_steps.onnx", options);
EXPECT(p == prog);
}
TEST_CASE(slice_var_input_steps_error)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("slice_var_input_steps_error.onnx"); }));
...
...
@@ -8342,6 +8436,27 @@ TEST_CASE(upsample_test)
EXPECT(p == prog);
}
TEST_CASE(upsample_ver7_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape sx{migraphx::shape::float_type, {1, 1, 2, 2}};
auto ix = mm->add_parameter("X", sx);
migraphx::shape si{migraphx::shape::int32_type, {1, 1, 4, 6}};
std::vector<int> ind = {0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 2, 2, 2, 3, 3, 3};
auto li = mm->add_literal(migraphx::literal(si, ind));
auto rsp = mm->add_instruction(migraphx::make_op("reshape", {{"dims", {4}}}), ix);
auto r = mm->add_instruction(migraphx::make_op("gather", {{"axis", 0}}), rsp, li);
mm->add_return({r});
auto prog = migraphx::parse_onnx("upsample_ver7_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(unknown_test_throw_print_error)
{
migraphx::onnx_options options;
...
...
test/onnx/reshape_variable_input_test0.onnx
0 → 100644
View file @
52585d4f
reshape_variable_input_test0:q
0
12"Reshapereshape_variable_input_test0Z
0
Z
1
b
2
B
\ No newline at end of file
test/onnx/reshape_variable_input_test1.onnx
0 → 100644
View file @
52585d4f
File added
test/onnx/round_half_test.onnx
0 → 100644
View file @
52585d4f
round_half_test:J
xy"Roundround_half_testZ
x
b
y
B
\ No newline at end of file
Prev
1
2
3
4
5
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment