Unverified Commit 50174953 authored by mvermeulen's avatar mvermeulen Committed by GitHub
Browse files

Merge branch 'develop' into conv_fusion_fix

parents 8409c08d 3ec62e53
......@@ -36,7 +36,7 @@ struct argument : raw_data<argument>
}
/// Provides a raw pointer to the data
std::function<char*()> data;
std::function<char*()> data = nullptr;
/// Whether data is available
bool empty() const { return not data; }
......
......@@ -30,23 +30,29 @@ struct binary : op_name<Derived>
argument result{output_shape};
auto s1 = args[0].get_shape();
auto s2 = args[1].get_shape();
visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
if(s1 == s2 and input1.get_shape().packed() and input2.get_shape().packed())
{
if(s1 == s2 and s1.packed())
{
shape std_shape{s1.type(), s1.lens()};
argument std_result{std_shape, result.data()};
argument std_arg0{std_shape, args[0].data()};
argument std_arg1{std_shape, args[1].data()};
visit_all(std_result, std_arg0, std_arg1)([&](auto output, auto input1, auto input2) {
std::transform(input1.begin(),
input1.end(),
input2.begin(),
output.begin(),
static_cast<const Derived&>(*this).apply());
}
else
{
});
}
else
{
visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
shape_for_each(output.get_shape(), [&](const auto& idx) {
output(idx.begin(), idx.end()) = static_cast<const Derived&>(*this).apply()(
input1(idx.begin(), idx.end()), input2(idx.begin(), idx.end()));
});
}
});
});
}
return result;
}
......
#ifndef MIGRAPHX_GUARD_OPERATORS_CAPTURE_HPP
#define MIGRAPHX_GUARD_OPERATORS_CAPTURE_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct capture
{
std::size_t ins_index;
std::function<void(std::size_t ins_index, std::vector<argument>)> f{};
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.ins_index, "ins_index"));
}
std::string name() const { return "capture"; }
shape compute_shape(std::vector<shape> inputs) const { return inputs.front(); }
argument compute(const shape&, std::vector<argument> args) const
{
if(f)
{
f(ins_index, args);
}
else
{
MIGRAPHX_THROW("CAPTURE: callback function is not callable!");
}
return args.front();
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_OPERATORS_QUANT_CONVOLUTION_HPP
#define MIGRAPHX_GUARD_OPERATORS_QUANT_CONVOLUTION_HPP
#include <array>
#include <migraphx/op/common.hpp>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct quant_convolution
{
std::array<std::size_t, 2> padding = {{0, 0}};
std::array<std::size_t, 2> stride = {{1, 1}};
std::array<std::size_t, 2> dilation = {{1, 1}};
padding_mode_t padding_mode = default_;
int group = 1;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.padding, "padding"),
f(self.stride, "stride"),
f(self.dilation, "dilation"),
f(self.padding_mode, "padding_mode"),
f(self.group, "group"));
}
std::string name() const { return "quant_convolution"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(2).same_type().same_ndims().only_dims(4);
const shape& input = inputs.at(0);
const shape& weights = inputs.at(1);
auto t = input.type();
// all input type must be int8_type and output is float_type
if(t != shape::int8_type)
{
MIGRAPHX_THROW("QUANT_CONVOLUTION: only accept input and weights of type int8_t");
}
t = shape::int32_type;
return {t,
{
input.lens()[0],
weights.lens()[0],
std::size_t(std::max<std::ptrdiff_t>(
1,
(input.lens()[2] - (1 + dilation[0] * (weights.lens()[2] - 1)) +
2 * padding[0]) /
stride[0] +
1)),
std::size_t(std::max<std::ptrdiff_t>(
1,
(input.lens()[3] - (1 + dilation[1] * (weights.lens()[3] - 1)) +
2 * padding[1]) /
stride[1] +
1)),
}};
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
#ifndef MIGRAPHX_GUARD_OPERATORS_QUANT_DOT_HPP
#define MIGRAPHX_GUARD_OPERATORS_QUANT_DOT_HPP
#include <array>
#include <migraphx/operation.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
#include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp>
#include <cmath>
#include <utility>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct quant_dot
{
int32_t alpha = 1;
int32_t beta = 1;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(as_number(self.alpha), "alpha"), f(as_number(self.beta), "beta"));
}
std::string name() const { return "quant_dot"; }
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{{inputs.at(0), inputs.at(1)}, *this}.same_type();
const shape& a = inputs.at(0);
const shape& b = inputs.at(1);
auto t = a.type();
if(t != shape::int8_type)
{
MIGRAPHX_THROW("QUANT_DOT: only support data type int8_t");
}
if(!std::all_of(inputs.begin(), inputs.end(), [](auto s) { return s.lens().size() >= 2; }))
{
MIGRAPHX_THROW("QUANT_DOT: dot only accept 2 or more dims operands");
}
// only handle the case that the batch size of a and b are the same
if(!std::equal(
a.lens().rbegin() + 2, a.lens().rend(), b.lens().rbegin() + 2, b.lens().rend()))
{
MIGRAPHX_THROW("QUANT_DOT: batch size of A and B mismatch: {" +
to_string_range(a.lens()) + "} x {" + to_string_range(b.lens()) + "}");
}
std::size_t dim_0 = a.lens().size() - 2;
std::size_t dim_1 = a.lens().size() - 1;
if(a.lens()[dim_1] != b.lens()[dim_0])
{
MIGRAPHX_THROW("QUANT_DOT: inner dimensions do not match: {" +
to_string_range(a.lens()) + "} x {" + to_string_range(b.lens()) + "}");
}
// k be multiple of 4
if((a.lens()[dim_1] % 4) != 0)
{
MIGRAPHX_THROW("QUANT_DOT: size of A {" + to_string_range(a.lens()) + "} and B {" +
to_string_range(b.lens()) + "} must be multiple of 4 for int8 type");
}
auto out_lens = a.lens();
out_lens[dim_1] = b.lens()[dim_1];
if(inputs.size() == 3 && out_lens != inputs.at(2).lens())
{
MIGRAPHX_THROW("QUANT_DOT: dimension mismatch, operand C: {" +
to_string_range(inputs.at(2).lens()) +
"}, cannot add to operand A * B: {" + to_string_range(out_lens) + "}");
}
if(inputs.size() == 3 && inputs.at(2).type() != shape::int32_type)
{
MIGRAPHX_THROW("QUANT_DOT: operand C type must be int32");
}
return {shape::int32_type, out_lens};
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
......@@ -27,26 +27,34 @@ struct unary : op_name<Derived>
argument compute(const shape& output_shape, std::vector<argument> args) const
{
argument result{output_shape};
result.visit([&](auto output) {
args[0].visit([&](auto input) {
if(input.get_shape().packed())
{
auto in_shape = args[0].get_shape();
if(in_shape.packed())
{
shape std_in_shape{in_shape.type(), in_shape.lens()};
shape std_out_shape{output_shape.type(), output_shape.lens()};
argument arg_in{std_in_shape, args[0].data()};
argument arg_out{std_out_shape, result.data()};
arg_out.visit([&](auto output) {
arg_in.visit([&](auto input) {
std::transform(input.begin(),
input.end(),
output.begin(),
static_cast<const Derived&>(*this).apply());
return result;
}
shape_for_each(output.get_shape(), [&](const auto& idx) {
output(idx.begin(), idx.end()) =
static_cast<const Derived&>(*this).apply()(input(idx.begin(), idx.end()));
});
return result;
});
});
}
else
{
result.visit([&](auto output) {
args[0].visit([&](auto input) {
shape_for_each(output.get_shape(), [&](const auto& idx) {
output(idx.begin(), idx.end()) = static_cast<const Derived&>(*this).apply()(
input(idx.begin(), idx.end()));
});
});
});
}
return result;
}
......
......@@ -13,6 +13,7 @@
#include <migraphx/op/batch_norm.hpp>
#include <migraphx/op/binary.hpp>
#include <migraphx/op/broadcast.hpp>
#include <migraphx/op/capture.hpp>
#include <migraphx/op/clip.hpp>
#include <migraphx/op/common.hpp>
#include <migraphx/op/concat.hpp>
......@@ -45,6 +46,8 @@
#include <migraphx/op/outline.hpp>
#include <migraphx/op/pad.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/quant_dot.hpp>
#include <migraphx/op/pow.hpp>
#include <migraphx/op/reduce_sum.hpp>
#include <migraphx/op/reduce_mean.hpp>
......
......@@ -126,6 +126,9 @@ struct program
friend bool operator==(const program& x, const program& y);
friend bool operator!=(const program& x, const program& y) { return !(x == y); }
std::shared_ptr<std::vector<std::pair<float, float>>> int8_quant_params =
std::make_shared<std::vector<std::pair<float, float>>>();
private:
void assign(const program& p);
......
......@@ -15,6 +15,14 @@ struct program;
void quantize(program& prog, const std::vector<std::string>& ins_names);
void quantize(program& prog);
// insert the capture operator for the inputs of each operator to be quantized
// to int8
void capture_arguments(program& prog,
const std::vector<std::string>& ins_names,
const std::function<void(std::size_t, std::vector<argument>)>& func);
void capture_arguments(program& prog, const std::vector<std::string>& ins_names);
void capture_arguments(program& prog);
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -85,6 +85,9 @@ bool memory_coloring_impl::allocate(interval_ptr interval)
offset += (element_size - (offset % element_size));
conflict_queue.pop();
}
// when int8 type is used, the offset could be any number
// if not 4-byte aligned, miopen int8 convolution can crash
offset = (offset + 3) / 4 * 4;
segment.offset = offset;
MIGRAPHX_DEBUG(segment.dump());
required_bytes = std::max(required_bytes, offset + segment.size);
......
......@@ -112,7 +112,8 @@ void program::assign(const program& p)
{
impl->instructions.clear();
}
impl->ctx = p.impl->ctx;
impl->ctx = p.impl->ctx;
int8_quant_params = p.int8_quant_params;
std::unordered_map<instruction_ref, instruction_ref> ins_map;
for(auto ins : iterator_for(p))
......
......@@ -156,6 +156,7 @@ PYBIND11_MODULE(migraphx, m)
py::class_<migraphx::target>(m, "target");
py::class_<migraphx::program>(m, "program")
.def("clone", [](migraphx::program& p) { return *(new migraphx::program(p)); })
.def("get_parameter_shapes", &migraphx::program::get_parameter_shapes)
.def("get_shape", &migraphx::program::get_shape)
.def("compile", [](migraphx::program& p, const migraphx::target& t) { p.compile(t); })
......@@ -186,6 +187,11 @@ PYBIND11_MODULE(migraphx, m)
migraphx::quantize(p, ins_names);
});
m.def("quantize", [](migraphx::program& p) { migraphx::quantize(p, {"all"}); });
m.def("capture_arguments", [](migraphx::program& p, const std::vector<std::string>& ins_names) {
migraphx::capture_arguments(p, ins_names);
});
m.def("capture_arguments", [](migraphx::program& p) { migraphx::capture_arguments(p); });
#ifdef HAVE_GPU
m.def("allocate_gpu", &migraphx::gpu::allocate_gpu, py::arg("s"), py::arg("host") = false);
......
......@@ -3,32 +3,53 @@
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/op/convert.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/mul.hpp>
#include <migraphx/op/add.hpp>
#include <migraphx/op/quant_dot.hpp>
#include <migraphx/op/capture.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/multibroadcast.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/ranges.hpp>
#include <utility>
#include <iomanip>
#include <fstream>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
instruction_ref insert_fp16(program& prog,
instruction_ref& ins,
shape::type_t type,
std::unordered_map<instruction_ref, instruction_ref>& map_fp16)
instruction_ref insert_quant_ins(program& prog,
instruction_ref& ins,
shape::type_t type,
std::unordered_map<instruction_ref, instruction_ref>& map_ins)
{
if(map_fp16.count(ins) > 0)
if(map_ins.count(ins) > 0)
{
return map_fp16[ins];
return map_ins[ins];
}
if(ins->name() == "undefined")
{
return ins;
}
assert(ins->get_shape().type() == shape::float_type ||
ins->get_shape().type() == shape::double_type);
instruction_ref ins_fp16{};
ins_fp16 = prog.insert_instruction(std::next(ins), op::convert{type}, ins);
map_fp16[ins] = ins_fp16;
ins->get_shape().type() == shape::double_type ||
ins->get_shape().type() == shape::int32_type);
instruction_ref quant_ins{};
quant_ins = prog.insert_instruction(std::next(ins), op::convert{type}, ins);
map_ins[ins] = quant_ins;
return ins_fp16;
return quant_ins;
}
// This function is to convert any instructions specified in the input
// from double or float to float16 by inserting a convert operator.
// For the conversion, there could be cases of overflowing, but it
// is very rare in the area of deeping learning, so we just do a
// truncate of the input to get the fp16.
void quantize(program& prog, const std::vector<std::string>& ins_names)
{
std::unordered_map<instruction_ref, instruction_ref> map_fp16;
......@@ -59,7 +80,7 @@ void quantize(program& prog, const std::vector<std::string>& ins_names)
}
else
{
input_fp16 = insert_fp16(prog, input, shape::half_type, map_fp16);
input_fp16 = insert_quant_ins(prog, input, shape::half_type, map_fp16);
}
converted_inputs.push_back(input_fp16);
}
......@@ -79,21 +100,13 @@ void quantize(program& prog, const std::vector<std::string>& ins_names)
auto ins_shape = compute_shape(op, converted_inputs);
if(ins_shape.type() != orig_type)
{
// insert another convert instruction to convert it back
if(ins == std::prev(prog.end()))
// check the dead code case to avoid assert
bool output_empty = ins->outputs().empty();
auto ins_orig_type =
prog.insert_instruction(std::next(ins), op::convert{orig_type}, ins);
if(!output_empty)
{
prog.add_instruction(op::convert{orig_type}, ins);
}
else
{
// check the dead code case to avoid assert
bool output_empty = ins->outputs().empty();
auto ins_orig_type =
prog.insert_instruction(std::next(ins), op::convert{orig_type}, ins);
if(!output_empty)
{
prog.replace_instruction(ins, ins_orig_type);
}
prog.replace_instruction(ins, ins_orig_type);
}
}
......@@ -103,5 +116,80 @@ void quantize(program& prog, const std::vector<std::string>& ins_names)
void quantize(program& prog) { quantize(prog, {"all"}); }
// For the input of each input argument, we need to insert a
// capture operator to compute the scale and shift
void capture_arguments(program& prog,
const std::vector<std::string>& ins_names,
const std::function<void(std::size_t, std::vector<argument>)>& func)
{
size_t num_quant_params = 0;
// the int8 quantization only support dot and convolution
std::vector<std::string> op_names = {"dot", "convolution"};
if(!std::all_of(ins_names.begin(), ins_names.end(), [&](auto name) {
return std::find(op_names.begin(), op_names.end(), name) != op_names.end();
}))
{
MIGRAPHX_THROW("CAPTURE_ARGUMENTS: input operator is not supported");
}
std::unordered_map<instruction_ref, instruction_ref> ins_map;
for(auto ins : iterator_for(prog))
{
if(not contains(ins_names, ins->name()))
{
continue;
}
auto inputs = ins->inputs();
std::vector<instruction_ref> new_args;
for(auto input : inputs)
{
instruction_ref new_ins{};
if(ins_map.count(input) > 0)
{
new_ins = ins_map[input];
}
else
{
new_ins = prog.insert_instruction(
std::next(input), op::capture{num_quant_params++, func}, input);
ins_map[input] = new_ins;
}
new_args.push_back(new_ins);
}
instruction::replace(ins, ins->get_operator(), ins->get_shape(), new_args);
}
// set one pair of parameter for each argument
prog.int8_quant_params->resize(num_quant_params, std::make_pair(-1.0f, -1.0f));
}
void capture_arguments(program& prog, const std::vector<std::string>& ins_names)
{
auto calc_quant_params = [&](std::size_t ins_index, std::vector<migraphx::argument> args) {
std::pair<float, float> param_pair{1.0f, 0.0f};
// scale and shift is need for only int8 type, and we do not
// consider shift, so set shift to 0
std::vector<float> vec_val;
args.front().visit([&](auto output) { vec_val.assign(output.begin(), output.end()); });
auto max_val = *std::max_element(vec_val.begin(), vec_val.end());
auto min_val = *std::min_element(vec_val.begin(), vec_val.end());
auto max_abs = std::max(std::fabs(max_val), std::fabs(min_val));
param_pair.first = 127.0f / max_abs;
(*prog.int8_quant_params)[ins_index] = param_pair;
};
capture_arguments(prog, ins_names, calc_quant_params);
}
void capture_arguments(program& prog)
{
std::vector<std::string> ins_names = {"dot", "convolution"};
capture_arguments(prog, ins_names);
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -44,13 +44,9 @@ struct is_fast_gemm_type<float> : std::true_type
{
};
template <class T>
void migemm_impl(tensor_view<T> cmat,
tensor_view<T> amat,
tensor_view<T> bmat,
float alpha,
float beta,
std::true_type)
template <class T, class F>
void migemm_impl(
tensor_view<T> cmat, tensor_view<T> amat, tensor_view<T> bmat, F alpha, F beta, std::true_type)
{
visit_mat(amat, [&](const auto& a) {
visit_mat(bmat, [&](const auto& b) {
......@@ -66,13 +62,9 @@ void migemm_impl(tensor_view<T> cmat,
});
}
template <class T>
void migemm_impl(tensor_view<T> cmat,
tensor_view<T> amat,
tensor_view<T> bmat,
float alpha,
float beta,
std::false_type)
template <class T, class F>
void migemm_impl(
tensor_view<T> cmat, tensor_view<T> amat, tensor_view<T> bmat, F alpha, F beta, std::false_type)
{
std::size_t n_dims = cmat.get_shape().lens().size();
std::size_t dim_0 = n_dims - 2;
......@@ -95,9 +87,8 @@ void migemm_impl(tensor_view<T> cmat,
});
}
template <class T>
void migemm_impl(
tensor_view<T> cmat, tensor_view<T> amat, tensor_view<T> bmat, float alpha, float beta)
template <class T, class F>
void migemm_impl(tensor_view<T> cmat, tensor_view<T> amat, tensor_view<T> bmat, F alpha, F beta)
{
auto lens = amat.get_shape().lens();
bool batch_mul =
......@@ -113,13 +104,29 @@ void migemm_impl(
}
}
void migemm(
const argument& c_arg, const argument& a_arg, const argument& b_arg, float alpha, float beta)
template <class F>
void migemm_tpl(
const argument& c_arg, const argument& a_arg, const argument& b_arg, F alpha, F beta)
{
visit_all(c_arg, a_arg, b_arg)(
[&](auto cmat, auto amat, auto bmat) { migemm_impl(cmat, amat, bmat, alpha, beta); });
}
void migemm(
const argument& c_arg, const argument& a_arg, const argument& b_arg, float alpha, float beta)
{
migemm_tpl(c_arg, a_arg, b_arg, alpha, beta);
}
void migemm(const argument& c_arg,
const argument& a_arg,
const argument& b_arg,
int32_t alpha,
int32_t beta)
{
migemm_tpl(c_arg, a_arg, b_arg, alpha, beta);
}
} // namespace cpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -10,6 +10,11 @@ namespace cpu {
void migemm(
const argument& c_arg, const argument& a_arg, const argument& b_arg, float alpha, float beta);
void migemm(const argument& c_arg,
const argument& a_arg,
const argument& b_arg,
int32_t alpha,
int32_t beta);
} // namespace cpu
} // namespace MIGRAPHX_INLINE_NS
......
......@@ -4,7 +4,9 @@
#include <migraphx/dfor.hpp>
#include <migraphx/op/batch_norm.hpp>
#include <migraphx/op/convolution.hpp>
#include <migraphx/op/quant_convolution.hpp>
#include <migraphx/op/dot.hpp>
#include <migraphx/op/quant_dot.hpp>
#include <migraphx/op/elu.hpp>
#include <migraphx/op/im2col.hpp>
#include <migraphx/op/leaky_relu.hpp>
......@@ -216,6 +218,61 @@ struct cpu_convolution
}
};
struct cpu_quant_convolution
{
op::quant_convolution op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
std::string name() const { return "cpu::quant_convolution"; }
shape compute_shape(const std::vector<shape>& inputs) const { return op.compute_shape(inputs); }
argument compute(context&, shape output_shape, std::vector<argument> args) const
{
argument result{output_shape};
auto output = result.get<int32_t>();
visit_all(args[0], args[1])([&](auto input, auto weights) {
auto in = input.get_shape().lens();
auto in_h = in[2];
auto in_w = in[3];
auto wei = weights.get_shape().lens();
auto wei_n = wei[0];
auto wei_c = wei[1];
auto wei_h = wei[2];
auto wei_w = wei[3];
par_dfor(output_shape.lens()[0],
output_shape.lens()[1],
output_shape.lens()[2],
output_shape.lens()[3])(
[&](std::size_t o, std::size_t w, std::size_t i, std::size_t j) {
const auto start_x = i * op.stride[0] - op.padding[0];
const auto start_y = j * op.stride[1] - op.padding[1];
const auto group_id = w / (wei_n / op.group);
int32_t acc = 0;
dfor(wei_c, wei_h, wei_w)([&](std::size_t k, std::size_t x, std::size_t y) {
const auto in_x = start_x + x;
const auto in_y = start_y + y;
const auto in_ch = group_id * wei_c + k;
if(in_x >= 0 && in_x < in_h && in_y >= 0 && in_y < in_w)
{
acc += static_cast<int32_t>(input(o, in_ch, in_x, in_y)) *
weights(w, k, x, y);
}
});
output(o, w, i, j) = acc;
});
});
return result;
}
};
struct cpu_im2col
{
op::im2col op;
......@@ -433,7 +490,7 @@ struct cpu_gemm
{
argument result{output_shape};
// 3 inputs, it is alpha * A * B + beta * C, then
// A and B are matrics, and C is broadcastable to A * B
// A and B are matrices, and C is of the same shape as A * B
if(args.size() == 3)
{
// no need to consider the value of args[2]
......@@ -460,6 +517,72 @@ struct cpu_gemm
}
};
struct cpu_quant_gemm
{
op::quant_dot op;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return migraphx::reflect(self.op, f);
}
std::string name() const { return "cpu::quant_dot"; }
shape compute_shape(const std::vector<shape>& inputs) const
{
if(inputs.size() == 3)
{
auto c_shape = inputs.at(2);
check_shapes{{c_shape}}.not_broadcasted();
}
return op.compute_shape(inputs);
}
argument compute(context&, const shape& output_shape, std::vector<argument> args) const
{
argument result{output_shape};
// 3 inputs, it is alpha * A * B + beta * C, then
// A and B are matrices, and C is of the same shape to A * B
// first, convert the args[0] and args[1] from int8_t to int32_t
argument arg_0{{shape::int32_type, {args.at(0).get_shape().lens()}}};
argument arg_1{{shape::int32_type, {args.at(1).get_shape().lens()}}};
arg_0.visit([&](auto output) {
args.at(0).visit(
[&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
});
arg_1.visit([&](auto output) {
args.at(1).visit(
[&](auto input) { std::copy(input.begin(), input.end(), output.begin()); });
});
if(args.size() == 3)
{
// no need to consider the value of args[2]
if(op.beta == 0)
{
result.visit([&](auto output) { std::fill(output.begin(), output.end(), 0); });
}
else
{
visit_all(result, args[2])([&](auto output, auto input) {
std::copy(input.begin(), input.end(), output.begin());
});
}
migemm(result, arg_0, arg_1, op.alpha, op.beta);
return result;
}
// 2 input arguments
migemm(result, arg_0, arg_1, op.alpha, int32_t{0});
return result;
}
};
struct leaky_relu_op
{
op::leaky_relu op;
......@@ -671,15 +794,17 @@ struct cpu_apply
{
apply_map["batch_norm_inference"] =
extend_op<cpu_batch_norm_inference, op::batch_norm_inference>();
apply_map["convolution"] = extend_op<cpu_convolution, op::convolution>();
apply_map["dot"] = extend_op<cpu_gemm, op::dot>();
apply_map["elu"] = extend_op<cpu_unary<elu_op>, op::elu>();
apply_map["im2col"] = extend_op<cpu_im2col, op::im2col>();
apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
apply_map["logsoftmax"] = extend_op<cpu_logsoftmax, op::logsoftmax>();
apply_map["lrn"] = extend_op<cpu_lrn, op::lrn>();
apply_map["pad"] = extend_op<cpu_pad, op::pad>();
apply_map["softmax"] = extend_op<cpu_softmax, op::softmax>();
apply_map["convolution"] = extend_op<cpu_convolution, op::convolution>();
apply_map["dot"] = extend_op<cpu_gemm, op::dot>();
apply_map["quant_dot"] = extend_op<cpu_quant_gemm, op::quant_dot>();
apply_map["quant_convolution"] = extend_op<cpu_quant_convolution, op::quant_convolution>();
apply_map["elu"] = extend_op<cpu_unary<elu_op>, op::elu>();
apply_map["im2col"] = extend_op<cpu_im2col, op::im2col>();
apply_map["leaky_relu"] = extend_op<cpu_unary<leaky_relu_op>, op::leaky_relu>();
apply_map["logsoftmax"] = extend_op<cpu_logsoftmax, op::logsoftmax>();
apply_map["lrn"] = extend_op<cpu_lrn, op::lrn>();
apply_map["pad"] = extend_op<cpu_pad, op::pad>();
apply_map["softmax"] = extend_op<cpu_softmax, op::softmax>();
}
void apply()
......
......@@ -39,6 +39,7 @@ add_library(migraphx_device
device/pad.cpp
device/gather.cpp
device/sub.cpp
device/int8_gemm_pack.cpp
device/div.cpp
device/clip.cpp
device/reduce_sum.cpp
......@@ -64,8 +65,10 @@ add_library(migraphx_gpu
target.cpp
lowering.cpp
gemm.cpp
quant_gemm.cpp
pooling.cpp
convolution.cpp
quant_convolution.cpp
softmax.cpp
logsoftmax.cpp
contiguous.cpp
......@@ -79,12 +82,16 @@ add_library(migraphx_gpu
elu.cpp
pad.cpp
gather.cpp
convert.cpp
lrn.cpp
schedule_model.cpp
adjust_allocation.cpp
pack_int8_args.cpp
clip.cpp
reduce_sum.cpp
reduce_mean.cpp
int8_gemm_pack.cpp
int8_conv_pack.cpp
)
set_target_properties(migraphx_gpu PROPERTIES EXPORT_NAME gpu)
rocm_clang_tidy_check(migraphx_gpu)
......
#include <migraphx/gpu/convert.hpp>
#include <migraphx/gpu/context.hpp>
#include <migraphx/gpu/device/convert.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
shape hip_convert::compute_shape(std::vector<shape> inputs) const
{
inputs.pop_back();
check_shapes{inputs}.packed();
return op.compute_shape(inputs);
}
argument hip_convert::compute(context& ctx, const shape&, const std::vector<argument>& args) const
{
device::convert(ctx.get_stream().get(), args[1], args[0]);
return args[1];
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -31,6 +31,7 @@ struct hip_tensor_descriptor
result[is] = tidx / strides[is];
tidx = tidx % strides[is];
}
return result;
}
__device__ __host__ std::size_t linear(hip_tensor_index<NDim> s) const
......
#include <migraphx/shape.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/gpu/device/int8_gemm_pack.hpp>
#include <migraphx/gpu/device/launch.hpp>
#include <migraphx/gpu/device/types.hpp>
#include <migraphx/gpu/device/tensor.hpp>
#include <migraphx/gpu/hip.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace gpu {
namespace device {
void int8_gemm_pack_a(hipStream_t stream, const argument& result, const argument& arg)
{
auto comp_shape = arg.get_shape();
auto out_lens = comp_shape.lens();
auto dim_0 = out_lens.size() - 2;
auto dim_1 = out_lens.size() - 1;
std::size_t lda = comp_shape.strides()[dim_0];
std::size_t m_size = out_lens[dim_0] * out_lens[dim_1];
visit_all(result, arg)([&](auto output, auto input) {
std::size_t nelements = comp_shape.elements();
auto* out_ptr = device_cast(output.data());
auto* in_ptr = device_cast(input.data());
visit_tensor_size(out_lens.size(), [&](auto out_dim) {
hip_tensor_descriptor<out_dim> desc(comp_shape);
gs_launch(stream, nelements, 256)([=](auto ii) {
const size_t nb = 4;
auto idx = desc.multi(ii);
std::size_t i_m = idx[dim_1];
std::size_t i_k = idx[dim_0];
std::size_t offset = ii / m_size * m_size;
out_ptr[i_k % nb + (i_m + (i_k / nb) * lda) * nb + offset] =
in_ptr[i_m + i_k * lda + offset];
});
});
});
}
void int8_gemm_pack_b(hipStream_t stream, const argument& result, const argument& arg)
{
auto trans_shape = arg.get_shape();
auto out_lens = trans_shape.lens();
auto dim_0 = trans_shape.lens().size() - 2;
auto dim_1 = trans_shape.lens().size() - 1;
std::size_t ldb = trans_shape.strides()[dim_1];
auto wrap_lens = out_lens;
std::swap(wrap_lens[dim_0], wrap_lens[dim_1]);
shape comp_shape{trans_shape.type(), wrap_lens};
std::size_t m_size = out_lens[dim_0] * out_lens[dim_1];
visit_all(result, arg)([&](auto output, auto input) {
std::size_t nelements = comp_shape.elements();
auto* out_ptr = device_cast(output.data());
auto* in_ptr = device_cast(input.data());
visit_tensor_size(out_lens.size(), [&](auto out_dim) {
hip_tensor_descriptor<out_dim> desc(comp_shape);
gs_launch(stream, nelements, 256)([=](auto ii) {
const size_t nb = 4;
auto idx = desc.multi(ii);
std::size_t i_n = idx[dim_1];
std::size_t i_k = idx[dim_0];
std::size_t offset = ii / m_size * m_size;
out_ptr[i_k % nb + (i_n + (i_k / nb) * ldb) * nb + offset] =
in_ptr[i_n + i_k * ldb + offset];
});
});
});
}
void sync_stream(hipStream_t stream) { hipStreamSynchronize(stream); }
} // namespace device
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment