Commit 4cc5393d authored by Paul's avatar Paul
Browse files

Merge branch 'develop' into subwave-reduce

parents f7d97e53 fe61d940
......@@ -58,6 +58,10 @@ Set the default dynamic dimension (format {min:x, max:y, optimals:[o1,o2,...]})
Optimize when reading
.. option:: --apply-pass, -p
Passes to apply to model
.. option:: --graphviz, -g
Print out a graphviz representation.
......
......@@ -25,6 +25,7 @@
add_executable(driver
main.cpp
verify.cpp
passes.cpp
perf.cpp
resnet50.cpp
inceptionv3.cpp
......
......@@ -26,6 +26,7 @@
#include "argument_parser.hpp"
#include "command.hpp"
#include "precision.hpp"
#include "passes.hpp"
#include "perf.hpp"
#include "models.hpp"
#include "marker_roctx.hpp"
......@@ -83,6 +84,7 @@ struct loader
std::vector<std::string> param_dims;
std::vector<std::string> dyn_param_dims;
std::vector<std::string> output_names;
std::vector<std::string> passes;
void parse(argument_parser& ap)
{
......@@ -130,6 +132,7 @@ struct loader
ap.append(),
ap.nargs(2));
ap(optimize, {"--optimize", "-O"}, ap.help("Optimize when reading"), ap.set_value(true));
ap(passes, {"--apply-pass", "-p"}, ap.help("Passes to apply to model"), ap.append());
ap(output_type,
{"--graphviz", "-g"},
ap.help("Print out a graphviz representation."),
......@@ -337,6 +340,8 @@ struct loader
migraphx::dead_code_elimination{},
});
}
if(not passes.empty())
migraphx::run_passes(*p.get_main_module(), get_passes(passes));
return p;
}
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "passes.hpp"
#include <migraphx/auto_contiguous.hpp>
#include <migraphx/dead_code_elimination.hpp>
#include <migraphx/eliminate_allocation.hpp>
#include <migraphx/eliminate_common_subexpression.hpp>
#include <migraphx/eliminate_concat.hpp>
#include <migraphx/eliminate_contiguous.hpp>
#include <migraphx/eliminate_data_type.hpp>
#include <migraphx/eliminate_identity.hpp>
#include <migraphx/eliminate_pad.hpp>
#include <migraphx/inline_module.hpp>
#include <migraphx/insert_pad.hpp>
#include <migraphx/normalize_ops.hpp>
#include <migraphx/optimize_module.hpp>
#include <migraphx/promote_literals.hpp>
#include <migraphx/propagate_constant.hpp>
#include <migraphx/rewrite_gelu.hpp>
#include <migraphx/rewrite_pooling.hpp>
#include <migraphx/rewrite_quantization.hpp>
#include <migraphx/rewrite_rnn.hpp>
#include <migraphx/simplify_algebra.hpp>
#include <migraphx/simplify_dyn_ops.hpp>
#include <migraphx/simplify_qdq.hpp>
#include <migraphx/simplify_reshapes.hpp>
#include <migraphx/ranges.hpp>
#include <unordered_map>
namespace migraphx {
namespace driver {
inline namespace MIGRAPHX_INLINE_NS {
std::unordered_map<std::string, pass> create_passes_lookup()
{
std::unordered_map<std::string, pass> result;
// clang-format off
std::initializer_list<pass> passes = {
auto_contiguous{},
dead_code_elimination{},
eliminate_allocation{},
eliminate_common_subexpression{},
eliminate_concat{},
eliminate_contiguous{},
eliminate_data_type{},
eliminate_identity{},
eliminate_pad{},
inline_module{},
insert_pad{},
normalize_ops{},
optimize_module{},
promote_literals{},
propagate_constant{},
rewrite_gelu{},
rewrite_pooling{},
rewrite_quantization{},
rewrite_rnn{},
simplify_algebra{},
simplify_dyn_ops{},
simplify_qdq{},
simplify_reshapes{},
};
// clang-format on
for(const auto& pass : passes)
result[pass.name()] = pass;
result["eliminate_dead_code"] = dead_code_elimination{};
return result;
}
std::vector<pass> get_passes(const std::vector<std::string>& names)
{
std::vector<pass> result;
static const std::unordered_map<std::string, pass> lookup = create_passes_lookup();
std::transform(
names.begin(), names.end(), std::back_inserter(result), [](const std::string& name) {
if(not contains(lookup, name))
MIGRAPHX_THROW("Unknown pass: " + name);
return lookup.at(name);
});
return result;
}
} // namespace MIGRAPHX_INLINE_NS
} // namespace driver
} // namespace migraphx
......@@ -21,24 +21,20 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_DRIVER_PASSES_HPP
#define MIGRAPHX_GUARD_DRIVER_PASSES_HPP
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
#include <migraphx/pass.hpp>
#include <vector>
struct test_conv_relu_half : verify_program<test_conv_relu_half>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input =
mm->add_parameter("x", migraphx::shape{migraphx::shape::half_type, {4, 3, 3, 3}});
auto weights =
mm->add_parameter("w", migraphx::shape{migraphx::shape::half_type, {4, 3, 3, 3}});
auto conv = mm->add_instruction(migraphx::make_op("convolution"), input, weights);
mm->add_instruction(migraphx::make_op("relu"), conv);
return p;
}
};
namespace migraphx {
namespace driver {
inline namespace MIGRAPHX_INLINE_NS {
std::vector<pass> get_passes(const std::vector<std::string>& names);
} // namespace MIGRAPHX_INLINE_NS
} // namespace driver
} // namespace migraphx
#endif
......@@ -72,8 +72,8 @@ struct dequantizelinear
visit_all(x, x_zero_point)([&](auto input, auto zero_pts) {
visit_all(result, x_scale)([&](auto output, auto scales) {
par_for(output_shape.elements(), [&](auto i) {
output[i] = static_cast<double>(static_cast<int64_t>(input[i]) -
static_cast<int64_t>(zero_pts[i])) *
output[i] = static_cast<double>(static_cast<double>(input[i]) -
static_cast<double>(zero_pts[i])) *
scales[i];
});
});
......
......@@ -27,6 +27,7 @@
#include <migraphx/op/common.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/check_shapes.hpp>
#include <migraphx/shape.hpp>
#include <migraphx/config.hpp>
#include <migraphx/convolution.hpp>
#include <migraphx/value.hpp>
......@@ -87,11 +88,13 @@ struct quant_convolution
}
// all input type must be int8_type and output is float_type
if(t != shape::int8_type)
std::set<migraphx::shape::type_t> supported_types = {shape::int8_type,
shape::fp8e4m3fnuz_type};
if(not contains(supported_types, t))
{
MIGRAPHX_THROW("QUANT_CONVOLUTION: only accept input and weights of type int8_t");
MIGRAPHX_THROW("QUANT_CONVOLUTION: only accept input and weights of type int8_t or "
"fp8e4m3fnuz_type");
}
t = shape::int32_type;
std::vector<size_t> output_lens{input.lens()[0], weights.lens()[0]};
auto padding_size = padding.size();
......@@ -107,8 +110,11 @@ struct quant_convolution
stride[i] +
1)));
}
return inputs[0].with_lens(t, output_lens);
if(t == shape::int8_type)
{
return inputs[0].with_lens(shape::int32_type, output_lens);
} // else fp8 conv
return inputs[0].with_lens(shape::float_type, output_lens);
}
size_t kdims() const
......
......@@ -80,10 +80,10 @@ struct quantizelinear
auto min_value = std::numeric_limits<quant_type>::min();
auto max_value = std::numeric_limits<quant_type>::max();
par_for(output_shape.elements(), [&](auto i) {
int64_t quantized = static_cast<int64_t>(std::nearbyint(input[i] / scales[i])) +
static_cast<int64_t>(zero_pts[i]);
output[i] = std::max(static_cast<int64_t>(min_value),
std::min(static_cast<int64_t>(max_value), quantized));
double quantized = static_cast<double>(std::nearbyint(input[i] / scales[i])) +
static_cast<double>(zero_pts[i]);
output[i] = std::max(static_cast<double>(min_value),
std::min(static_cast<double>(max_value), quantized));
});
});
});
......
......@@ -625,7 +625,11 @@ shape::type_t get_type(int dtype)
case 11: return shape::double_type;
case 12: return shape::uint32_type;
case 13: return shape::uint64_type;
case 18: return shape::fp8e4m3fnuz_type;
case 18: {
std::cout << "[Warning] : MIGraphX has BETA support for FP8. Using FP8 may result in "
"incorrect final outputs\n";
return shape::fp8e4m3fnuz_type;
}
case 14:
case 15:
case 16:
......
......@@ -58,8 +58,8 @@ void apply_quantizelinear(module& m, instruction_ref ins)
add_zero_point = m.insert_instruction(ins, make_op("add"), add_zero_point, zero_point);
}
int64_t max_quant = 0;
int64_t min_quant = 0;
double max_quant = 0;
double min_quant = 0;
ins->get_shape().visit_type([&](auto qt) {
max_quant = qt.max();
min_quant = qt.min();
......@@ -70,8 +70,8 @@ void apply_quantizelinear(module& m, instruction_ref ins)
if(enabled(MIGRAPHX_ENABLE_CK_WORKAROUNDS{}))
{
std::vector<int> min_data(s.elements(), min_quant);
std::vector<int> max_data(s.elements(), max_quant);
std::vector<double> min_data(s.elements(), min_quant);
std::vector<double> max_data(s.elements(), max_quant);
min_arg = m.add_literal(literal(s, min_data));
max_arg = m.add_literal(literal(s, max_data));
}
......
......@@ -82,18 +82,21 @@ struct match_find_quantizable_ops
// Helper function to insert quantized versions of any broadcasts and transpose ops that
// occur between dequantizelinear and the quantized op
static auto
propagate_quantized_ins(module& m, const instruction_ref dqins, const instruction_ref qop)
propagate_quantized_ins(module& m, const instruction_ref dqins, const instruction_ref qop_arg)
{
auto qinp = dqins->inputs().front();
auto next_ins = dqins;
while(next_ins != qop)
auto prev_ins = qop_arg;
std::vector<instruction_ref> ins_inbetween;
// matcher skips continguous, multi/broadcasts and transposes, collect all those
// instructions
while(prev_ins != dqins)
{
if(next_ins->name() != "dequantizelinear")
{
qinp = m.insert_instruction(qop, next_ins->get_operator(), qinp);
}
next_ins = next_ins->outputs().front();
ins_inbetween.push_back(prev_ins);
prev_ins = prev_ins->inputs().front();
}
auto qinp = dqins->inputs().front();
for(auto ins : reverse_iterator_for(ins_inbetween))
{
qinp = m.insert_instruction(dqins, (*ins)->get_operator(), {qinp});
}
return qinp;
}
......@@ -124,10 +127,11 @@ struct match_find_quantizable_ops
auto scale2 = r.instructions["scale2"];
auto zp1 = r.instructions["zp1"];
auto zp2 = r.instructions["zp2"];
// Only INT8 type currently supported
if(dq1->inputs().front()->get_shape().type() != migraphx::shape::int8_type or
dq2->inputs().front()->get_shape().type() != migraphx::shape::int8_type)
// Only INT8 or FP8 type currently supported
std::set<migraphx::shape::type_t> supported_types = {migraphx::shape::fp8e4m3fnuz_type,
migraphx::shape::int8_type};
if(not contains(supported_types, dq1->inputs().front()->get_shape().type()) or
not contains(supported_types, dq2->inputs().front()->get_shape().type()))
return;
// Only symmetric quantization supported (ie. non-zero zero_points not allowed)
......@@ -140,8 +144,8 @@ struct match_find_quantizable_ops
// Propagate q1 and q2 through any broadcasts and transposes before qop
auto qop_args = qop->inputs();
qop_args.at(0) = propagate_quantized_ins(m, dq1, qop);
qop_args.at(1) = propagate_quantized_ins(m, dq2, qop);
qop_args.at(0) = propagate_quantized_ins(m, dq1, qop_args[0]);
qop_args.at(1) = propagate_quantized_ins(m, dq2, qop_args[1]);
instruction_ref dq;
instruction_ref out_scale;
instruction_ref zero_point;
......
......@@ -49,6 +49,12 @@ std::string get_device_name()
return props.gcnArchName;
}
bool gfx_has_fp8_intrinsics()
{
const auto device_name = trim(split_string(get_device_name(), ':').front());
return (starts_with(device_name, "gfx9") and device_name >= "gfx940");
}
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......@@ -218,6 +218,7 @@ auto is_mlir_conv(mlir_mode mode)
return false;
if(ins->name() != "convolution" and ins->name() != "quant_convolution")
return false;
auto input_arg_t = ins->inputs().front()->get_shape().type();
value v = ins->get_operator().to_value();
auto group = v.at("group").to<int>();
if(group != 1)
......@@ -225,6 +226,10 @@ auto is_mlir_conv(mlir_mode mode)
// Avoid MLIR assertion: Index < Length && "Invalid index!"
if(ins->get_shape().lens().size() != 4)
return false;
if(ins->get_shape().type() == shape::fp8e4m3fnuz_type)
return true;
if(ins->get_shape().type() == shape::float_type and input_arg_t == shape::fp8e4m3fnuz_type)
return true;
if(ins->get_shape().type() == shape::int8_type)
return true;
if(mode == mlir_mode::int8)
......@@ -292,6 +297,7 @@ bool is_pointwise_op_supported_by_mlir(const instruction& i)
const auto result_type = i.get_shape().type();
const std::initializer_list<type_t> allowed_types = {type_t::float_type,
type_t::half_type,
type_t::fp8e4m3fnuz_type,
type_t::int8_type,
type_t::int32_type,
type_t::bool_type};
......@@ -331,7 +337,8 @@ bool is_pointwise_op_supported_by_mlir(const instruction& i)
"softmax",
"tanh",
};
bool is_float = contains({type_t::float_type, type_t::half_type}, result_type);
bool is_float =
contains({type_t::float_type, type_t::half_type, type_t::fp8e4m3fnuz_type}, result_type);
if(contains(any_type_ops, name))
return true;
if(result_type != type_t::bool_type and contains(no_bool_ops, name))
......@@ -342,6 +349,10 @@ bool is_pointwise_op_supported_by_mlir(const instruction& i)
// supported.
if(is_float and name == "convert")
{
if(result_type == shape::fp8e4m3fnuz_type)
{
return false;
} // else
return std::all_of(i.inputs().begin(), i.inputs().end(), [](const auto& arg) {
return contains({type_t::float_type, type_t::half_type}, arg->get_shape().type());
});
......@@ -404,12 +415,13 @@ struct find_mlir_standalone_op
void apply(module_pass_manager& mpm, const match::matcher_result& r) const
{
auto gemm_based_op = r.result;
//
// enable only for fp32/fp16/i8 types
// enable only for fp32/fp16/i8/fp8 types
if(std::any_of(gemm_based_op->inputs().begin(), gemm_based_op->inputs().end(), [&](auto i) {
return not contains(
{shape::type_t::float_type, shape::type_t::half_type, shape::type_t::int8_type},
i->get_shape().type());
return not contains({shape::type_t::float_type,
shape::type_t::half_type,
shape::type_t::int8_type,
shape::type_t::fp8e4m3fnuz_type},
i->get_shape().type());
}))
return;
static size_t counter = 0;
......@@ -531,7 +543,7 @@ void fuse_mlir::apply(module_pass_manager& mpm) const
match::find_matches(
mpm,
find_mlir_standalone_convolution_op{get_mode("convolution", mlir_mode::int8)},
find_mlir_standalone_convolution_op{get_mode("convolution", mlir_mode::fast)},
find_mlir_standalone_dot_op{get_mode("dot", mlir_mode::none)});
#else
(void)mpm;
......
......@@ -37,6 +37,8 @@ MIGRAPHX_GPU_EXPORT std::string get_device_name();
MIGRAPHX_GPU_EXPORT int get_device_id();
MIGRAPHX_GPU_EXPORT bool gfx_has_fp8_intrinsics();
} // namespace gpu
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
......
......@@ -300,6 +300,8 @@ struct mlir_program
result = mlirF32TypeGet(ctx.get());
else if(as.type_enum() == shape::half_type)
result = mlirF16TypeGet(ctx.get());
else if(as.type_enum() == shape::fp8e4m3fnuz_type)
result = mlirFloat8E4M3FNUZTypeGet(ctx.get());
else if(as.type_enum() == shape::double_type)
result = mlirF64TypeGet(ctx.get());
else if(as.is_integral())
......
......@@ -58,8 +58,7 @@ bool rocblas_fp8_available()
#ifndef MIGRAPHX_USE_ROCBLAS_FP8_API
return false;
#else
const auto device_name = trim(split_string(get_device_name(), ':').front());
return (starts_with(device_name, "gfx9") and device_name >= "gfx940");
return gfx_has_fp8_intrinsics();
#endif
}
......
......@@ -105,11 +105,19 @@ std::vector<pass> target::get_passes(migraphx::context& gctx, const compile_opti
unsupported_types.erase(shape::type_t::uint8_type);
unsupported_types.erase(shape::type_t::int32_type);
unsupported_types.erase(shape::type_t::tuple_type);
// whiltelist supported Ops for the FP8
std::set<std::string> unsupported_fp8_ops = {};
if(not gpu::rocblas_fp8_available())
{
unsupported_fp8_ops.insert("dot");
}
// MIOpen doesn't have support for fp8 pooling yet.
unsupported_fp8_ops.insert("pooling");
if(not gpu::gfx_has_fp8_intrinsics())
{
unsupported_fp8_ops.insert("convolution");
unsupported_fp8_ops.insert("quant_convolution");
}
// add all device kernels
unsupported_fp8_ops.insert("logsoftmax");
unsupported_fp8_ops.insert("nonzero");
......
......@@ -527,6 +527,62 @@ TEST_CASE(dot_add)
EXPECT(m1 == m2);
}
TEST_CASE(dot_add_multiple_dq_use)
{
migraphx::shape sh1{migraphx::shape::float_type, {32, 1}};
migraphx::shape sh2{migraphx::shape::float_type, {32, 32}};
migraphx::module m1;
{
auto t1 = m1.add_parameter("t1", sh1);
auto t2 = m1.add_parameter("t2", sh2);
auto scale = m1.add_literal(0.5f);
auto zero = m1.add_literal(std::int8_t{0});
auto q1 = add_quantize_op(m1, "quantizelinear", t1, scale, zero);
auto d1 = add_quantize_op(m1, "dequantizelinear", q1, scale, zero);
auto d1_t =
m1.add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), d1);
auto d1_tmb =
m1.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {32, 32}}}), d1_t);
auto d1_tmbc = m1.add_instruction(migraphx::make_op("contiguous"), d1_tmb);
auto q2 = add_quantize_op(m1, "quantizelinear", t2, scale, zero);
auto d2 = add_quantize_op(m1, "dequantizelinear", q2, scale, zero);
auto dot_1 = m1.add_instruction(migraphx::make_op("dot"), d1_tmbc, d2);
auto q3 = add_quantize_op(m1, "quantizelinear", dot_1, scale, zero);
auto d3 = add_quantize_op(m1, "dequantizelinear", q3, scale, zero);
auto dot_2 = m1.add_instruction(migraphx::make_op("dot"), d3, d1);
auto add = m1.add_instruction(migraphx::make_op("add"), {dot_2, d1});
m1.add_return({add});
}
migraphx::module m2;
{
auto t1 = m2.add_parameter("t1", sh1);
auto t2 = m2.add_parameter("t2", sh2);
auto scale = m2.add_literal(0.5f);
auto zero = m2.add_literal(std::int8_t{0});
auto q1 = add_quantize_op(m2, "quantizelinear", t1, scale, zero);
auto q1_t =
m2.add_instruction(migraphx::make_op("transpose", {{"permutation", {1, 0}}}), q1);
auto q1_tmb =
m2.add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {32, 32}}}), q1_t);
auto q1_tmbc = m2.add_instruction(migraphx::make_op("contiguous"), q1_tmb);
auto q2 = add_quantize_op(m2, "quantizelinear", t2, scale, zero);
auto dot_1 = m2.add_instruction(migraphx::make_op("quant_dot"), q1_tmbc, q2);
auto out_scale = add_scale_mul(m2, scale, scale, 1, 1, dot_1->get_shape().lens());
auto d3 = add_quantize_op(m2, "dequantizelinear", dot_1, out_scale);
auto d3_q = add_quantize_op(m2, "quantizelinear", d3, scale, zero);
auto dot_2 = m2.add_instruction(migraphx::make_op("quant_dot"), d3_q, q1);
auto out_scale_2 = add_scale_mul(m2, scale, scale, 1, 1, dot_2->get_shape().lens());
auto d4 = add_quantize_op(m2, "dequantizelinear", dot_2, out_scale_2);
auto add = m2.add_instruction(migraphx::make_op("add"), d4, t1);
m2.add_return({add});
}
run_pass(m1);
EXPECT(m1 == m2);
}
TEST_CASE(conv)
{
migraphx::shape s4{migraphx::shape::int8_type, {1280, 320, 1, 1}};
......@@ -919,7 +975,6 @@ TEST_CASE(mobilenet_snippet)
auto mod1 = create_module();
auto mod2 = create_module();
run_pass(mod2);
auto match_qdq = migraphx::match::name("dequantizelinear")(
......
......@@ -77,6 +77,5 @@ int main(int argc, const char* argv[])
"test_split_single_dyn_dim",
"test_instancenorm_large_3d<migraphx::shape::float_type>",
"test_instancenorm_large_3d<migraphx::shape::half_type>"});
rv.disable_test_for("gpu", {"test_conv_bn_add"});
rv.run(argc, argv);
}
......@@ -27,17 +27,21 @@
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct quant_conv : verify_program<quant_conv>
template <migraphx::shape::type_t DType>
struct quant_conv : verify_program<quant_conv<DType>>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape a_shape{migraphx::shape::int8_type, {2, 3, 4, 4}};
migraphx::shape a_shape{DType, {2, 3, 4, 4}};
auto pa = mm->add_parameter("a", a_shape);
migraphx::shape c_shape{migraphx::shape::int8_type, {2, 3, 3, 3}};
migraphx::shape c_shape{DType, {2, 3, 3, 3}};
auto pc = mm->add_parameter("c", c_shape);
mm->add_instruction(migraphx::make_op("quant_convolution"), pa, pc);
return p;
}
};
template struct quant_conv<migraphx::shape::int8_type>;
template struct quant_conv<migraphx::shape::fp8e4m3fnuz_type>;
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment