Unverified Commit 44463b94 authored by Umang Yadav's avatar Umang Yadav Committed by GitHub
Browse files

Fix agent model and multinomial parsing (#2481)

parent 7eee28ce
......@@ -127,9 +127,9 @@ struct parse_multinomial : op_parser<parse_multinomial>
// use literal. The array populated by random_uniform may have any shape, as long its
// number of elements is batch_size * sample_size .
size_t batch_size = s0.lens().front();
auto rand_dummy = info.add_literal(
migraphx::literal{migraphx::shape::float_type, {batch_size * sample_size}});
auto rand_dummy = info.add_literal(migraphx::literal{
migraphx::shape{migraphx::shape::float_type, {batch_size, sample_size}},
std::vector<float>(batch_size * sample_size)});
randoms =
info.add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy);
}
......
......@@ -4826,8 +4826,9 @@ TEST_CASE(multinomial_test)
migraphx::shape s{migraphx::shape::float_type, {1}};
std::vector<float> seed_data = {seed};
auto seed_input = mm->add_literal(migraphx::literal(s, seed_data));
auto rand_dummy =
mm->add_literal(migraphx::literal{migraphx::shape::float_type, {batch_size * sample_size}});
auto rand_dummy = mm->add_literal(
migraphx::literal{migraphx::shape{migraphx::shape::float_type, {batch_size, sample_size}},
std::vector<float>(batch_size * sample_size)});
auto randoms = mm->add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy);
mm->add_instruction(migraphx::make_op("multinomial"), cdf, randoms);
......@@ -4978,8 +4979,9 @@ TEST_CASE(multinomial_int64_test)
auto seed_input = mm->add_literal(migraphx::literal(s, data));
// static size
auto rand_dummy =
mm->add_literal(migraphx::literal{migraphx::shape::float_type, {batch_size * sample_size}});
auto rand_dummy = mm->add_literal(
migraphx::literal{migraphx::shape{migraphx::shape::float_type, {batch_size, sample_size}},
std::vector<float>(batch_size * sample_size)});
auto randoms = mm->add_instruction(migraphx::make_op("random_uniform"), seed_input, rand_dummy);
mm->add_instruction(migraphx::make_op("multinomial", {{"dtype", dtype}}), cdf, randoms);
auto prog = optimize_onnx("multinomial_int64_test.onnx");
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment