Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
MIGraphX
Commits
4220eebf
Commit
4220eebf
authored
May 07, 2019
by
Shucai Xiao
Browse files
merge changes from develop branch
parents
2e175fd8
767ca0cc
Changes
38
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
281 additions
and
341 deletions
+281
-341
Dockerfile
Dockerfile
+5
-0
src/include/migraphx/instruction.hpp
src/include/migraphx/instruction.hpp
+3
-2
src/include/migraphx/op/abnormal_ops.hpp
src/include/migraphx/op/abnormal_ops.hpp
+5
-0
src/include/migraphx/op/concat.hpp
src/include/migraphx/op/concat.hpp
+7
-0
src/include/migraphx/op/leaky_relu.hpp
src/include/migraphx/op/leaky_relu.hpp
+7
-6
src/include/migraphx/operation.hpp
src/include/migraphx/operation.hpp
+3
-1
src/include/migraphx/reflect.hpp
src/include/migraphx/reflect.hpp
+61
-6
src/instruction.cpp
src/instruction.cpp
+6
-0
src/program.cpp
src/program.cpp
+6
-3
src/targets/cpu/lowering.cpp
src/targets/cpu/lowering.cpp
+102
-323
src/targets/gpu/include/migraphx/gpu/abs.hpp
src/targets/gpu/include/migraphx/gpu/abs.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/batchnorm.hpp
src/targets/gpu/include/migraphx/gpu/batchnorm.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/clip.hpp
src/targets/gpu/include/migraphx/gpu/clip.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/concat.hpp
src/targets/gpu/include/migraphx/gpu/concat.hpp
+6
-0
src/targets/gpu/include/migraphx/gpu/contiguous.hpp
src/targets/gpu/include/migraphx/gpu/contiguous.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/elu.hpp
src/targets/gpu/include/migraphx/gpu/elu.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/gather.hpp
src/targets/gpu/include/migraphx/gpu/gather.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/gemm.hpp
src/targets/gpu/include/migraphx/gpu/gemm.hpp
+7
-0
src/targets/gpu/include/migraphx/gpu/hip.hpp
src/targets/gpu/include/migraphx/gpu/hip.hpp
+14
-0
src/targets/gpu/include/migraphx/gpu/leaky_relu.hpp
src/targets/gpu/include/migraphx/gpu/leaky_relu.hpp
+7
-0
No files found.
Dockerfile
View file @
4220eebf
...
...
@@ -74,3 +74,8 @@ ENV LD_LIBRARY_PATH=$PREFIX/lib
# Install doc requirements
ADD
doc/requirements.txt /doc-requirements.txt
RUN
pip
install
-r
/doc-requirements.txt
# Setup ubsan environment to printstacktrace
RUN
ln
-s
/usr/bin/llvm-symbolizer-5.0 /usr/local/bin/llvm-symbolizer
ENV
UBSAN_OPTIONS=print_stacktrace=1
ENV
ASAN_OPTIONS=detect_stack_use_after_return=1:check_initialization_order=1:strict_init_order=1
src/include/migraphx/instruction.hpp
View file @
4220eebf
...
...
@@ -24,7 +24,7 @@ struct instruction
instruction
(
literal
l
);
void
replace
(
const
shape
&
r
);
void
replace
(
operation
o
);
void
recompute_shape
();
...
...
@@ -90,7 +90,8 @@ struct instruction
// internal
void
replace_argument
(
instruction_ref
old
,
instruction_ref
new_ins
);
private:
void
replace
(
const
shape
&
r
);
operation
op
;
shape
result
;
std
::
vector
<
instruction_ref
>
output
;
...
...
src/include/migraphx/op/abnormal_ops.hpp
View file @
4220eebf
...
...
@@ -39,6 +39,11 @@ struct undefined
struct
unknown
{
std
::
string
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
op
,
"op"
));
}
std
::
string
name
()
const
{
return
"unknown:"
+
op
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
input
)
const
{
...
...
src/include/migraphx/op/concat.hpp
View file @
4220eebf
...
...
@@ -19,6 +19,13 @@ namespace op {
struct
concat
{
std
::
size_t
axis
=
0
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
axis
,
"axis"
));
}
std
::
string
name
()
const
{
return
"concat"
;
}
std
::
vector
<
std
::
size_t
>
compute_offsets
(
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
...
...
src/include/migraphx/op/leaky_relu.hpp
View file @
4220eebf
...
...
@@ -18,19 +18,20 @@ namespace op {
struct
leaky_relu
{
std
::
string
name
()
const
{
return
"leaky_relu"
;
}
float
alpha
;
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
return
inputs
.
front
();
}
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
alpha
,
"alpha"
));
}
std
::
string
name
()
const
{
return
"leaky_relu"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
{
check_shapes
{
inputs
,
*
this
}.
has
(
1
);
return
inputs
.
front
();
}
};
}
// namespace op
...
...
src/include/migraphx/operation.hpp
View file @
4220eebf
...
...
@@ -69,7 +69,7 @@ auto operator<<(std::ostream& os, const T& x) -> decltype(os << x.name())
{
os
<<
x
.
name
();
char
delim
=
'['
;
reflect_each
(
x
,
[
&
](
auto
&
y
,
auto
name
)
{
reflect_each
(
x
,
[
&
](
auto
&
&
y
,
auto
name
)
{
os
<<
delim
;
os
<<
name
<<
"="
;
stream_write_value
(
os
,
y
);
...
...
@@ -87,6 +87,8 @@ namespace operation_equal {
template
<
class
T
,
class
U
>
auto
operator
==
(
const
T
&
x
,
const
U
&
y
)
->
decltype
(
x
.
name
()
==
y
.
name
())
{
static_assert
(
is_reflectable
<
T
>
{}
or
sizeof
(
T
)
<=
1
,
"Missing equality operator or reflect method."
);
if
(
x
.
name
()
!=
y
.
name
())
return
false
;
const
auto
&
yy
=
any_cast
<
T
>
(
y
);
...
...
src/include/migraphx/reflect.hpp
View file @
4220eebf
...
...
@@ -11,6 +11,15 @@ inline namespace MIGRAPHX_INLINE_NS {
namespace
detail
{
struct
reflect_placeholder
{
template
<
class
...
Ts
>
int
operator
()(
Ts
&&
...)
const
{
return
0
;
}
};
template
<
class
T
,
class
Selector
>
auto
reflect_impl
(
rank
<
1
>
,
T
&
x
,
Selector
f
)
->
decltype
(
T
::
reflect
(
x
,
f
))
{
...
...
@@ -23,8 +32,53 @@ auto reflect_impl(rank<0>, T&, Selector)
return
pack
();
}
template
<
class
T
>
auto
reflectable_impl
(
rank
<
1
>
,
T
&&
x
)
->
decltype
(
T
::
reflect
(
x
,
reflect_placeholder
{}),
std
::
true_type
{});
template
<
class
T
>
auto
reflectable_impl
(
rank
<
0
>
,
T
&&
)
->
decltype
(
std
::
false_type
{});
template
<
class
T
>
struct
remove_rvalue_reference
{
using
type
=
T
;
};
template
<
class
T
>
struct
remove_rvalue_reference
<
T
&&>
{
using
type
=
T
;
};
template
<
class
T
>
struct
wrapper
{
using
type
=
typename
remove_rvalue_reference
<
T
>::
type
;
type
data
;
type
get
()
const
{
return
data
;
}
};
template
<
class
T
>
wrapper
<
T
>
wrap
(
std
::
remove_reference_t
<
T
>&
x
)
{
return
wrapper
<
T
>
{
std
::
forward
<
T
>
(
x
)};
}
template
<
class
...
Ts
>
using
auto_tuple_t
=
std
::
tuple
<
typename
remove_rvalue_reference
<
Ts
>::
type
...
>
;
template
<
class
...
Ts
>
auto_tuple_t
<
Ts
...
>
auto_tuple
(
Ts
&&
...
xs
)
{
return
auto_tuple_t
<
Ts
...
>
{
std
::
forward
<
Ts
>
(
xs
)...};
}
}
// namespace detail
template
<
class
T
>
using
is_reflectable
=
decltype
(
detail
::
reflectable_impl
(
rank
<
1
>
{},
std
::
declval
<
T
>
()));
template
<
class
T
,
class
Selector
>
auto
reflect
(
T
&
x
,
Selector
f
)
{
...
...
@@ -34,17 +88,18 @@ auto reflect(T& x, Selector f)
template
<
class
T
>
auto
reflect_tie
(
T
&
x
)
{
return
reflect
(
x
,
[](
auto
&&
y
,
auto
&&
...)
{
return
std
::
ref
(
y
);
})(
[](
auto
&&
...
xs
)
{
return
std
::
ti
e
(
xs
.
get
()...);
});
return
reflect
(
x
,
[](
auto
&&
y
,
auto
&&
...)
{
return
detail
::
wrap
<
decltype
(
y
)
>
(
y
);
})(
[](
auto
&&
...
xs
)
{
return
detail
::
auto_tupl
e
(
xs
.
get
()...);
});
}
template
<
class
T
,
class
F
>
void
reflect_each
(
T
&
x
,
F
f
)
{
return
reflect
(
x
,
[](
auto
&&
y
,
auto
...
ys
)
{
return
pack
(
std
::
ref
(
y
),
ys
...);
})(
[
&
](
auto
&&
...
xs
)
{
each_args
([
&
](
auto
p
)
{
p
([
&
](
auto
&&
y
,
auto
...
ys
)
{
f
(
y
.
get
(),
ys
...);
});
},
xs
...);
});
return
reflect
(
x
,
[](
auto
&&
y
,
auto
...
ys
)
{
return
pack
(
detail
::
wrap
<
decltype
(
y
)
>
(
y
),
ys
...);
})([
&
](
auto
&&
...
xs
)
{
each_args
([
&
](
auto
p
)
{
p
([
&
](
auto
&&
y
,
auto
...
ys
)
{
f
(
y
.
get
(),
ys
...);
});
},
xs
...);
});
}
}
// namespace MIGRAPHX_INLINE_NS
...
...
src/instruction.cpp
View file @
4220eebf
...
...
@@ -28,6 +28,12 @@ void instruction::replace(const shape& r)
}
}
void
instruction
::
replace
(
operation
o
)
{
op
=
std
::
move
(
o
);
recompute_shape
();
}
void
instruction
::
recompute_shape
()
{
replace
(
compute_shape
(
op
,
arguments
));
}
void
instruction
::
clear_arguments
()
...
...
src/program.cpp
View file @
4220eebf
...
...
@@ -63,11 +63,16 @@ static void print_program(const program& p, F print_func)
for
(
auto
ins
:
iterator_for
(
p
))
{
std
::
string
var_name
=
"@"
+
std
::
to_string
(
count
)
;
std
::
string
var_name
;
if
(
ins
->
name
()
==
"@param"
)
{
var_name
=
any_cast
<
builtin
::
param
>
(
ins
->
get_operator
()).
parameter
;
}
else
{
var_name
=
"@"
+
std
::
to_string
(
count
);
count
++
;
}
names
.
emplace
(
ins
,
var_name
);
// TODO: Use all_of
...
...
@@ -78,8 +83,6 @@ static void print_program(const program& p, F print_func)
}
print_func
(
ins
,
names
);
count
++
;
}
}
...
...
src/targets/cpu/lowering.cpp
View file @
4220eebf
...
...
@@ -48,6 +48,12 @@ struct cpu_batch_norm_inference
{
op
::
batch_norm_inference
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::batch_norm_inference"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
...
...
@@ -107,6 +113,12 @@ struct cpu_lrn
{
op
::
lrn
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::lrn"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
...
...
@@ -140,25 +152,16 @@ struct cpu_lrn
}
};
struct
clip_op
{
op
::
clip
op
;
std
::
string
name
()
const
{
return
"cpu::clip"
;
}
auto
fcn
()
const
{
auto
max
=
op
.
max_val
;
auto
min
=
op
.
min_val
;
return
[
max
,
min
](
auto
x
)
{
using
type
=
decltype
(
x
);
return
std
::
min
(
std
::
max
(
type
(
min
),
x
),
type
(
max
));
};
}
};
struct
cpu_convolution
{
op
::
convolution
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::convolution"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
...
...
@@ -205,6 +208,12 @@ struct cpu_quant_convolution
{
op
::
quant_convolution
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::quant_convolution"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
shape
output_shape
,
std
::
vector
<
argument
>
args
)
const
...
...
@@ -251,6 +260,12 @@ struct cpu_im2col
{
op
::
im2col
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
static
std
::
string
name
()
{
return
"cpu::im2col"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
...
...
@@ -332,6 +347,12 @@ struct cpu_pooling
{
op
::
pooling
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::pooling_"
+
Op
::
name
();
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
...
...
@@ -376,20 +397,35 @@ struct cpu_pooling
}
};
struct
cpu_
contiguous
struct
cpu_
op
{
op
::
contiguous
op
;
std
::
string
name
()
const
{
return
"cpu::
contiguous"
;
}
op
eration
op
;
std
::
string
name
()
const
{
return
"cpu::
"
+
op
.
name
()
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
argument
compute
(
context
&
,
const
shape
&
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
{
return
op
.
compute
(
output_shape
,
args
);
}
friend
bool
operator
==
(
const
cpu_op
&
x
,
const
cpu_op
&
y
)
{
return
x
.
op
==
y
.
op
;
}
friend
bool
operator
==
(
const
cpu_op
&
x
,
const
operation
&
y
)
{
return
op
.
compute
(
output_shape
,
std
::
move
(
args
));
if
(
x
.
name
()
!=
y
.
name
())
return
false
;
return
x
==
any_cast
<
cpu_op
>
(
y
);
}
friend
bool
operator
==
(
const
operation
&
x
,
const
cpu_op
&
y
)
{
return
y
==
x
;
}
};
struct
cpu_pad
{
op
::
pad
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::contiguous"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
...
...
@@ -413,20 +449,15 @@ struct cpu_pad
}
};
struct
cpu_concat
{
op
::
concat
op
;
std
::
string
name
()
const
{
return
"cpu::concat"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
op
.
compute
(
output_shape
,
std
::
move
(
args
));
}
};
struct
cpu_gemm
{
op
::
dot
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::dot"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
...
...
@@ -472,6 +503,13 @@ struct cpu_gemm
struct
cpu_quant_gemm
{
op
::
quant_dot
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::quant_dot"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
...
...
@@ -529,162 +567,6 @@ struct cpu_quant_gemm
}
};
struct
cpu_gather
{
op
::
gather
op
;
std
::
string
name
()
const
{
return
"cpu::gather"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
return
op
.
compute
(
output_shape
,
std
::
move
(
args
));
}
};
struct
identity_op
{
std
::
string
name
()
const
{
return
"cpu::identity"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
x
;
};
}
};
struct
abs_op
{
std
::
string
name
()
const
{
return
"cpu::abs"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
abs
(
make_signed
(
x
));
};
}
};
struct
exp_op
{
std
::
string
name
()
const
{
return
"cpu::exp"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
exp
(
x
);
};
}
};
struct
log_op
{
std
::
string
name
()
const
{
return
"cpu::log"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
log
(
x
);
};
}
};
struct
sin_op
{
std
::
string
name
()
const
{
return
"cpu::sin"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
sin
(
x
);
};
}
};
struct
cos_op
{
std
::
string
name
()
const
{
return
"cpu::cos"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
cos
(
x
);
};
}
};
struct
tan_op
{
std
::
string
name
()
const
{
return
"cpu::tan"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
tan
(
x
);
};
}
};
struct
asin_op
{
std
::
string
name
()
const
{
return
"cpu::asin"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
asin
(
x
);
};
}
};
struct
acos_op
{
std
::
string
name
()
const
{
return
"cpu::acos"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
acos
(
x
);
};
}
};
struct
atan_op
{
std
::
string
name
()
const
{
return
"cpu::atan"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
atan
(
x
);
};
}
};
struct
sinh_op
{
std
::
string
name
()
const
{
return
"cpu::sinh"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
sinh
(
x
);
};
}
};
struct
cosh_op
{
std
::
string
name
()
const
{
return
"cpu::cosh"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
cosh
(
x
);
};
}
};
struct
tanh_op
{
std
::
string
name
()
const
{
return
"cpu::tanh"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
tanh
(
x
);
};
}
};
struct
sigmoid_op
{
std
::
string
name
()
const
{
return
"cpu::sigmoid"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
1.
f
/
(
1.
f
+
std
::
exp
(
-
x
));
};
}
};
struct
neg_op
{
std
::
string
name
()
const
{
return
"cpu::neg"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
-
x
;
};
}
};
struct
relu_op
{
std
::
string
name
()
const
{
return
"cpu::relu"
;
}
auto
fcn
()
const
{
return
[](
auto
x
)
{
return
std
::
max
(
decltype
(
x
){
0
},
x
);
};
}
};
struct
leaky_relu_op
{
op
::
leaky_relu
op
;
...
...
@@ -711,6 +593,12 @@ template <typename Op>
struct
cpu_unary
{
Op
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
.
op
,
f
);
}
std
::
string
name
()
const
{
return
op
.
name
();
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
...
...
@@ -789,6 +677,13 @@ struct softmax2d
struct
cpu_logsoftmax
{
op
::
logsoftmax
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"cpu::logsoftmax"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
return
op
.
compute_shape
(
inputs
);
}
...
...
@@ -855,104 +750,6 @@ struct cpu_logsoftmax
}
};
struct
add_op
{
std
::
string
name
()
const
{
return
"add"
;
}
auto
fcn
()
const
{
return
[](
auto
x
,
auto
y
)
{
return
x
+
y
;
};
}
};
struct
sub_op
{
std
::
string
name
()
const
{
return
"sub"
;
}
auto
fcn
()
const
{
return
[](
auto
x
,
auto
y
)
{
return
x
-
y
;
};
}
};
struct
mul_op
{
std
::
string
name
()
const
{
return
"mul"
;
}
auto
fcn
()
const
{
return
[](
auto
x
,
auto
y
)
{
return
x
*
y
;
};
}
};
struct
div_op
{
std
::
string
name
()
const
{
return
"div"
;
}
auto
fcn
()
const
{
return
[](
auto
x
,
auto
y
)
{
return
x
/
y
;
};
}
};
struct
max_op
{
std
::
string
name
()
const
{
return
"max"
;
}
auto
fcn
()
const
{
return
[](
auto
x
,
auto
y
)
{
return
std
::
max
(
x
,
y
);
};
}
};
struct
min_op
{
std
::
string
name
()
const
{
return
"min"
;
}
auto
fcn
()
const
{
return
[](
auto
x
,
auto
y
)
{
return
std
::
min
(
x
,
y
);
};
}
};
template
<
typename
Op
>
struct
cpu_binary
{
Op
op
;
std
::
string
name
()
const
{
return
"cpu::"
+
op
.
name
();
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
check_shapes
{
inputs
}.
has
(
2
).
same_type
().
same_dims
();
auto
s0
=
inputs
.
at
(
0
);
auto
s1
=
inputs
.
at
(
1
);
if
(
s0
==
s1
and
s0
.
packed
())
{
return
s0
;
}
else
{
return
{
s0
.
type
(),
s0
.
lens
()};
}
}
argument
compute
(
context
&
,
const
shape
&
output_shape
,
std
::
vector
<
argument
>
args
)
const
{
argument
result
{
output_shape
};
visit_all
(
result
,
args
[
0
],
args
[
1
])([
&
](
auto
output
,
auto
input1
,
auto
input2
)
{
auto
s1
=
input1
.
get_shape
();
auto
s2
=
input2
.
get_shape
();
if
(
s1
==
s2
and
s1
.
standard
())
{
std
::
transform
(
input1
.
begin
(),
input1
.
end
(),
input2
.
begin
(),
output
.
begin
(),
op
.
fcn
());
}
else
{
shape_for_each
(
output
.
get_shape
(),
[
&
](
const
auto
&
idx
)
{
output
(
idx
.
begin
(),
idx
.
end
())
=
op
.
fcn
()(
input1
(
idx
.
begin
(),
idx
.
end
()),
input2
(
idx
.
begin
(),
idx
.
end
()));
});
}
});
return
result
;
}
};
struct
cpu_apply
{
program
*
prog
;
...
...
@@ -972,46 +769,19 @@ struct cpu_apply
void
init
()
{
apply_map
[
"im2col"
]
=
extend_op
<
cpu_im2col
,
op
::
im2col
>
();
apply_map
[
"convolution"
]
=
extend_op
<
cpu_convolution
,
op
::
convolution
>
();
apply_map
[
"quant_convolution"
]
=
extend_op
<
cpu_quant_convolution
,
op
::
quant_convolution
>
();
apply_map
[
"dot"
]
=
extend_op
<
cpu_gemm
,
op
::
dot
>
();
apply_map
[
"quant_dot"
]
=
extend_op
<
cpu_quant_gemm
,
op
::
quant_dot
>
();
apply_map
[
"batch_norm_inference"
]
=
extend_op
<
cpu_batch_norm_inference
,
op
::
batch_norm_inference
>
();
apply_map
[
"lrn"
]
=
extend_op
<
cpu_lrn
,
op
::
lrn
>
();
apply_map
[
"clip"
]
=
extend_op
<
cpu_unary
<
clip_op
>
,
op
::
clip
>
();
apply_map
[
"contiguous"
]
=
extend_op
<
cpu_contiguous
,
op
::
contiguous
>
();
apply_map
[
"pad"
]
=
extend_op
<
cpu_pad
,
op
::
pad
>
();
apply_map
[
"concat"
]
=
extend_op
<
cpu_concat
,
op
::
concat
>
();
apply_map
[
"gather"
]
=
extend_op
<
cpu_gather
,
op
::
gather
>
();
apply_map
[
"logsoftmax"
]
=
extend_op
<
cpu_logsoftmax
,
op
::
logsoftmax
>
();
apply_map
[
"leaky_relu"
]
=
extend_op
<
cpu_unary
<
leaky_relu_op
>
,
op
::
leaky_relu
>
();
apply_map
[
"elu"
]
=
extend_op
<
cpu_unary
<
elu_op
>
,
op
::
elu
>
();
apply_map
[
"identity"
]
=
simple_op
<
cpu_unary
<
identity_op
>>
();
apply_map
[
"abs"
]
=
simple_op
<
cpu_unary
<
abs_op
>>
();
apply_map
[
"sinh"
]
=
simple_op
<
cpu_unary
<
sinh_op
>>
();
apply_map
[
"cosh"
]
=
simple_op
<
cpu_unary
<
cosh_op
>>
();
apply_map
[
"tanh"
]
=
simple_op
<
cpu_unary
<
tanh_op
>>
();
apply_map
[
"sigmoid"
]
=
simple_op
<
cpu_unary
<
sigmoid_op
>>
();
apply_map
[
"exp"
]
=
simple_op
<
cpu_unary
<
exp_op
>>
();
apply_map
[
"log"
]
=
simple_op
<
cpu_unary
<
log_op
>>
();
apply_map
[
"neg"
]
=
simple_op
<
cpu_unary
<
neg_op
>>
();
apply_map
[
"sin"
]
=
simple_op
<
cpu_unary
<
sin_op
>>
();
apply_map
[
"cos"
]
=
simple_op
<
cpu_unary
<
cos_op
>>
();
apply_map
[
"tan"
]
=
simple_op
<
cpu_unary
<
tan_op
>>
();
apply_map
[
"asin"
]
=
simple_op
<
cpu_unary
<
asin_op
>>
();
apply_map
[
"acos"
]
=
simple_op
<
cpu_unary
<
acos_op
>>
();
apply_map
[
"atan"
]
=
simple_op
<
cpu_unary
<
atan_op
>>
();
apply_map
[
"relu"
]
=
simple_op
<
cpu_unary
<
relu_op
>>
();
apply_map
[
"add"
]
=
simple_op
<
cpu_binary
<
add_op
>>
();
apply_map
[
"sub"
]
=
simple_op
<
cpu_binary
<
sub_op
>>
();
apply_map
[
"mul"
]
=
simple_op
<
cpu_binary
<
mul_op
>>
();
apply_map
[
"div"
]
=
simple_op
<
cpu_binary
<
div_op
>>
();
apply_map
[
"max"
]
=
simple_op
<
cpu_binary
<
max_op
>>
();
apply_map
[
"min"
]
=
simple_op
<
cpu_binary
<
min_op
>>
();
apply_map
[
"softmax"
]
=
simple_op
<
softmax2d
>
();
apply_map
[
"convolution"
]
=
extend_op
<
cpu_convolution
,
op
::
convolution
>
();
apply_map
[
"dot"
]
=
extend_op
<
cpu_gemm
,
op
::
dot
>
();
apply_map
[
"quant_dot"
]
=
extend_op
<
cpu_quant_gemm
,
op
::
quant_dot
>
();
apply_map
[
"quant_convolution"
]
=
extend_op
<
cpu_quant_convolution
,
op
::
quant_convolution
>
();
apply_map
[
"elu"
]
=
extend_op
<
cpu_unary
<
elu_op
>
,
op
::
elu
>
();
apply_map
[
"im2col"
]
=
extend_op
<
cpu_im2col
,
op
::
im2col
>
();
apply_map
[
"leaky_relu"
]
=
extend_op
<
cpu_unary
<
leaky_relu_op
>
,
op
::
leaky_relu
>
();
apply_map
[
"logsoftmax"
]
=
extend_op
<
cpu_logsoftmax
,
op
::
logsoftmax
>
();
apply_map
[
"lrn"
]
=
extend_op
<
cpu_lrn
,
op
::
lrn
>
();
apply_map
[
"pad"
]
=
extend_op
<
cpu_pad
,
op
::
pad
>
();
apply_map
[
"softmax"
]
=
simple_op
<
softmax2d
>
();
}
void
apply
()
...
...
@@ -1027,9 +797,18 @@ struct cpu_apply
{
apply_map
.
at
(
it
->
name
())(
it
);
}
else
if
(
is_context_free
(
it
->
get_operator
()))
{
apply_cpu_op
(
it
);
}
}
}
void
apply_cpu_op
(
instruction_ref
ins
)
{
prog
->
replace_instruction
(
ins
,
cpu_op
{
ins
->
get_operator
()},
ins
->
inputs
());
}
template
<
class
T
>
void
apply_simple_op
(
instruction_ref
ins
)
{
...
...
src/targets/gpu/include/migraphx/gpu/abs.hpp
View file @
4220eebf
...
...
@@ -13,6 +13,13 @@ struct context;
struct
miopen_abs
{
shared
<
activation_descriptor
>
ad
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
gpu
::
reflect
(
self
.
ad
.
get
(),
f
);
}
std
::
string
name
()
const
{
return
"gpu::abs"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/batchnorm.hpp
View file @
4220eebf
...
...
@@ -13,6 +13,13 @@ struct context;
struct
miopen_batch_norm_inference
{
op
::
batch_norm_inference
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::batch_norm_inference"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/clip.hpp
View file @
4220eebf
...
...
@@ -13,6 +13,13 @@ struct context;
struct
hip_clip
{
op
::
clip
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::clip"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/concat.hpp
View file @
4220eebf
...
...
@@ -14,6 +14,12 @@ struct hip_concat
{
op
::
concat
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::concat"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/contiguous.hpp
View file @
4220eebf
...
...
@@ -13,6 +13,13 @@ struct context;
struct
miopen_contiguous
{
op
::
contiguous
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::contiguous"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
compute
(
context
&
,
shape
output_shape
,
const
std
::
vector
<
argument
>&
args
)
const
;
...
...
src/targets/gpu/include/migraphx/gpu/elu.hpp
View file @
4220eebf
...
...
@@ -13,6 +13,13 @@ struct context;
struct
miopen_elu
{
shared
<
activation_descriptor
>
ad
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
gpu
::
reflect
(
self
.
ad
.
get
(),
f
);
}
std
::
string
name
()
const
{
return
"gpu::elu"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/gather.hpp
View file @
4220eebf
...
...
@@ -14,6 +14,13 @@ struct context;
struct
hip_gather
{
op
::
gather
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::gather"
;
}
shape
compute_shape
(
std
::
vector
<
shape
>
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/gemm.hpp
View file @
4220eebf
...
...
@@ -13,6 +13,13 @@ struct context;
struct
miopen_gemm
{
op
::
dot
op
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
migraphx
::
reflect
(
self
.
op
,
f
);
}
std
::
string
name
()
const
{
return
"gpu::gemm"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
...
...
src/targets/gpu/include/migraphx/gpu/hip.hpp
View file @
4220eebf
...
...
@@ -28,6 +28,13 @@ struct hip_allocate
{
shape
s
;
std
::
string
tag
{};
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
s
,
"shape"
),
f
(
self
.
tag
,
"tag"
));
}
std
::
string
name
()
const
{
return
"hip::allocate"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
...
...
@@ -43,6 +50,13 @@ struct hip_allocate
struct
hip_sync
{
std
::
string
tag
{};
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
pack
(
f
(
self
.
tag
,
"tag"
));
}
std
::
string
name
()
const
{
return
"hip::sync"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
{
...
...
src/targets/gpu/include/migraphx/gpu/leaky_relu.hpp
View file @
4220eebf
...
...
@@ -13,6 +13,13 @@ struct context;
struct
miopen_leaky_relu
{
shared
<
activation_descriptor
>
ad
;
template
<
class
Self
,
class
F
>
static
auto
reflect
(
Self
&
self
,
F
f
)
{
return
gpu
::
reflect
(
self
.
ad
.
get
(),
f
);
}
std
::
string
name
()
const
{
return
"gpu::leaky_relu"
;
}
shape
compute_shape
(
const
std
::
vector
<
shape
>&
inputs
)
const
;
argument
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment