Commit 401d0f68 authored by Shucai Xiao's avatar Shucai Xiao
Browse files

clang format

parent 992f57ba
......@@ -122,11 +122,13 @@ struct find_nop_reshapes
auto ins = mr.result;
// // output of reshape and contiguous is standard, so no need to add another contiguous
// // if the output is used an a ret value
// if(ins->name() == "contiguous" and ins->name() != "contiguous" and ins->name() != "reshape")
// if(ins->name() == "contiguous" and ins->name() != "contiguous" and ins->name() !=
// "reshape")
// {
// auto& outputs = ins->outputs();
// if(std::any_of(
// outputs.begin(), outputs.end(), [&](auto o) { return o->name() == "@return"; }))
// outputs.begin(), outputs.end(), [&](auto o) { return o->name() == "@return";
// }))
// {
// return;
// }
......
......@@ -35,8 +35,8 @@ struct half2_max
// in_data is in shared memory
template <class Op>
__device__ __half2
block_reduce_half2(__half2* buffer, index_int batch_item_num, index_int tid, index_int block_size, Op op)
__device__ __half2 block_reduce_half2(
__half2* buffer, index_int batch_item_num, index_int tid, index_int block_size, Op op)
{
__syncthreads();
for(index_int s = block_size; s > 0; s >>= 1)
......@@ -92,8 +92,8 @@ softmax_kernel_half2(void* data_in, index_int batch_item_num, index_int block_si
// in_data is in shared memory
template <class Op>
__device__ __half
block_reduce_half(__half* data, index_int batch_item_num, index_int tid, index_int block_size, Op op)
__device__ __half block_reduce_half(
__half* data, index_int batch_item_num, index_int tid, index_int block_size, Op op)
{
__syncthreads();
for(index_int s = block_size / 2; s > 0; s >>= 1)
......@@ -125,14 +125,16 @@ softmax_kernel_half(void* data_in, index_int batch_item_num, index_int block_siz
in_data_reduce[i] = d;
}
auto batch_max = block_reduce_half(in_data_reduce, batch_item_num, threadIdx.x, block_size, max{});
auto batch_max =
block_reduce_half(in_data_reduce, batch_item_num, threadIdx.x, block_size, max{});
for(int i = threadIdx.x; i < batch_item_num; i += block_size)
{
in_data[i] = __float2half(::exp(__half2float(in_data[i]) - __half2float(batch_max)));
in_data_reduce[i] = in_data[i];
}
auto batch_sum = block_reduce_half(in_data_reduce, batch_item_num, threadIdx.x, block_size, sum{});
auto batch_sum =
block_reduce_half(in_data_reduce, batch_item_num, threadIdx.x, block_size, sum{});
for(int i = threadIdx.x; i < batch_item_num; i += block_size)
{
output[i + start] = __float2half(__half2float(in_data[i]) / __half2float(batch_sum));
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment