Commit 3f322644 authored by Alan Turner's avatar Alan Turner
Browse files

Merge remote-tracking branch 'origin/develop' into ck-gsg

parents 53aee707 09aaa63e
......@@ -44,7 +44,7 @@ struct allocate
std::string name() const { return "allocate"; }
shape compute_shape(const std::vector<shape>& inputs) const
{
migraphx::check_shapes{inputs, *this}.has(0);
migraphx::check_shapes{inputs, *this, true}.has(0);
return s;
}
argument compute(const shape& output_shape, const std::vector<argument>&) const
......
......@@ -26,6 +26,7 @@
#include <array>
#include <migraphx/check_shapes.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/streamutils.hpp>
#include <migraphx/literal.hpp>
......@@ -73,49 +74,87 @@ struct concat
}
return offsets;
}
shape normalize_compute_shape(std::vector<shape> inputs) const
{
if(inputs.empty())
// inputs can contain 1 or more shapes (variadic). compute_shape_op ensures there must
// be at least 1.
check_shapes{inputs, *this, true}.same_ndims().same_type();
if(std::none_of(inputs.begin(), inputs.end(), [&](const shape& s) { return s.dynamic(); }))
{
MIGRAPHX_THROW("CONCAT: Number of input tensors should exceed 0");
// Static input shapes
const auto& first_shape_lens = inputs.front().lens();
const auto& type = inputs.front().type();
for(std::size_t ll = 0; ll < first_shape_lens.size(); ll++)
{
if(ll != axis)
{
if(not std::all_of(inputs.begin(), inputs.end(), [&](auto s) {
return s.lens()[ll] == first_shape_lens[ll];
}))
{
MIGRAPHX_THROW("CONCAT: all input dimensions should match along axis " +
std::to_string(ll));
}
}
}
std::size_t new_dim_axis = 0;
for(const auto& input : inputs)
{
const auto& lens = input.lens();
new_dim_axis += lens[axis];
}
std::vector<std::size_t> new_lens = first_shape_lens;
new_lens[axis] = new_dim_axis;
return shape::from_permutation(type, new_lens, find_permutation(inputs));
}
const auto& first_shape_lens = inputs.front().lens();
const auto& type = inputs.front().type();
for(std::size_t l = 0; l < first_shape_lens.size(); l++)
else if(std::all_of(
inputs.begin(), inputs.end(), [&](const shape& s) { return s.dynamic(); }))
{
if(l != axis)
// Dynamic input shapes
for(std::size_t index = 0; index < inputs[0].ndim(); index++)
{
if(not std::all_of(inputs.begin(), inputs.end(), [&](auto s) {
return s.lens()[l] == first_shape_lens[l];
}))
if(index != axis)
{
MIGRAPHX_THROW("CONCAT: Non-axis dimensions should match");
if(not std::all_of(inputs.begin(), inputs.end(), [&](const shape& s) {
return s.dyn_dims()[index] == inputs[0].dyn_dims()[index];
}))
MIGRAPHX_THROW("CONCAT: all input dimensions should match in axis " +
std::to_string(index));
}
}
std::size_t new_min = 0;
std::size_t new_max = 0;
for(const auto& input : inputs)
{
auto ddim = input.dyn_dims()[axis];
new_min += ddim.min;
new_max += ddim.max;
}
auto new_dims = inputs[0].dyn_dims();
new_dims[axis] = migraphx::shape::dynamic_dimension{new_min, new_max, 0};
return {inputs[0].type(), new_dims};
}
std::size_t new_dim_axis = 0;
for(const auto& input : inputs)
else
{
const auto& lens = input.lens();
new_dim_axis += lens[axis];
MIGRAPHX_THROW("CONCAT: Cannot mix static and dynamic input shapes.");
}
std::vector<std::size_t> new_lens;
std::copy(first_shape_lens.begin(), first_shape_lens.end(), std::back_inserter(new_lens));
new_lens[axis] = new_dim_axis;
return shape::from_permutation(type, new_lens, find_permutation(inputs));
}
argument compute(const shape& output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
argument result{output_shape};
std::vector<std::size_t> coffsets = compute_offsets(output_shape, args);
argument result{dyn_out.computed_shape};
std::vector<std::size_t> coffsets = compute_offsets(dyn_out.computed_shape, args);
for(std::size_t l = 0; l < args.size(); l++)
{
auto argl = args[l];
visit_all(result, argl)([&](auto output, auto input) {
auto slice_shape =
shape{output_shape.type(), input.get_shape().lens(), output_shape.strides()};
auto slice = make_view(slice_shape, output.data() + coffsets[l]);
auto slice_shape = shape{dyn_out.computed_shape.type(),
input.get_shape().lens(),
dyn_out.computed_shape.strides()};
auto slice = make_view(slice_shape, output.data() + coffsets[l]);
std::copy(input.begin(), input.end(), slice.begin());
});
}
......
......@@ -143,16 +143,22 @@ struct nonmaxsuppression
void sort()
{
std::sort(x.begin(), x.end());
std::sort(y.begin(), y.end());
if(x[0] > x[1])
{
std::swap(x[0], x[1]);
}
if(y[0] > y[1])
{
std::swap(y[0], y[1]);
}
}
std::array<double, 2>& operator[](std::size_t i) { return i == 0 ? x : y; }
double area() const
{
assert(std::is_sorted(x.begin(), x.end()));
assert(std::is_sorted(y.begin(), y.end()));
assert(x[0] <= x[1]);
assert(y[0] <= y[1]);
return (x[1] - x[0]) * (y[1] - y[0]);
}
};
......@@ -190,14 +196,10 @@ struct nonmaxsuppression
{
intersection[i][0] = std::max(b1[i][0], b2[i][0]);
intersection[i][1] = std::min(b1[i][1], b2[i][1]);
}
std::vector<std::array<double, 2>> bbox = {intersection.x, intersection.y};
if(std::any_of(bbox.begin(), bbox.end(), [](auto bx) {
return not std::is_sorted(bx.begin(), bx.end());
}))
{
return false;
if(intersection[i][0] > intersection[i][1])
{
return false;
}
}
const double area1 = b1.area();
......@@ -265,31 +267,31 @@ struct nonmaxsuppression
auto batch_boxes_start = boxes.begin() + batch_idx * num_boxes * 4;
auto boxes_heap = filter_boxes_by_score(scores_start, num_boxes, score_threshold);
selected_boxes_inside_class.clear();
// Get the next box with top score, filter by iou_threshold
while(not boxes_heap.empty() &&
selected_boxes_inside_class.size() < max_output_boxes_per_class)
{
// Check with existing selected boxes for this class, remove box if it
// exceeds the IOU (Intersection Over Union) threshold
// select next top scorer box and remove any boxes from boxes_heap that exceeds IOU
// threshold with the selected box
const auto next_top_score = boxes_heap.top();
bool not_selected =
std::any_of(selected_boxes_inside_class.begin(),
selected_boxes_inside_class.end(),
[&](auto selected_index) {
return this->suppress_by_iou(
batch_box(batch_boxes_start, next_top_score.second),
batch_box(batch_boxes_start, selected_index.second),
iou_threshold);
});
if(not not_selected)
boxes_heap.pop();
selected_boxes_inside_class.push_back(next_top_score);
selected_indices.push_back(batch_idx);
selected_indices.push_back(class_idx);
selected_indices.push_back(next_top_score.second);
std::priority_queue<std::pair<double, int64_t>> remainder_boxes;
while(not boxes_heap.empty())
{
selected_boxes_inside_class.push_back(next_top_score);
selected_indices.push_back(batch_idx);
selected_indices.push_back(class_idx);
selected_indices.push_back(next_top_score.second);
auto iou_candidate_box = boxes_heap.top();
if(not this->suppress_by_iou(
batch_box(batch_boxes_start, iou_candidate_box.second),
batch_box(batch_boxes_start, next_top_score.second),
iou_threshold))
{
remainder_boxes.push(iou_candidate_box);
}
boxes_heap.pop();
}
boxes_heap.pop();
boxes_heap = remainder_boxes;
}
});
std::copy(selected_indices.begin(), selected_indices.end(), output.begin());
......
......@@ -31,18 +31,30 @@ namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
// different attributes
// 1) use_input(default)/use_output
// 2) use_rank(default)/use_len
// 3) clip_min(default)/not_clip_min
// 3.1) include_min(default)/exclude_min
// 4) clip_max(default)/not_clip_max
// 4.1) exclude_max(default)/include_max
// 5) normalize padding
/**
* `normalize_attribute` settings:
* Note that default options are not included as enums.
* 1. `use_input` (default) vs. `use_output`:
* Affects the rank of the attribute.
* `use_input -> lens.size()`, `use_output -> lens.size() + vec.size()`.
* 2. use_rank (default) vs use_len:
* `use_rank` sets the max value/index of the attribute as the rank of lens.
* `use_lens` sets the max value/index as the corresponding value in lens at the axes index.
* 3. `clip_min` vs. `not_clip_min` (default):
* Clip values less than the minimum to the minimum or not.
* 4. `include_min` vs. `exclude_min` (default):
* Include or exclude the minimum value/index for range checking and clipping.
* 5. `clip_max` vs. `not_clip_max` (default):
* Clip values greater than the maximum or not.
* 6. `include_max` vs. `exclude_max` (default):
* Include or exclude the maximum value/index for range checking and clipping.
* 7. `normalize_padding`:
* To normalize the padding to `2*(pad ndim)` dimensions.
*/
enum class normalize_attribute
{
use_len,
use_output,
use_len,
clip_max,
clip_min,
include_max,
......
......@@ -28,6 +28,7 @@
#include <vector>
#include <cmath>
#include <utility>
#include <migraphx/check_shapes.hpp>
#include <migraphx/config.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/op/normalize_attribute.hpp>
......@@ -60,6 +61,7 @@ struct reverse
shape normalize_compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(1);
return inputs[0].with_lens(inputs[0].lens());
}
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_OPERATORS_SELECT_MODULE_HPP
#define MIGRAPHX_GUARD_OPERATORS_SELECT_MODULE_HPP
#include <migraphx/check_shapes.hpp>
#include <migraphx/module.hpp>
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
namespace op {
struct select_module
{
shape output_dyn_shapes;
template <class Self, class F>
static auto reflect(Self& self, F f)
{
return pack(f(self.output_dyn_shapes, "output_dyn_shapes"));
}
std::string name() const { return "select_module"; }
shape compute_shape(const std::vector<shape>& inputs, const std::vector<module_ref>&) const
{
check_shapes{inputs, *this, true}.has_at_least(1);
return shape{output_dyn_shapes};
}
std::vector<std::string> get_input_parameter_names(module_ref mod) const
{
auto param_names = mod->get_parameter_names();
std::vector<std::string> ret;
std::copy_if(param_names.cbegin(),
param_names.cend(),
std::back_inserter(ret),
[](auto pn) { return not contains(pn, "#output_"); });
return ret;
}
std::vector<std::string> get_output_parameter_names(module_ref mod) const
{
auto param_names = mod->get_parameter_names();
std::vector<std::string> ret;
std::copy_if(param_names.cbegin(),
param_names.cend(),
std::back_inserter(ret),
[](auto pn) { return contains(pn, "#output_"); });
return ret;
}
argument compute(const shape&,
const std::vector<argument>& args,
const std::vector<module_ref>& submodule_list,
const std::function<std::vector<argument>(
module_ref&, const std::unordered_map<std::string, argument>&)>& run) const
{
// Find submodule with input parameter shapes exactly the same as the input instruction
// arguments. Assuming instruction arguments are in the same order as the instruction
// parameters.
auto module_iter =
std::find_if(submodule_list.cbegin(), submodule_list.cend(), [&](module_ref mr) {
auto in_param_names = get_input_parameter_names(mr);
auto param_shapes = mr->get_parameter_shapes();
assert(in_param_names.size() <= args.size());
return std::equal(
in_param_names.cbegin(),
in_param_names.cend(),
args.cbegin(),
[&](auto p_name, auto a) { return a.get_shape() == param_shapes[p_name]; });
});
if(module_iter == submodule_list.end())
{
MIGRAPHX_THROW("SELECT_MODULE: no compatible submodules found for given input shapes");
}
auto* module_to_run = *module_iter;
std::unordered_map<std::string, argument> p_map;
// add input parameters to parameter_map
auto in_param_names = get_input_parameter_names(module_to_run);
assert(in_param_names.size() <= args.size());
std::transform(in_param_names.begin(),
in_param_names.end(),
args.begin(),
std::inserter(p_map, p_map.end()),
[&](auto&& name, auto&& a) { return std::make_pair(name, a); });
// One tuple output parameter in main module to multiple output parameters in submodule
auto out_param_names = get_output_parameter_names(module_to_run);
auto output_sub_objects = args.back().get_sub_objects();
assert(out_param_names.size() == output_sub_objects.size());
std::transform(out_param_names.begin(),
out_param_names.end(),
output_sub_objects.begin(),
std::inserter(p_map, p_map.end()),
[&](auto&& name, auto&& a) {
auto ps = module_to_run->get_parameter_shape(name);
if(a.get_shape() != ps)
{
assert(ps.bytes() == a.get_shape().bytes());
return std::make_pair(name, a.reshape(ps));
}
else
{
return std::make_pair(name, a);
}
});
auto results = run(module_to_run, p_map);
return argument{results};
}
std::ptrdiff_t output_alias(const std::vector<shape>& shapes) const
{
return shapes.size() - 1;
}
};
} // namespace op
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -27,6 +27,7 @@
#include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp>
#include <migraphx/config.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/value.hpp>
#include <migraphx/op/normalize_attribute.hpp>
......@@ -46,6 +47,10 @@ struct slice
return pack(f(self.axes, "axes"), f(self.starts, "starts"), f(self.ends, "ends"));
}
/**
* Ensure that attribute vectors axes, starts, and ends are all the same size and values are in
* limits.
*/
value attributes() const
{
value normalize = value::object{};
......@@ -65,14 +70,6 @@ struct slice
std::string name() const { return "slice"; }
auto fix_index(const std::vector<std::size_t>& lens, std::size_t axis, int64_t index) const
{
int64_t r = std::min(index, static_cast<int64_t>(lens[axis]));
if(r < 0)
r += lens[axis];
return std::size_t(r);
}
auto compute_offset(const shape& s) const
{
const std::vector<std::size_t>& lens = s.lens();
......@@ -83,14 +80,14 @@ struct slice
for(std::size_t i = 0; i < axes.size(); i++)
{
auto axis = axes[i];
offset += fix_index(lens, axis, starts[i]) * strides[axis];
offset += starts[i] * strides[axis];
}
}
else
{
for(std::size_t axis = 0; axis < lens.size(); axis++)
{
offset += fix_index(lens, axis, starts[axis]) * strides[axis];
offset += starts[axis] * strides[axis];
}
}
return offset;
......@@ -98,37 +95,81 @@ struct slice
shape normalize_compute_shape(std::vector<shape> inputs) const
{
auto input_shape = inputs[0];
auto t = input_shape.type();
const auto& old_lens = input_shape.lens();
const auto& old_strides = input_shape.strides();
check_shapes{inputs, *this, true}.has(1);
auto input_shape = inputs[0];
auto t = input_shape.type();
if(std::any_of(
axes.begin(), axes.end(), [&](auto i) { return (i >= old_lens.size() and i < 0); }))
// TODO: When support for dynamic shapes is added to normalize_attributes,
// remove this restriction.
if(input_shape.dynamic() and std::any_of(axes.begin(), axes.end(), [&](auto axis) {
return not input_shape.dyn_dims()[axis].is_fixed();
}))
{
MIGRAPHX_THROW("SLICE: input axis " + to_string_range(axes) + " out of range");
MIGRAPHX_THROW("SLICE: slicing is not allowed on non-fixed dynamic input axis ");
}
if(starts.size() != axes.size() or axes.size() != ends.size())
// For a static shape, old_lens will be adjusted to a new size
// for those axes that are sliced.
// For dynamic shape, the adjusted old_lens become the new max values,
// while updating the old mins and opts if possible.
std::vector<std::size_t> new_mins;
std::vector<std::size_t> new_opts;
std::vector<std::size_t> old_lens;
std::vector<std::size_t> old_strides;
if(input_shape.dynamic())
{
old_lens = input_shape.max_lens();
new_mins = input_shape.min_lens();
new_opts = input_shape.opt_lens();
}
else
{
MIGRAPHX_THROW("SLICE: inconsistent sizes");
old_lens = input_shape.lens();
// For static shape (including during eval step after a dynamic input) the strides are
// indexed into the pre-slice array, so they are larger than the apparent size of the
// resulting shape.
old_strides = input_shape.strides();
}
std::vector<std::size_t> new_lens = old_lens;
for(std::size_t i = 0; i < axes.size(); i++)
{
auto axis = axes[i];
new_lens[axis] =
fix_index(old_lens, axis, ends[i]) - fix_index(old_lens, axis, starts[i]);
auto axis = axes[i];
size_t sliced_length = ends[i] - starts[i];
// A Numpy indexing convention: a slice size larger than the actual dimension
// is legal and the "ends" value is clipped to the axis size
new_lens[axis] = std::min(new_lens[axis], sliced_length);
if(input_shape.dynamic())
{
// TODO: when non-fixed shape slicing is allowed, this will be different than
// sliced_length, making use of TBD start/end values.
std::size_t sliced_min_length = ends[i] - starts[i];
// if the slice size is smaller than maxes but larger than mins
new_mins[axis] = std::min(sliced_min_length, new_mins[axis]);
auto sliced_opt_length = ends[i] - starts[i];
if(new_opts[axis] != 0)
new_opts[axis] = sliced_opt_length;
if(new_opts[axis] < new_mins[axis] or new_opts[axis] > new_lens[axis])
new_opts[axis] = 0;
}
}
if(input_shape.dynamic())
{
return shape{t, new_mins, new_lens, new_opts};
}
else
{
return shape{t, new_lens, old_strides};
}
return shape{t, new_lens, old_strides};
}
argument compute(shape output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
auto input = args[0];
auto offset = compute_offset(input.get_shape()) * output_shape.type_size();
return {std::move(output_shape), [=] { return input.data() + offset; }};
auto input = args[0];
auto offset = compute_offset(input.get_shape()) * dyn_out.computed_shape.type_size();
return {dyn_out.computed_shape, [=] { return input.data() + offset; }};
}
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
};
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -42,9 +42,17 @@ struct where
shape compute_shape(std::vector<shape> inputs) const
{
check_shapes{inputs, *this}.has(3).same_dims();
check_shapes{inputs, *this, true}.has(3).same_dims();
auto s1 = inputs.at(1);
auto s2 = inputs.at(2);
if(s1.dynamic() or s2.dynamic())
{
if(s1 == s2)
return s1;
MIGRAPHX_THROW("WHERE: dynamic input shapes must be the same");
}
// Compare two static shapes, returning a standard shape
if(s1 == s2 and s1.packed())
{
return s1;
......@@ -63,12 +71,12 @@ struct where
}
}
argument compute(const shape& output_shape, std::vector<argument> args) const
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{
argument result{output_shape};
argument result{dyn_out.computed_shape};
visit_all(result, args[1], args[2])([&](auto output, const auto x, const auto y) {
args[0].visit([&](const auto condition) {
par_for(output_shape.elements(),
par_for(dyn_out.computed_shape.elements(),
[&](auto i) { output[i] = condition[i] ? x[i] : y[i]; });
});
});
......
......@@ -140,6 +140,8 @@ template <class T>
auto compute_shape_op(rank<2>, const T& x, const std::vector<shape>& inputs)
-> decltype(x.normalize_compute_shape(inputs))
{
if(inputs.empty())
MIGRAPHX_THROW("At least one input is required for " + x.name());
dependent_type<operation, T> y = x;
normalize_attributes(y, inputs[0].max_lens());
return any_cast<T>(y).normalize_compute_shape(inputs);
......
......@@ -33,15 +33,36 @@
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
// unregister all ops for specified target, useful when unloading dynamically plugged-in target lib
void unregister_op(const std::string& op_name);
namespace detail {
struct op_handler
{
operation op;
std::string name;
op_handler(const operation& op_r) : op(op_r), name(op.name()){};
~op_handler() { unregister_op(name); }
};
} // namespace detail
void register_op_init();
void register_op(const operation& op);
operation load_op(const std::string& name);
bool has_op(const std::string& name);
std::vector<std::string> get_operators();
template <class T>
void register_op()
{
register_op(T{});
register_op_init(); // instantiate static op_map;
static auto op_h = detail::op_handler(T{});
register_op(op_h.op);
}
struct register_op_action
......
......@@ -33,14 +33,28 @@
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
void register_target_init();
void register_target(const target& t);
void unregister_target(const std::string& name);
target make_target(const std::string& name);
std::vector<std::string> get_targets();
namespace detail {
struct target_handler
{
target t;
std::string target_name;
target_handler(const target& t_r) : t(t_r), target_name(t.name()) {}
~target_handler() { unregister_target(target_name); }
};
} // namespace detail
template <class T>
void register_target()
{
register_target(T{});
register_target_init();
static auto t_h = detail::target_handler(T{});
register_target(t_h.t);
}
struct register_target_action
......
......@@ -32,6 +32,9 @@ inline namespace MIGRAPHX_INLINE_NS {
struct module;
/**
* Replace `allocate` instructions with target allocations or output parameters.
*/
struct replace_allocate
{
allocation_model model;
......
......@@ -93,7 +93,7 @@ auto to_value_impl(rank<4>, const optional<T>& x)
{
value result{};
if(x.has_value())
to_value(*x);
return to_value(*x);
return result;
}
......@@ -212,28 +212,22 @@ void from_value_impl(rank<6>, const value& v, optional<T>& x)
x = from_value<T>(v);
}
template <class T, MIGRAPHX_REQUIRES(std::is_arithmetic<T>{})>
template <class T, MIGRAPHX_REQUIRES(std::is_arithmetic<T>{} or std::is_enum<T>{})>
void from_value_impl(rank<7>, const value& v, T& x)
{
x = v.to<T>();
}
template <class T, MIGRAPHX_REQUIRES(std::is_enum<T>{})>
void from_value_impl(rank<8>, const value& v, T& x)
{
x = v.to<T>();
}
inline void from_value_impl(rank<9>, const value& v, std::string& x) { x = v.to<std::string>(); }
inline void from_value_impl(rank<8>, const value& v, std::string& x) { x = v.to<std::string>(); }
template <class T>
auto from_value_impl(rank<10>, const value& v, T& x) -> decltype(x.from_value(v), void())
auto from_value_impl(rank<9>, const value& v, T& x) -> decltype(x.from_value(v), void())
{
x.from_value(v);
}
template <class T>
auto from_value_impl(rank<11>, const value& v, T& x) -> decltype(migraphx_from_value(v, x), void())
auto from_value_impl(rank<10>, const value& v, T& x) -> decltype(migraphx_from_value(v, x), void())
{
migraphx_from_value(v, x);
}
......@@ -249,7 +243,7 @@ value to_value(const T& x)
template <class T>
void from_value(const value& v, T& x)
{
detail::from_value_impl(rank<11>{}, v, x);
detail::from_value_impl(rank<10>{}, v, x);
}
} // namespace MIGRAPHX_INLINE_NS
......
......@@ -243,6 +243,9 @@ struct shape
/// Return true if the shape is dynamic
bool dynamic() const;
/// Return true if this shape or any of the sub_shapes are dynamic
bool any_of_dynamic() const;
shape normalize_standard() const;
shape with_lens(type_t t, const std::vector<std::size_t>& l) const;
......
......@@ -166,6 +166,7 @@ void module::assign(const module& m)
auto s = ins->get_shape();
copy_ins = impl->insert(impl->instructions.end(),
{builtin::param{name, order}, std::move(s), {}});
impl->nparams++;
}
else if(ins->name() == "@outline")
{
......
......@@ -30,13 +30,16 @@
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
// different attributes
// 1) use_input(default)/use_output
// 2) use_rank(default)/use_len
// 3) clip_min(default)/not_clip_min
// 3.1) include_min(default)/exclude_min
// 4) clip_max(default)/not_clip_max
// 4.1) exclude_max(default)/include_max
/**
* Parameters:
* vec: the vector attribute to normalize
* axes: the operator's axes attribute if it exists, empty otherwise
* val: the normalize_axes key and options. Ex: normalize["axes"] =
* value::array{normalize_attribute::include_min}; lens: shape dimensions passed when calling
* normalize_attributes(op&, lens)
*
* See normalize_attribute.hpp for explaining the options.
*/
auto tune_attribute(const std::vector<int64_t>& vec,
const std::vector<int64_t>& axes,
const value& val,
......@@ -151,6 +154,11 @@ auto tune_pad_attribute(const value& val)
return result;
}
/**
* Assumptions:
* Dimensions to pad start from the third dimension (index 2).
* Called by compute_shape_op() with the `lens` of the first input.
*/
bool normalize_attributes(operation& op, const std::vector<std::size_t>& lens)
{
bool tuned = false;
......@@ -158,9 +166,8 @@ bool normalize_attributes(operation& op, const std::vector<std::size_t>& lens)
auto val = op.to_value();
if(attrs.contains("normalize_padding"))
{
auto padding = val.at(attrs.at("normalize_padding").to<std::string>());
auto padding_size = padding.size();
// for now, assume the dimensions to pad start at dim 2
auto padding = val.at(attrs.at("normalize_padding").to<std::string>());
auto padding_size = padding.size();
auto padding_start = 2;
if(padding_size == 2 * (lens.size() - padding_start))
......
......@@ -46,7 +46,7 @@ struct parse_slice : op_parser<parse_slice>
std::vector<int64_t> steps;
// slice can have up to 5 inputs, we first check the 5th one
// to decide whether MIGRAPHX can handle this slice
// to decide whether MIGRAPHX can handle this slice.
if(args.size() == 5)
{
migraphx::argument step_arg = args.back()->eval();
......@@ -90,9 +90,10 @@ struct parse_slice : op_parser<parse_slice>
s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
}
// If axes arg is not given, the default is all of them.
if(op.axes.empty())
{
std::vector<int64_t> axes(args[0]->get_shape().lens().size());
std::vector<int64_t> axes(args[0]->get_shape().ndim());
std::iota(axes.begin(), axes.end(), int64_t{0});
op.axes = axes;
}
......@@ -103,6 +104,7 @@ struct parse_slice : op_parser<parse_slice>
assert(op.axes.size() == op.starts.size());
assert(op.axes.size() == op.ends.size());
// If any axes have negative step, prepare to add a "reverse" op
for(auto i : range(steps.size()))
{
if(steps[i] >= 0)
......@@ -117,7 +119,10 @@ struct parse_slice : op_parser<parse_slice>
auto ins = info.add_instruction(op, args[0]);
if(not raxes.empty())
{
ins = info.add_instruction(make_op("reverse", {{"axes", raxes}}), ins);
}
// If any steps are other than default 1, add a "steps" op
if(std::any_of(steps.begin(), steps.end(), [](auto s) { return std::abs(s) != 1; }))
{
std::vector<int64_t> nsteps;
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
* Copyright (c) 2015-2023 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
......@@ -40,28 +40,44 @@ struct parse_where : op_parser<parse_where>
const onnx_parser::node_info& info,
std::vector<instruction_ref> args) const
{
auto lens =
compute_broadcasted_lens(args[0]->get_shape().lens(), args[1]->get_shape().lens());
lens = compute_broadcasted_lens(lens, args[2]->get_shape().lens());
if(args[0]->get_shape().lens() != lens)
// TODO: broadcasting for dynamic shapes is only implemented
// for binary ops at time of writing, not ternary ops.
// When it becomes available, add multibroadcasting steps in the dynamic shape case.
// For now for dynamic shapes, just insert the Where op. All shapes must be the
// same for it to succeed.
if(std::all_of(args.begin(), args.end(), [](auto v) { return v->get_shape().dynamic(); }))
{
args[0] =
info.add_instruction(make_op("multibroadcast", {{"out_lens", lens}}), args[0]);
return info.add_instruction(make_op("where"), args[0], args[1], args[2]);
}
if(args[1]->get_shape().lens() != lens)
else if(std::none_of(
args.begin(), args.end(), [](auto v) { return v->get_shape().dynamic(); }))
{
args[1] =
info.add_instruction(make_op("multibroadcast", {{"out_lens", lens}}), args[1]);
}
// If shapes are static and any are broadcasted, insert multibroadcast ops
auto lens =
compute_broadcasted_lens(args[0]->get_shape().lens(), args[1]->get_shape().lens());
lens = compute_broadcasted_lens(lens, args[2]->get_shape().lens());
if(args[0]->get_shape().lens() != lens)
{
args[0] =
info.add_instruction(make_op("multibroadcast", {{"out_lens", lens}}), args[0]);
}
if(args[2]->get_shape().lens() != lens)
{
args[2] =
info.add_instruction(make_op("multibroadcast", {{"out_lens", lens}}), args[2]);
}
if(args[1]->get_shape().lens() != lens)
{
args[1] =
info.add_instruction(make_op("multibroadcast", {{"out_lens", lens}}), args[1]);
}
if(args[2]->get_shape().lens() != lens)
{
args[2] =
info.add_instruction(make_op("multibroadcast", {{"out_lens", lens}}), args[2]);
}
return info.add_instruction(make_op("where"), args[0], args[1], args[2]);
return info.add_instruction(make_op("where"), args[0], args[1], args[2]);
}
else
MIGRAPHX_THROW("PARSE_WHERE: doesn't support mixed static and dynamic shape inputs");
}
};
......
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <migraphx/serialize.hpp>
#include <migraphx/make_op.hpp>
#include "memory_coloring_impl.hpp"
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
void memory_coloring_impl::run()
{
// calc implicit depdendencies
mod_implicit_deps = p_mod->calc_implicit_deps();
MIGRAPHX_DEBUG(dump("---Before memory coloring---"));
MIGRAPHX_DEBUG(dump_module());
build();
if(num_of_lives != 0)
{
MIGRAPHX_DEBUG(dump_intervals());
// Coloring
while(not alloc_queue.empty())
{
interval_ptr interval = alloc_queue.top();
allocate(interval);
alloc_queue.pop();
}
// rewrite happens after all modules are processed
rewrite();
if(enable_verify)
verify();
}
}
bool memory_coloring_impl::allocate(interval_ptr interval)
{
shape s = interval->result;
std::size_t size = s.bytes();
if(size == 0)
return false;
std::size_t element_size = (s.elements() == 0 ? 4 : (size / s.elements()));
live_range& segment = interval->segment;
int vn = segment.vn;
std::priority_queue<live_range*, std::vector<live_range*>, ordering> conflict_queue;
std::unordered_map<long long, live_range*> offset2_live;
offset2_live.clear();
if(conflict_table.find(vn) != conflict_table.end())
{
const std::set<int>& vn_set = conflict_table[vn];
for(const auto& iter : vn_set)
{
live_range* range = live_ranges[iter];
long long offset = range->offset;
if(offset != invalid_offset)
{
conflict_queue.push(range);
if(offset2_live.find(offset) == offset2_live.end())
{
offset2_live[offset] = range;
}
else
{
live_range* prev = offset2_live[offset];
assert(prev->offset == offset);
if(prev->size < range->size)
offset2_live[offset] = range;
}
}
}
}
std::size_t offset = 0;
while(not conflict_queue.empty())
{
live_range* range = conflict_queue.top();
std::size_t iter_offset = range->offset;
if(offset > iter_offset)
{
offset = std::max(offset, iter_offset + range->size);
}
else if(offset2_live[iter_offset] == range)
{
if((iter_offset > offset) && (iter_offset - offset) >= size)
{
break;
}
offset = iter_offset + range->size;
}
// alignment
if((offset % element_size) != 0)
offset += (element_size - (offset % element_size));
conflict_queue.pop();
}
// when int8 type is used, the offset could be any number
// if not 4-byte aligned, miopen int8 convolution can crash
offset = (offset + 3) / 4 * 4;
segment.offset = offset;
MIGRAPHX_DEBUG(segment.dump());
required_bytes = std::max(required_bytes, offset + segment.size);
return true;
}
void memory_coloring_impl::build()
{
std::size_t num_of_instrs = p_mod->size();
if(num_of_instrs == 0)
return;
auto cur_points = num_of_instrs * 2;
instruction_ref iter = p_mod->end();
instruction_ref begin = p_mod->begin();
std::vector<instruction_ref> dead_instrs;
std::set<int> live_set;
// Build live intervals.
live_intervals.resize(num_of_instrs);
do
{
iter = std::prev(iter);
const instruction* p_iter = &(*iter);
interval_ptr def_interval = nullptr;
bool is_dead = false;
if(instr2_live.find(p_iter) != instr2_live.end())
{
def_interval = instr2_live[p_iter];
bool is_lit = is_literal(iter);
if(is_allocate(iter) or is_lit)
{
live_range& range = def_interval->segment;
def_interval->result = iter->get_shape();
def_interval->is_literal = is_lit;
range.begin = cur_points;
def_interval->def_point = cur_points;
range.size = (iter->get_shape()).bytes();
if(not is_lit or unify_literals)
alloc_queue.push(def_interval);
live_set.erase(range.vn);
}
}
else if(not is_param(iter) && not is_outline(iter) && not is_check_context(iter))
{
is_dead = true;
}
auto inputs = iter->inputs();
if(contains(mod_implicit_deps, iter))
{
const auto& impl_deps = mod_implicit_deps.at(iter);
inputs.insert(inputs.end(), impl_deps.begin(), impl_deps.end());
}
for(auto&& arg : inputs)
{
if(not p_mod->has_instruction(arg))
continue;
if(is_param(arg) or is_outline(arg))
{
if(is_output_param(arg))
is_dead = false;
if(def_interval != nullptr)
{
def_interval->is_live_on_entry = true;
}
continue;
}
const instruction* p_arg = &(*instruction::get_output_alias(arg));
if(instr2_live.find(p_arg) == instr2_live.end())
{
// First time see a use, create a live interval.
int id = num_of_lives++;
interval_ptr interval = &(live_intervals[id]);
interval->id = id;
interval->segment.end = cur_points;
interval->segment.vn = ++max_value_number;
interval->add_use(cur_points);
instr2_live[p_arg] = interval;
add_conflicts(live_set, max_value_number);
live_set.insert(max_value_number);
live_ranges[max_value_number] = &(interval->segment);
earliest_end_point = cur_points;
if(latest_end_point == -1)
latest_end_point = cur_points;
}
else
{
interval_ptr interval = instr2_live[p_arg];
interval->add_use(cur_points);
assert(live_set.find(interval->id) != live_set.end());
}
}
if(is_dead)
dead_instrs.push_back(iter);
cur_points -= 2;
} while(iter != begin);
}
void memory_coloring_impl::rewrite()
{
std::vector<std::size_t> dims;
dims.push_back((required_bytes + sizeof(float) - 1) / sizeof(float));
shape s = {shape::float_type, dims};
instruction_ref scratch_param = p_mod->add_parameter("scratch", s);
for(auto ins : iterator_for(*p_mod))
{
const instruction* p_iter = &(*ins);
if(instr2_live.find(p_iter) != instr2_live.end())
{
interval_ptr interval = instr2_live[p_iter];
if(interval->get_begin() == invalid_offset)
continue;
if(not unify_literals && interval->is_literal)
continue;
std::size_t offset = 0;
if(interval->get_offset() != invalid_offset)
{
offset = interval->get_offset();
}
else
{
assert(interval->result.bytes() == 0);
}
if(is_allocate(ins))
{
p_mod->replace_instruction(
ins,
make_op("load", {{"shape", to_value(ins->get_shape())}, {"offset", offset}}),
scratch_param);
}
}
}
MIGRAPHX_DEBUG(dump("---After rewrite---"));
MIGRAPHX_DEBUG(dump_module());
}
void memory_coloring_impl::verify()
{
if(num_of_lives > 0)
{
for(int i = 0; i < num_of_lives; ++i)
{
const live_interval& interval = live_intervals[i];
const live_range& segment = interval.segment;
if(segment.begin == invalid_offset)
{
// if(not interval.is_live_on_entry)
// MIGRAPHX_THROW("interval is not live on entry");
continue;
}
if(segment.offset == invalid_offset)
{
continue;
}
int vn = segment.vn;
if(conflict_table.find(vn) != conflict_table.end())
{
const std::set<int>& vn_set = conflict_table[vn];
for(const auto& iter : vn_set)
{
live_range* range = live_ranges[iter];
if(range->offset == invalid_offset)
continue;
if(not is_disjoin(*range, segment))
MIGRAPHX_THROW("range and segment is not disjoined");
}
}
}
}
}
#ifdef MIGRAPHX_DEBUG_OPT
void memory_coloring_impl::dump(const std::string& str) { std::cout << str << std::endl; }
void memory_coloring_impl::dump_module() { std::cout << *p_mod << std::endl; }
void memory_coloring_impl::dump_intervals()
{
if(num_of_lives > 0)
{
std::cout << "---live intervals ---" << std::endl;
for(int i = 0; i < num_of_lives; ++i)
{
live_interval& interval = live_intervals[i];
interval.dump();
}
std::cout << "---conflict table---" << std::endl;
for(int i = 0; i <= max_value_number; ++i)
{
std::cout << " segment:" << i;
std::cout << " =>";
const std::set<int>& table = conflict_table[i];
for(const auto& iter : table)
{
std::cout << (iter) << ",";
}
}
std::cout << std::endl;
}
}
// map liveness tracking point to instruction enum.
static int get_ins_enum(int x)
{
if(x > 0)
{
return (x / 2) - 1;
}
else
return invalid_offset;
}
void live_range::dump()
{
std::cout << " segment:" << vn;
std::cout << " [" << get_ins_enum(begin) << ", " << get_ins_enum(end) << "]";
if(offset != invalid_offset)
{
std::cout << " mem:";
std::cout << " [" << offset << "," << offset + size - 1 << "]";
}
std::cout << std::endl;
}
void live_interval::dump()
{
std::cout << "id:" << id;
segment.dump();
std::cout << " uses:";
for(const auto& iter : use_points)
{
std::cout << " " << get_ins_enum(iter) << ",";
}
std::cout << " def:";
std::cout << " " << get_ins_enum(def_point);
if(is_literal)
std::cout << " literal";
std::cout << " " << result;
std::cout << std::endl;
}
#endif
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2022 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef MIGRAPHX_GUARD_RTGLIB_MEMORY_COLORING_IMPL_HPP
#define MIGRAPHX_GUARD_RTGLIB_MEMORY_COLORING_IMPL_HPP
#include <migraphx/program.hpp>
#include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/iterator_for.hpp>
#include <migraphx/pass_config.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/config.hpp>
#include <set>
#include <list>
#include <vector>
#include <queue>
#ifdef MIGRAPHX_DEBUG_OPT
#define MIGRAPHX_DEBUG(s) s
#else
#define MIGRAPHX_DEBUG(s)
#endif // MIGRAPHX_DEBUG_OPT
namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS {
static const std::size_t invalid_offset = std::numeric_limits<std::size_t>::max();
struct live_range
{
std::size_t begin; // begin point in the instruction stream.
std::size_t end; // end point in the instruction stream.
std::size_t offset; // offset to base pointer of allocated memory trunk.
std::size_t vn; // value number that identifies this live_range.
std::size_t size; // size of required memory in bytes
#ifdef MIGRAPHX_DEBUG_OPT
void dump();
#endif
};
struct live_interval
{
live_interval() : segment({invalid_offset, invalid_offset, invalid_offset, invalid_offset, 0})
{
}
void add_use(std::size_t use) { use_points.push_front(use); }
std::size_t get_begin() const { return segment.begin; }
std::size_t get_end() const { return segment.end; }
long long get_offset() const { return segment.offset; }
#ifdef MIGRAPHX_DEBUG_OPT
void dump();
#endif
live_range segment;
std::size_t id = invalid_offset;
std::list<std::size_t> use_points{};
std::size_t def_point = invalid_offset;
shape result{};
bool is_literal = false;
bool is_live_on_entry = false;
};
using interval_ptr = live_interval*;
struct memory_coloring_impl
{
memory_coloring_impl(module* p, std::string alloc_op, bool p_verify)
: p_mod(p), allocation_op(std::move(alloc_op)), enable_verify(p_verify)
{
}
bool allocate(interval_ptr);
void add_conflicts(const std::set<int>& live_set, int val)
{
for(const auto& iter : live_set)
{
conflict_table[iter].insert(val);
conflict_table[val].insert(iter);
}
}
void build();
void run();
void rewrite();
private:
static bool is_param(const instruction_ref ins) { return ins->name() == "@param"; }
static bool is_output_param(const instruction_ref ins)
{
if(not is_param(ins))
return false;
auto param_name = any_cast<builtin::param>(ins->get_operator()).parameter;
return contains(param_name, "#output_");
}
bool is_allocate(const instruction_ref ins) const { return ins->name() == allocation_op; }
static bool is_outline(const instruction_ref ins) { return ins->name() == "@outline"; }
static bool is_literal(const instruction_ref ins) { return ins->name() == "@literal"; }
static bool is_check_context(const instruction_ref ins)
{
return ins->name() == "check_context";
}
static bool is_disjoin(const live_range& range1, const live_range& range2)
{
if((range1.size == 0) or (range2.size == 0))
return false;
auto end1 = range1.offset + range1.size - 1;
auto end2 = range2.offset + range2.size - 1;
return ((end1 < range2.offset) or (end2 < range1.offset));
}
void verify();
#ifdef MIGRAPHX_DEBUG_OPT
void dump(const std::string&);
void dump_module();
void dump_intervals();
#endif
struct ordering
{
bool operator()(const interval_ptr& i1, const interval_ptr& i2) const
{
auto len1 = i1->get_end() - i1->get_begin();
auto len2 = i2->get_end() - i2->get_begin();
if(len1 != len2)
{
return (len1 < len2);
}
else if(i1->result.bytes() != i2->result.bytes())
{
return (i1->result.bytes() < i2->result.bytes());
}
else
{
return i1->id > i2->id;
}
}
bool operator()(const live_range* i1, const live_range* i2) const
{
return (i1->offset > i2->offset);
}
};
module* p_mod;
std::unordered_map<const instruction*, interval_ptr> instr2_live;
// universe of live intervals.
std::vector<live_interval> live_intervals = {};
// Map live range value number to live range.
std::unordered_map<int, live_range*> live_ranges = {};
// Map live range value number to a set of conflicting live ranges' value numbers.
std::unordered_map<int, std::set<int>> conflict_table = {};
// Priority queue for coloring.
std::priority_queue<interval_ptr, std::vector<interval_ptr>, ordering> alloc_queue{};
int num_of_lives = 0;
int max_value_number = -1;
std::size_t required_bytes = 0;
// The earliest program point where an live interval ends.
int earliest_end_point = -1;
// The latest program point where an live interval ends.
int latest_end_point = -1;
// Whether to unify literals into coloring.
bool unify_literals = false;
std::string allocation_op{};
bool enable_verify;
ins_dep_map mod_implicit_deps;
};
} // namespace MIGRAPHX_INLINE_NS
} // namespace migraphx
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment