Unverified Commit 3eaeeca9 authored by Ted Themistokleous's avatar Ted Themistokleous Committed by GitHub
Browse files

Merge branch 'develop' into fix_parse_if

parents cccf7d09 af7e6eaa
...@@ -74,7 +74,8 @@ RUN cget -p $PREFIX install facebook/zstd@v1.4.5 -X subdir -DCMAKE_DIR=build/cma ...@@ -74,7 +74,8 @@ RUN cget -p $PREFIX install facebook/zstd@v1.4.5 -X subdir -DCMAKE_DIR=build/cma
RUN cget -p $PREFIX install ccache@v4.1 -DENABLE_TESTING=OFF RUN cget -p $PREFIX install ccache@v4.1 -DENABLE_TESTING=OFF
# Install newer cmake for onnx runtime # Install newer cmake for onnx runtime
RUN cget -p /opt/cmake install kitware/cmake@v3.13.4 ARG CMAKE_VERSION=3.24.2
RUN cget -p /opt/cmake install -X binary https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-Linux-x86_64.tar.gz
ARG ONNXRUNTIME_REPO=https://github.com/Microsoft/onnxruntime ARG ONNXRUNTIME_REPO=https://github.com/Microsoft/onnxruntime
ARG ONNXRUNTIME_BRANCH=main ARG ONNXRUNTIME_BRANCH=main
......
...@@ -27,6 +27,7 @@ ...@@ -27,6 +27,7 @@
#include <migraphx/algorithm.hpp> #include <migraphx/algorithm.hpp>
#include <migraphx/stringutils.hpp> #include <migraphx/stringutils.hpp>
#include <migraphx/instruction.hpp> #include <migraphx/instruction.hpp>
#include <migraphx/ranges.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -43,6 +44,7 @@ inline namespace MIGRAPHX_INLINE_NS { ...@@ -43,6 +44,7 @@ inline namespace MIGRAPHX_INLINE_NS {
// In this case we need to broadcast the (:,:,1:,:) axis // In this case we need to broadcast the (:,:,1:,:) axis
// of s0 plus the 1st dimension of s1 giving // of s0 plus the 1st dimension of s1 giving
// output_lens = (3,2,7,5) // output_lens = (3,2,7,5)
//
std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0, std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
std::vector<std::size_t> s1) std::vector<std::size_t> s1)
{ {
...@@ -50,25 +52,63 @@ std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0, ...@@ -50,25 +52,63 @@ std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
return s0; return s0;
if(s0.size() > s1.size()) if(s0.size() > s1.size())
s0.swap(s1); s0.swap(s1);
std::vector<std::size_t> out_lens(s1); std::vector<std::size_t> out_lens(s1);
auto offset = s1.size() - s0.size(); auto offset = s1.size() - s0.size();
std::transform( std::transform(
s0.begin(), s0.end(), s1.begin() + offset, out_lens.begin() + offset, [&](auto a, auto b) { s0.begin(), s0.end(), s1.begin() + offset, out_lens.begin() + offset, [&](auto a, auto b) {
if(a != b and a != 1 and b != 1) if(a != b and a != 1 and b != 1)
{ {
MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" + to_string_range(s0) + "} and {" + MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" + migraphx::to_string_range(s0) +
to_string_range(s1) + "} mismatch!"); "} and {" + migraphx::to_string_range(s1) + "} mismatch!");
} }
return std::max(a, b); return std::max(a, b);
}); });
return out_lens; return out_lens;
} }
std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, shape s1)
{
// change both shapes to dynamic_dimension representation
s0 = s0.to_dynamic();
s1 = s1.to_dynamic();
if(s0.ndim() > s1.ndim())
{
std::swap(s0, s1);
}
auto offset = s1.ndim() - s0.ndim();
std::vector<shape::dynamic_dimension> out_dims(s1.dyn_dims());
shape::dynamic_dimension one_dyn_dim{1, 1, 0};
std::transform(
s0.dyn_dims().cbegin(),
s0.dyn_dims().cend(),
s1.dyn_dims().cbegin() + offset,
out_dims.begin() + offset,
[&](auto a, auto b) {
if(a == b)
{
return a;
}
else if(a == one_dyn_dim or b == one_dyn_dim)
{
// setting opt to 0, may need to be changed
return shape::dynamic_dimension{std::max(a.min, b.min), std::max(a.max, b.max), 0};
}
else
{
MIGRAPHX_THROW("COMPUTE_BROADCASTED_DYN_DIMS: dynamic shapes {" +
migraphx::to_string_range(s0.dyn_dims()) + "} and {" +
migraphx::to_string_range(s1.dyn_dims()) + "} mismatch!");
}
});
return out_dims;
}
// Compute the common (broadcasted) dimensions of a list of fixed shapes
std::vector<std::size_t> compute_common_lens(const std::vector<shape>& shapes) std::vector<std::size_t> compute_common_lens(const std::vector<shape>& shapes)
{ {
assert(not shapes.empty()); assert(not shapes.empty());
assert(
std::none_of(shapes.cbegin(), shapes.cend(), [](auto shape) { return shape.dynamic(); }));
return transform_accumulate(shapes.begin() + 1, return transform_accumulate(shapes.begin() + 1,
shapes.end(), shapes.end(),
shapes.front().lens(), shapes.front().lens(),
...@@ -114,6 +154,48 @@ instruction_ref insert_common_op(module& m, ...@@ -114,6 +154,48 @@ instruction_ref insert_common_op(module& m,
const operation& op, const operation& op,
std::vector<instruction_ref> inputs) std::vector<instruction_ref> inputs)
{ {
if(std::any_of(
inputs.cbegin(), inputs.cend(), [](auto input) { return input->get_shape().dynamic(); }))
{
// currently only handles the binary case
if(inputs.size() != 2)
{
MIGRAPHX_THROW("INSERT_COMMON_OP: not handled; " + migraphx::to_string(inputs.size()) +
"inputs, only handle two inputs if any are dynamic shape");
}
auto c_type = compute_common_types(to_shapes(inputs));
auto c_dyn_dims =
compute_broadcasted_dyn_dims(inputs[0]->get_shape(), inputs[1]->get_shape());
// following should work for a static or dynamic shape
if(inputs[0]->get_shape().dyn_dims() != c_dyn_dims)
{
inputs[0] = m.insert_instruction(
ins,
make_op("multibroadcast", {{"out_dyn_dims", to_value(c_dyn_dims)}}),
inputs[0],
inputs[1]);
}
if(inputs[1]->get_shape().dyn_dims() != c_dyn_dims)
{
inputs[1] = m.insert_instruction(
ins,
make_op("multibroadcast", {{"out_dyn_dims", to_value(c_dyn_dims)}}),
inputs[1],
inputs[0]);
}
std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto input) {
if(input->get_shape().type() != c_type)
{
input =
m.insert_instruction(ins, make_op("convert", {{"target_type", c_type}}), input);
}
return input;
});
}
else
{
auto common = common_shape(to_shapes(inputs)); auto common = common_shape(to_shapes(inputs));
std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto input) { std::transform(inputs.begin(), inputs.end(), inputs.begin(), [&](auto input) {
if(input->get_shape().lens() != common.lens()) if(input->get_shape().lens() != common.lens())
...@@ -128,6 +210,7 @@ instruction_ref insert_common_op(module& m, ...@@ -128,6 +210,7 @@ instruction_ref insert_common_op(module& m,
} }
return input; return input;
}); });
}
return m.insert_instruction(ins, op, inputs); return m.insert_instruction(ins, op, inputs);
} }
......
...@@ -42,6 +42,13 @@ static bool try_compute_shape(instruction_ref ins, ...@@ -42,6 +42,13 @@ static bool try_compute_shape(instruction_ref ins,
try try
{ {
shape new_shape = ins->get_operator().compute_shape(inputs, mods); shape new_shape = ins->get_operator().compute_shape(inputs, mods);
// Cannot tell if a dynamic shape will need to be made contiguous
if(new_shape.dynamic())
{
return false;
}
// If the output shape is a standard shape, no need to try its output // If the output shape is a standard shape, no need to try its output
if(new_shape.standard()) if(new_shape.standard())
{ {
...@@ -133,14 +140,20 @@ static void remove_contiguous(const std::string& op_name, module& m, F f) ...@@ -133,14 +140,20 @@ static void remove_contiguous(const std::string& op_name, module& m, F f)
} }
} }
// Perform evaluations in parallel // Perform static contiguous evaluations in parallel
std::vector<argument> literals(const_instructions.size()); std::vector<argument> literals(const_instructions.size());
par_for(const_instructions.size(), 1, [&](const auto i) { par_for(const_instructions.size(), 1, [&](const auto i) {
auto c = op::contiguous{}; auto c = op::contiguous{};
auto prev = const_instructions[i]->inputs().front(); auto prev = const_instructions[i]->inputs().front();
literals[i] = c.compute(c.compute_shape({prev->get_shape()}), {prev->eval()}); // compute the output contiguous shape from the previous instruction shape
shape computed_shape = c.compute_shape({prev->get_shape()});
const std::vector<argument>& prev_eval = {prev->eval()};
// prev_eval should not be used in make_compute_output_shape() as computed_shape is static
auto co_shape = make_compute_output_shape(pack(c, computed_shape, prev_eval));
literals[i] = c.compute(co_shape, prev_eval);
}); });
// Replace static contiguous operations with a literal
for(size_t i = 0; i < const_instructions.size(); i++) for(size_t i = 0; i < const_instructions.size(); i++)
{ {
auto l = m.add_literal(literals[i].get_shape(), literals[i].data()); auto l = m.add_literal(literals[i].get_shape(), literals[i].data());
......
...@@ -45,7 +45,16 @@ static literal get_scalar(instruction_ref ins) ...@@ -45,7 +45,16 @@ static literal get_scalar(instruction_ref ins)
return {}; return {};
auto e = ins->eval(); auto e = ins->eval();
literal r{}; literal r{};
// needed for bool as visit_at invokes as() which promotes bool to int8
// Without this we'll break type checks for logical ops that are fused.
if(e.get_shape().type() == shape::bool_type)
{
r = literal{e.at<bool>()};
}
else
{
e.visit_at([&](auto x) { r = literal{x}; }); e.visit_at([&](auto x) { r = literal{x}; });
}
return r; return r;
} }
......
...@@ -36,6 +36,9 @@ struct operation; ...@@ -36,6 +36,9 @@ struct operation;
std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0, std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
std::vector<std::size_t> s1); std::vector<std::size_t> s1);
std::vector<shape::dynamic_dimension> compute_broadcasted_dyn_dims(shape s0, shape s1);
shape common_shape(const std::vector<shape>& shapes); shape common_shape(const std::vector<shape>& shapes);
instruction_ref insert_common_op(module& m, instruction_ref insert_common_op(module& m,
......
...@@ -28,6 +28,7 @@ ...@@ -28,6 +28,7 @@
#include <migraphx/check_shapes.hpp> #include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp> #include <migraphx/argument.hpp>
#include <migraphx/value.hpp> #include <migraphx/value.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -60,10 +61,19 @@ struct binary : op_name<Derived> ...@@ -60,10 +61,19 @@ struct binary : op_name<Derived>
value attributes() const { return base_attributes(); } value attributes() const { return base_attributes(); }
shape compute_shape(std::vector<shape> inputs) const shape compute_shape(std::vector<shape> inputs) const
{ {
check_shapes{inputs, static_cast<const Derived&>(*this)}.has(2).same_type().same_dims(); check_shapes{inputs, static_cast<const Derived&>(*this), true}
.has(2)
.same_type()
.same_dims();
auto s0 = inputs.at(0); auto s0 = inputs.at(0);
auto s1 = inputs.at(1); auto s1 = inputs.at(1);
if(s0 == s1 and s0.packed()) if(s0.dynamic() or s1.dynamic())
{
if(s0 == s1)
return s0;
MIGRAPHX_THROW("BINARY: " + point_function() + ": fixed-dyn shape for inputs");
}
else if(s0 == s1 and s0.packed())
{ {
return s0; return s0;
} }
...@@ -81,9 +91,9 @@ struct binary : op_name<Derived> ...@@ -81,9 +91,9 @@ struct binary : op_name<Derived>
} }
} }
argument compute(const shape& output_shape, std::vector<argument> args) const argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{ {
argument result{output_shape}; argument result{dyn_out.computed_shape};
visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) { visit_all(result, args[0], args[1])([&](auto output, auto input1, auto input2) {
std::transform(input1.begin(), std::transform(input1.begin(),
input1.end(), input1.end(),
......
...@@ -27,23 +27,30 @@ ...@@ -27,23 +27,30 @@
#include <migraphx/check_shapes.hpp> #include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp> #include <migraphx/argument.hpp>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
namespace op { namespace op {
/// The broadcast operator performs the numpy-style broadcasting of an axis of a given tensor. This /**
/// is achieved primarily by setting the stride of the broadcasted axis to zero. Linear indicies are * 1 input version:
/// computed from multi-indicies by computing the inner product on the multi-index with the strides. * Broadcasts a tensor from the original shape to the broadcast_lens by setting the stride of
/// For example, if we have a tensor A(2,3) it has lengths of (2,3) and strides of (3,1). If we want * broadcasted dimensions to zero. `axis` attribute for a 1D input shape is the output dimension
/// to compute the linear offset that corresponds to the element on the 2nd row (i = 1) and 3rd * that stays the same. ex: broadcasting shape [1024] -> [4, 1024, 3] has axis = 1 For higher rank
/// column (j = 2), we compute the following inner product (1,2) dot (3, 1) = 1*3 + 2*1 = 5. It is * input shapes, axis is an offset parameter for the broadcasting. Such that this operator would
/// obvious from there that we can negate the effects of a given axis by setting the stride of that * work in the opposite direction of NumPy broadcasting. ex: broadcasting shape [2, 2] -> [2, 2, 3]
/// axis to zero. * with axis = 0
*
* 2 input version:
* Broadcast the first input 1D shape into the second input shape based on the axis parameter.
* Handles broadcasting a 1D static shape into a higher rank dynamic shape.
* broadcast_lens is not used
*/
struct broadcast struct broadcast
{ {
uint64_t axis = 0; uint64_t axis = 0;
std::vector<std::size_t> broadcast_lens; std::vector<std::size_t> broadcast_lens = {};
template <class Self, class F> template <class Self, class F>
static auto reflect(Self& self, F f) static auto reflect(Self& self, F f)
...@@ -54,36 +61,86 @@ struct broadcast ...@@ -54,36 +61,86 @@ struct broadcast
std::string name() const { return "broadcast"; } std::string name() const { return "broadcast"; }
shape compute_shape(std::vector<shape> inputs) const shape compute_shape(std::vector<shape> inputs) const
{ {
auto input = inputs.at(0); check_shapes{inputs, *this, true}.has(1, 2);
auto t = input.type(); auto s0 = inputs.at(0);
auto t = s0.type();
std::vector<size_t> bcast_strides(broadcast_lens.size(), 0); if(inputs.size() == 1)
// the broacast op is deprecated now, so not handling the negative {
// the ONNX broadcast op is deprecated now, so not handling the negative
// value of axis anymore // value of axis anymore
if(axis >= broadcast_lens.size()) if(axis >= broadcast_lens.size())
{ {
MIGRAPHX_THROW("BROADCAST : axis is out of range"); MIGRAPHX_THROW("BROADCAST : axis " + migraphx::to_string(axis) +
" is out of range");
} }
if(broadcast_lens.size() - axis < s0.lens().size())
if(broadcast_lens.size() - axis < input.lens().size())
{ {
MIGRAPHX_THROW("BROADCAST: (broadcast ndims - axis) is less than input ndims"); MIGRAPHX_THROW("BROADCAST: (broadcast ndims - axis) is less than s0 ndims");
} }
if(not std::equal(s0.lens().begin(), s0.lens().end(), broadcast_lens.begin() + axis))
if(not std::equal(input.lens().begin(), input.lens().end(), broadcast_lens.begin() + axis))
{ {
MIGRAPHX_THROW("BROADCAST: when broadcasting, succeeding sizes must match"); MIGRAPHX_THROW("BROADCAST: when broadcasting, succeeding sizes must match");
} }
std::copy(input.strides().begin(), input.strides().end(), bcast_strides.begin() + axis);
std::vector<size_t> bcast_strides(broadcast_lens.size(), 0);
std::copy(s0.strides().begin(), s0.strides().end(), bcast_strides.begin() + axis);
shape output{t, broadcast_lens, std::move(bcast_strides)}; shape output{t, broadcast_lens, std::move(bcast_strides)};
if(output.elements() < input.elements()) if(output.elements() < s0.elements())
MIGRAPHX_THROW("BROADCAST: output size must be greater than or equal to input size"); {
// don't think this can occur?
MIGRAPHX_THROW("BROADCAST: output size must be greater than or equal to s0 size");
}
return output;
}
else
{
// two inputs
auto s1 = inputs.at(1);
if(s0.dynamic())
{
MIGRAPHX_THROW("BROADCAST_2in: s0 is a dynamic shape, does not handle broadcasting "
"a dynamic shape");
}
if(s0.ndim() != 1)
{
MIGRAPHX_THROW("BROADCAST_2in: s0 has ndim " + migraphx::to_string(s0.ndim()) +
", only handle ndim = 1");
}
if(axis >= s1.ndim())
{
MIGRAPHX_THROW("BROADCAST_2in: axis " + migraphx::to_string(axis) +
" is out of range");
}
if(s1.dynamic())
{
s0 = s0.to_dynamic();
if(s0.dyn_dims()[0] != s1.dyn_dims()[axis])
{
MIGRAPHX_THROW("BROADCAST_2in: s0 length doesn't match with dynamic s1 axis "
"dimension length (" +
migraphx::to_string(s0.dyn_dims()[0]) +
" != " + migraphx::to_string(s1.dyn_dims()[axis]) + ")");
}
return s1;
}
if(s0.lens()[0] != s1.lens()[axis])
{
MIGRAPHX_THROW("BROADCAST_2in: s0 length doesn't match with static s1 axis "
"dimension length (" +
migraphx::to_string(s0.lens()[0]) +
" != " + migraphx::to_string(s1.lens()[axis]) + ")");
}
std::vector<size_t> bcast_strides(s1.ndim(), 0);
std::copy(s0.strides().begin(), s0.strides().end(), bcast_strides.begin() + axis);
shape output{t, s1.lens(), std::move(bcast_strides)};
return output; return output;
} }
argument compute(shape output_shape, std::vector<argument> args) const }
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{ {
return args[0].reshape(output_shape); return args[0].reshape(dyn_out.computed_shape);
} }
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; } std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
}; };
......
...@@ -28,6 +28,7 @@ ...@@ -28,6 +28,7 @@
#include <migraphx/argument.hpp> #include <migraphx/argument.hpp>
#include <migraphx/shape_for_each.hpp> #include <migraphx/shape_for_each.hpp>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
#include <migraphx/dyn_output.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
...@@ -42,19 +43,27 @@ namespace op { ...@@ -42,19 +43,27 @@ namespace op {
struct contiguous struct contiguous
{ {
std::string name() const { return "contiguous"; } std::string name() const { return "contiguous"; }
shape compute_shape(std::vector<shape> inputs) const shape compute_shape(std::vector<shape> inputs) const
{ {
check_shapes{inputs, *this}.has(1); check_shapes{inputs, *this, true}.has(1);
if(inputs.front().standard()) auto s0 = inputs.front();
return inputs.front(); if(s0.dynamic() or s0.standard())
auto lens = inputs.at(0).lens(); {
auto t = inputs.at(0).type(); return s0;
}
else
{
const auto& lens = s0.lens();
auto t = s0.type();
return {t, lens}; return {t, lens};
} }
argument compute(const shape& output_shape, std::vector<argument> args) const }
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{ {
assert(output_shape.standard()); assert(dyn_out.computed_shape.standard());
argument result{output_shape}; argument result{dyn_out.computed_shape};
visit_all(result, args[0])([&](auto output, auto input) { visit_all(result, args[0])([&](auto output, auto input) {
shape_for_each(output.get_shape(), [&](const auto& idx) { shape_for_each(output.get_shape(), [&](const auto& idx) {
output(idx.begin(), idx.end()) = input(idx.begin(), idx.end()); output(idx.begin(), idx.end()) = input(idx.begin(), idx.end());
......
...@@ -26,64 +26,105 @@ ...@@ -26,64 +26,105 @@
#include <migraphx/check_shapes.hpp> #include <migraphx/check_shapes.hpp>
#include <migraphx/argument.hpp> #include <migraphx/argument.hpp>
#include <migraphx/dyn_output.hpp>
#include <migraphx/common.hpp>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
namespace migraphx { namespace migraphx {
inline namespace MIGRAPHX_INLINE_NS { inline namespace MIGRAPHX_INLINE_NS {
namespace op { namespace op {
/**
* Broadcast multiple dimensions between two tensors.
* Two versions of this operator: one input and two inputs.
* One input version uses output_lens attribute and broadcasts to it.
* Two inputs version broadcasts both inputs to the common shape at evaluation time.
*/
struct multibroadcast struct multibroadcast
{ {
std::vector<std::size_t> output_lens; std::vector<std::size_t> output_lens = {};
// optional attribute
std::vector<shape::dynamic_dimension> output_dyn_dims = {};
template <class Self, class F> template <class Self, class F>
static auto reflect(Self& self, F f) static auto reflect(Self& self, F f)
{ {
return pack(f(self.output_lens, "out_lens")); return pack(f(self.output_lens, "out_lens"), f(self.output_dyn_dims, "out_dyn_dims"));
} }
std::string name() const { return "multibroadcast"; } std::string name() const { return "multibroadcast"; }
shape compute_shape(std::vector<shape> inputs) const shape compute_shape(std::vector<shape> inputs) const
{ {
check_shapes{inputs, *this}.has(1); check_shapes{inputs, *this, true}.has(1, 2);
auto t = inputs.at(0).type(); auto t = inputs.at(0).type();
auto input = inputs.at(0); auto s0 = inputs.at(0);
if(input.lens().empty()) if(s0.max_lens().empty())
{ {
MIGRAPHX_THROW("MULTIBROADCAST: inputs dimensions should be > 0"); MIGRAPHX_THROW("MULTIBROADCAST: input dimensions should be > 0");
} }
if(input.lens().size() > output_lens.size()) auto make_bcast_strides = [&](std::vector<std::size_t> bcast_lens, std::size_t offset) {
std::vector<size_t> bcast_strides(bcast_lens.size(), 0);
for(std::ptrdiff_t i = s0.lens().size() - 1; i >= 0; i--)
{
if(bcast_lens[i + offset] == s0.lens()[i])
{ {
MIGRAPHX_THROW("MULTIBROADCAST: inputs dimensions should <= output size"); bcast_strides[i + offset] = s0.strides()[i];
} }
}
return bcast_strides;
};
auto offset = output_lens.size() - input.lens().size(); if(inputs.size() == 1)
for(std::ptrdiff_t i = input.lens().size() - 1; i >= 0; i--) {
if(s0.lens().size() > output_lens.size())
{ {
if(output_lens[i + offset] != input.lens()[i] and input.lens()[i] != 1) MIGRAPHX_THROW("MULTIBROADCAST: input dimensions should <= output size");
}
auto offset = output_lens.size() - s0.lens().size();
for(std::ptrdiff_t i = s0.lens().size() - 1; i >= 0; i--)
{ {
MIGRAPHX_THROW("MULTIBROADCAST: input shape {" + to_string_range(input.lens()) + if(output_lens[i + offset] != s0.lens()[i] and s0.lens()[i] != 1)
{
MIGRAPHX_THROW("MULTIBROADCAST: input shape {" + to_string_range(s0.lens()) +
"} cannot be broadcasted to {" + to_string_range(output_lens) + "} cannot be broadcasted to {" + to_string_range(output_lens) +
"}!"); "}!");
} }
} }
std::vector<size_t> bcast_strides(output_lens.size(), 0); auto bcast_strides = make_bcast_strides(output_lens, offset);
for(std::ptrdiff_t i = input.lens().size() - 1; i >= 0; i--) return {t, output_lens, std::move(bcast_strides)};
}
else
{ {
if(output_lens[i + offset] == input.lens()[i]) // two inputs
auto s1 = inputs.at(1);
if(s0.dynamic() or s1.dynamic())
{ {
bcast_strides[i + offset] = input.strides()[i]; if(not output_dyn_dims.empty())
{
return {t, output_dyn_dims};
} }
return {t, compute_broadcasted_dyn_dims(s0, s1)};
} }
return {t, output_lens, bcast_strides}; else
{
auto bcast_lens = compute_broadcasted_lens(s0.lens(), s1.lens());
auto offset = bcast_lens.size() - s0.lens().size();
auto bcast_strides = make_bcast_strides(bcast_lens, offset);
return {t, std::move(bcast_lens), std::move(bcast_strides)};
} }
argument compute(shape output_shape, std::vector<argument> args) const }
}
argument compute(const dyn_output& dyn_out, std::vector<argument> args) const
{ {
return args[0].reshape(output_shape); return args[0].reshape(dyn_out.computed_shape);
} }
std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; } std::ptrdiff_t output_alias(const std::vector<shape>&) const { return 0; }
}; };
......
...@@ -30,6 +30,7 @@ ...@@ -30,6 +30,7 @@
#include <numeric> #include <numeric>
#include <memory> #include <memory>
#include <migraphx/functional.hpp>
#include <migraphx/errors.hpp> #include <migraphx/errors.hpp>
#include <migraphx/half.hpp> #include <migraphx/half.hpp>
#include <migraphx/config.hpp> #include <migraphx/config.hpp>
...@@ -89,7 +90,10 @@ struct shape ...@@ -89,7 +90,10 @@ struct shape
std::size_t opt = 0; std::size_t opt = 0;
template <class Self, class F> template <class Self, class F>
static auto reflect(Self& self, F f); static auto reflect(Self& self, F f)
{
return pack(f(self.min, "min"), f(self.max, "max"), f(self.opt, "opt"));
}
bool is_fixed() const; bool is_fixed() const;
bool has_optimal() const; bool has_optimal() const;
...@@ -115,6 +119,12 @@ struct shape ...@@ -115,6 +119,12 @@ struct shape
shape(type_t t, std::vector<dynamic_dimension> dims); shape(type_t t, std::vector<dynamic_dimension> dims);
// Construct a dynamic shape from three sets of lengths (of the same rank)
shape(type_t t,
std::vector<std::size_t> mins,
std::vector<std::size_t> maxes,
std::vector<std::size_t> opts);
template <class Range> template <class Range>
shape(type_t t, const Range& l) : shape(t, std::vector<std::size_t>(l.begin(), l.end())) shape(type_t t, const Range& l) : shape(t, std::vector<std::size_t>(l.begin(), l.end()))
{ {
...@@ -136,6 +146,12 @@ struct shape ...@@ -136,6 +146,12 @@ struct shape
const std::vector<std::size_t>& lens() const; const std::vector<std::size_t>& lens() const;
const std::vector<std::size_t>& strides() const; const std::vector<std::size_t>& strides() const;
/*!
* The number of dimensions in the shape.
* Same as the number of indices required to get a data value.
*/
std::size_t ndim() const;
/*! /*!
* Return the number of elements in the tensor. * Return the number of elements in the tensor.
*/ */
...@@ -221,6 +237,9 @@ struct shape ...@@ -221,6 +237,9 @@ struct shape
shape with_type(type_t t) const; shape with_type(type_t t) const;
// convert the shape to an equivalent dynamic shape
shape to_dynamic() const;
friend bool operator==(const shape& x, const shape& y); friend bool operator==(const shape& x, const shape& y);
friend bool operator!=(const shape& x, const shape& y); friend bool operator!=(const shape& x, const shape& y);
friend std::ostream& operator<<(std::ostream& os, const shape& x); friend std::ostream& operator<<(std::ostream& os, const shape& x);
......
...@@ -44,7 +44,7 @@ struct parse_batchnorm : op_parser<parse_batchnorm> ...@@ -44,7 +44,7 @@ struct parse_batchnorm : op_parser<parse_batchnorm>
{ {
epsilon = parser.parse_value(info.attributes.at("epsilon")).at<float>(); epsilon = parser.parse_value(info.attributes.at("epsilon")).at<float>();
} }
auto x_lens = args[0]->get_shape().lens(); auto x_lens = args[0]->get_shape().max_lens();
auto x_type = args[0]->get_shape().type(); auto x_type = args[0]->get_shape().type();
if(std::any_of(args.cbegin() + 1, args.cend(), [](auto a) { if(std::any_of(args.cbegin() + 1, args.cend(), [](auto a) {
......
...@@ -57,6 +57,12 @@ struct parse_binary_op : op_parser<parse_binary_op> ...@@ -57,6 +57,12 @@ struct parse_binary_op : op_parser<parse_binary_op>
parser.parse_value(info.attributes.at("broadcast")).at<uint64_t>(); parser.parse_value(info.attributes.at("broadcast")).at<uint64_t>();
if(broadcasted != 0) if(broadcasted != 0)
{ {
if(std::any_of(
args.cbegin(), args.cend(), [](auto a) { return a->get_shape().dynamic(); }))
{
MIGRAPHX_THROW(
"Binary op broadcast attribute not supported for dynamic input shapes");
}
uint64_t axis = parser.parse_value(info.attributes.at("axis")).at<uint64_t>(); uint64_t axis = parser.parse_value(info.attributes.at("axis")).at<uint64_t>();
auto l = info.add_instruction( auto l = info.add_instruction(
make_op("broadcast", make_op("broadcast",
......
...@@ -94,11 +94,19 @@ struct module_pm : module_pass_manager ...@@ -94,11 +94,19 @@ struct module_pm : module_pass_manager
virtual void run_pass(const pass& p) override virtual void run_pass(const pass& p) override
{ {
assert(mod); assert(mod);
timer ts{};
using seconds = std::chrono::duration<double>;
trace("Module: ", mod->name(), ", Pass: ", p.name()); trace("Module: ", mod->name(), ", Pass: ", p.name());
const double t1 = ts.record<seconds>();
assert(mod->validate() == mod->end()); assert(mod->validate() == mod->end());
p.apply(*this); p.apply(*this);
trace(*mod); trace(*mod);
validate_pass(*mod, p, *t); validate_pass(*mod, p, *t);
const double t2 = ts.record<seconds>();
trace("Pass: ", p.name(), " completed in (s): ", (t2 - t1));
} }
}; };
......
...@@ -71,6 +71,19 @@ struct shape_impl ...@@ -71,6 +71,19 @@ struct shape_impl
{ {
} }
shape_impl(shape::type_t t,
std::vector<std::size_t> mins,
std::vector<std::size_t> maxes,
std::vector<std::size_t> opts)
: m_type(t)
{
assert(mins.size() == maxes.size() and maxes.size() == opts.size());
for(size_t i = 0; i < mins.size(); ++i)
{
m_dyn_dims.push_back(shape::dynamic_dimension{mins[i], maxes[i], opts[i]});
}
}
shape_impl(const std::vector<shape>& subs) : m_type(shape::tuple_type), m_shapes(subs) {} shape_impl(const std::vector<shape>& subs) : m_type(shape::tuple_type), m_shapes(subs) {}
shape::type_t m_type; shape::type_t m_type;
...@@ -224,6 +237,14 @@ shape::shape(type_t t, std::vector<shape::dynamic_dimension> dims) ...@@ -224,6 +237,14 @@ shape::shape(type_t t, std::vector<shape::dynamic_dimension> dims)
{ {
} }
shape::shape(type_t t,
std::vector<std::size_t> mins,
std::vector<std::size_t> maxes,
std::vector<std::size_t> opts)
: impl(std::make_shared<shape_impl>(t, std::move(mins), std::move(maxes), std::move(opts)))
{
}
shape::shape(const std::vector<shape>& subs) : impl(std::make_shared<shape_impl>(subs)) {} shape::shape(const std::vector<shape>& subs) : impl(std::make_shared<shape_impl>(subs)) {}
shape::shape(std::shared_ptr<shape_impl> pimpl) : impl(std::move(pimpl)) {} shape::shape(std::shared_ptr<shape_impl> pimpl) : impl(std::move(pimpl)) {}
...@@ -244,6 +265,15 @@ const std::vector<std::size_t>& shape::lens() const { return impl->m_lens; } ...@@ -244,6 +265,15 @@ const std::vector<std::size_t>& shape::lens() const { return impl->m_lens; }
const std::vector<std::size_t>& shape::strides() const { return impl->m_strides; } const std::vector<std::size_t>& shape::strides() const { return impl->m_strides; }
std::size_t shape::ndim() const
{
if(this->dynamic())
{
return dyn_dims().size();
}
return lens().size();
}
std::size_t shape::elements() const { return impl->elements(); } std::size_t shape::elements() const { return impl->elements(); }
std::size_t shape::bytes() const std::size_t shape::bytes() const
...@@ -437,6 +467,16 @@ shape shape::with_type(type_t t) const ...@@ -437,6 +467,16 @@ shape shape::with_type(type_t t) const
return {c}; return {c};
} }
shape shape::to_dynamic() const
{
if(this->dynamic())
{
return *this;
}
std::vector<std::size_t> zeroes(this->ndim(), 0);
return {type(), lens(), lens(), zeroes};
}
std::size_t shape::element_space() const { return impl->element_space(); } std::size_t shape::element_space() const { return impl->element_space(); }
std::string shape::type_string() const { return name(this->type()); } std::string shape::type_string() const { return name(this->type()); }
...@@ -464,15 +504,11 @@ bool shape::dynamic_dimension::is_fixed() const { return this->min == this->max; ...@@ -464,15 +504,11 @@ bool shape::dynamic_dimension::is_fixed() const { return this->min == this->max;
bool shape::dynamic_dimension::has_optimal() const { return opt != 0; } bool shape::dynamic_dimension::has_optimal() const { return opt != 0; }
template <class Self, class F>
auto shape::dynamic_dimension::reflect(Self& self, F f)
{
return pack(f(self.min, "min"), f(self.max, "max"), f(self.opt, "opt"));
}
bool operator==(const shape::dynamic_dimension& x, const shape::dynamic_dimension& y) bool operator==(const shape::dynamic_dimension& x, const shape::dynamic_dimension& y)
{ {
return (x.min == y.min and x.max == y.max and x.opt == y.opt); // don't check opt if both are fixed
return (x.min == y.min and x.max == y.max and
((x.is_fixed() and y.is_fixed()) or (x.opt == y.opt)));
} }
bool operator!=(const shape::dynamic_dimension& x, const shape::dynamic_dimension& y) bool operator!=(const shape::dynamic_dimension& x, const shape::dynamic_dimension& y)
......
...@@ -272,6 +272,35 @@ TEST_CASE(contiguous_input) ...@@ -272,6 +272,35 @@ TEST_CASE(contiguous_input)
EXPECT(p1 == p2); EXPECT(p1 == p2);
} }
TEST_CASE(contiguous_boolean_input)
{
migraphx::shape s{migraphx::shape::bool_type, {2, 3}};
migraphx::shape s_lit{migraphx::shape::bool_type, {1}, {0}};
migraphx::program p1;
{
auto* mm = p1.get_main_module();
auto x = mm->add_parameter("x", s);
auto one = mm->add_literal(migraphx::literal(s_lit, {1.0}));
auto yb =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), one);
auto y = mm->add_instruction(migraphx::make_op("contiguous"), yb);
auto xor1 = mm->add_instruction(migraphx::make_op("logical_xor"), x, y);
mm->add_return({xor1});
}
run_pass(p1);
migraphx::program p2;
{
auto* mm = p2.get_main_module();
auto x = mm->add_parameter("x", s);
auto xor1 = add_pointwise(p2, "main:pointwise0", {x}, [=](auto* pm, const auto& inputs) {
auto y = pm->add_literal(migraphx::literal(s_lit, {1}));
return pm->add_instruction(migraphx::make_op("logical_xor"), inputs[0], y);
});
mm->add_return({xor1});
}
}
TEST_CASE(all_scalar_input) TEST_CASE(all_scalar_input)
{ {
migraphx::shape s{migraphx::shape::float_type}; migraphx::shape s{migraphx::shape::float_type};
......
...@@ -420,6 +420,74 @@ def batch_norm_invalid_bias_rank_test(): ...@@ -420,6 +420,74 @@ def batch_norm_invalid_bias_rank_test():
return ([node], [x, scale, bias, mean, var], [out]) return ([node], [x, scale, bias, mean, var], [out])
@onnx_test
def binary_dyn_brcst_prelu_test():
arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT,
[None, 3, 4, 5])
arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 5])
arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
[None, 3, 4, 5])
node = onnx.helper.make_node(
'PRelu',
inputs=['0', '1'],
outputs=['out'],
)
return ([node], [arg0, arg1], [arg_out])
@onnx_test
def binary_dyn_brcst_add_test():
arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [4, 5])
arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
[None, 3, 4, 5])
arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
[None, 3, 4, 5])
node = onnx.helper.make_node(
'Add',
inputs=['0', '1'],
outputs=['out'],
)
return ([node], [arg0, arg1], [arg_out])
@onnx_test
def binary_dyn_brcst_attr_error_test():
arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [4, 5])
arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
[None, 3, 4, 5])
arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
[None, 3, 4, 5])
node = onnx.helper.make_node('Add',
inputs=['0', '1'],
outputs=['out'],
broadcast=1,
axis=1)
return ([node], [arg0, arg1], [arg_out])
@onnx_test
def binary_dyn_brcst_mul_test():
arg0 = helper.make_tensor_value_info('0', TensorProto.FLOAT,
[None, 3, 4, 5])
arg1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [4, 1])
arg_out = helper.make_tensor_value_info('out', TensorProto.FLOAT,
[None, 3, 4, 5])
node = onnx.helper.make_node(
'Mul',
inputs=['0', '1'],
outputs=['out'],
)
return ([node], [arg0, arg1], [arg_out])
@onnx_test @onnx_test
def cast_test(): def cast_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10]) x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [10])
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment