Commit 3ce7ad8b authored by Shucai Xiao's avatar Shucai Xiao
Browse files

merge from develop branch and resolve merge conflicts

parents d0202590 b304d97d
......@@ -73,6 +73,35 @@ TEST_CASE(double_add)
EXPECT(p1.sort() == p2.sort());
}
TEST_CASE(double_add_without_return)
{
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
migraphx::program p1;
{
auto* mm = p1.get_main_module();
auto x = mm->add_parameter("x", s);
auto y = mm->add_parameter("y", s);
auto z = mm->add_parameter("z", s);
auto add1 = mm->add_instruction(migraphx::make_op("add"), x, y);
mm->add_instruction(migraphx::make_op("add"), add1, z);
}
run_pass(p1);
migraphx::program p2;
{
auto* mm = p2.get_main_module();
auto x = mm->add_parameter("x", s);
auto y = mm->add_parameter("y", s);
auto z = mm->add_parameter("z", s);
auto fadd =
add_pointwise(p2, "main:pointwise0", {x, y, z}, [=](auto* pm, const auto& inputs) {
auto add1 = pm->add_instruction(migraphx::make_op("add"), inputs[0], inputs[1]);
return pm->add_instruction(migraphx::make_op("add"), add1, inputs[2]);
});
mm->add_instruction(migraphx::make_op("identity"), fadd);
}
EXPECT(p1.sort() == p2.sort());
}
TEST_CASE(used_twice_not_fused)
{
migraphx::shape s{migraphx::shape::float_type, {2, 3}};
......
......@@ -1618,6 +1618,22 @@ def greater_bool_test():
return ([node1, node2], [x1, x2], [y])
@onnx_test
def greaterorequal_test():
x1 = helper.make_tensor_value_info('x1', TensorProto.FLOAT, [3])
x2 = helper.make_tensor_value_info('x2', TensorProto.FLOAT, [3])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [3])
node = onnx.helper.make_node(
'GreaterOrEqual',
inputs=['x1', 'x2'],
outputs=['y'],
)
return ([node], [x1, x2], [y])
@onnx_test
def group_conv_test():
x = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 4, 16, 16])
......@@ -1634,6 +1650,60 @@ def group_conv_test():
return ([node], [x, y], [z])
@onnx_test
def hardsigmoid_default_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [1, 3, 4, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [1, 3, 4, 5])
node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
@onnx_test
def hardsigmoid_double_test():
x = helper.make_tensor_value_info('x', TensorProto.DOUBLE, [1, 3, 4, 5])
y = helper.make_tensor_value_info('y', TensorProto.DOUBLE, [1, 3, 4, 5])
node = onnx.helper.make_node('HardSigmoid',
inputs=['x'],
outputs=['y'],
alpha=0.3,
beta=0.7)
return ([node], [x], [y])
@onnx_test
def hardsigmoid_half_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [1, 3, 4, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [1, 3, 4, 5])
node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
@onnx_test
def hardsigmoid_verify_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])
node = onnx.helper.make_node('HardSigmoid', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
@onnx_test
def hardswish_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [2, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [2, 5])
node = onnx.helper.make_node('HardSwish', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
@onnx_test
def if_else_test():
x = onnx.helper.make_tensor_value_info('x', onnx.TensorProto.FLOAT, [2, 3])
......@@ -2692,6 +2762,80 @@ def maxpool_same_upper_test():
return ([node], [x], [y])
@onnx_test
def mean_broadcast_test():
data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 3, 4])
data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT,
[1, 2, 3, 4])
data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [4])
data_3 = helper.make_tensor_value_info('3', TensorProto.FLOAT, [1])
data_4 = helper.make_tensor_value_info('4', TensorProto.FLOAT, [2, 3, 1])
mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT,
[1, 2, 3, 4])
node = onnx.helper.make_node("Mean",
inputs=["0", "1", "2", "3", "4"],
outputs=["mean"])
return ([node], [data_0, data_1, data_2, data_3, data_4], [mean])
@onnx_test
def mean_fp16_test():
data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT16, [1, 2, 3])
data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT16, [1, 2, 3])
data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT16, [1, 2, 3])
mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT16,
[1, 2, 3])
node = onnx.helper.make_node("Mean",
inputs=["0", "1", "2"],
outputs=["mean"])
return ([node], [data_0, data_1, data_2], [mean])
@onnx_test
def mean_invalid_broadcast_test():
data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
data_1 = helper.make_tensor_value_info('1', TensorProto.FLOAT, [1, 2, 3])
data_2 = helper.make_tensor_value_info('2', TensorProto.FLOAT, [1, 2, 4])
mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])
node = onnx.helper.make_node("Mean",
inputs=["0", "1", "2"],
outputs=["mean"])
return ([node], [data_0, data_1, data_2], [mean])
@onnx_test
def mean_single_input_test():
data_0 = helper.make_tensor_value_info('0', TensorProto.FLOAT, [1, 2, 3])
mean = helper.make_tensor_value_info('mean', TensorProto.FLOAT, [1, 2, 3])
node = onnx.helper.make_node("Mean", inputs=["0"], outputs=["mean"])
return ([node], [data_0], [mean])
@onnx_test
def mean_test():
data = [
helper.make_tensor_value_info(str(i), TensorProto.DOUBLE, [2, 2, 2])
for i in range(10)
]
data_names = [str(i) for i in range(10)]
mean = helper.make_tensor_value_info('mean', TensorProto.DOUBLE, [2, 2, 2])
node = onnx.helper.make_node("Mean", inputs=data_names, outputs=["mean"])
return ([node], data, [mean])
@onnx_test
def min_test():
a = helper.make_tensor_value_info('0', TensorProto.FLOAT, [3])
......@@ -2725,6 +2869,21 @@ def multinomial_test():
return ([node], [input], [output])
@onnx_test
def multinomial_generated_seed_test():
sample_size = 10
input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
output = helper.make_tensor_value_info("output", TensorProto.INT32,
[1, 10])
node = onnx.helper.make_node('Multinomial',
inputs=['input'],
sample_size=sample_size,
outputs=['output'])
return ([node], [input], [output])
@onnx_test
def multinomial_dtype_error_test():
sample_size = 10
......@@ -3176,6 +3335,21 @@ def randomnormal_dtype_error_test():
return ([node], [], [output])
@onnx_test
def randomnormal_generated_seed_test():
sample_size = 10
input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
output = helper.make_tensor_value_info("output", TensorProto.INT32,
[1, 10])
node = onnx.helper.make_node('RandomNormal',
inputs=['input'],
sample_size=sample_size,
outputs=['output'])
return ([node], [input], [output])
@onnx_test
def randomnormal_shape_error_test():
dtype = 1
......@@ -3266,6 +3440,21 @@ def randomuniform_dtype_error_test():
return ([node], [], [output])
@onnx_test
def randomuniform_generated_seed_test():
sample_size = 10
input = helper.make_tensor_value_info("input", TensorProto.FLOAT, [1, 10])
output = helper.make_tensor_value_info("output", TensorProto.INT32,
[1, 10])
node = onnx.helper.make_node('RandomUniform',
inputs=['input'],
sample_size=sample_size,
outputs=['output'])
return ([node], [input], [output])
@onnx_test
def randomuniform_shape_error_test():
dtype = 1
......@@ -4290,6 +4479,44 @@ def softmax_nonstd_input_test():
return ([node0, node1], [x], [y])
@onnx_test
def softsign_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])
node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
def softplus_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT, [5])
node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
@onnx_test
def softsign_nd_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])
node = onnx.helper.make_node('Softsign', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
def softplus_nd_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT16, [3, 4, 5])
y = helper.make_tensor_value_info('y', TensorProto.FLOAT16, [3, 4, 5])
node = onnx.helper.make_node('Softplus', inputs=['x'], outputs=['y'])
return ([node], [x], [y])
@onnx_test
def split_minus_axis_test():
x = helper.make_tensor_value_info('x', TensorProto.FLOAT, [10, 15])
......@@ -4847,6 +5074,25 @@ def unknown_aten_test():
return ([node], [x, y], [a])
@onnx_test
def upsample_linear_test():
scales = np.array([1.0, 1.0, 2.0, 2.0], dtype=np.float32)
scales_tensor = helper.make_tensor(name='scales',
data_type=TensorProto.FLOAT,
dims=scales.shape,
vals=scales.flatten().astype(
np.float32))
X = helper.make_tensor_value_info('X', TensorProto.FLOAT, [1, 1, 2, 2])
Y = helper.make_tensor_value_info('Y', TensorProto.FLOAT, [])
node = onnx.helper.make_node('Upsample',
inputs=['X', '', 'scales'],
outputs=['Y'],
mode='linear')
return ([node], [X], [Y], [scales_tensor])
@onnx_test
def upsample_test():
scales = np.array([1.0, 1.0, 2.0, 3.0], dtype=np.float32)
......
No preview for this file type
greaterorequal_test:g

x1
x2y"GreaterOrEqualgreaterorequal_testZ
x1

Z
x2

b
y

B
\ No newline at end of file
hardsigmoid_default_test:i

xy" HardSigmoidhardsigmoid_default_testZ
x




b
y




B
\ No newline at end of file
hardsigmoid_double_test:
4
xy" HardSigmoid*
alpha>*
beta333?hardsigmoid_double_testZ
x
 



b
y
 



B
\ No newline at end of file
hardsigmoid_half_test:f

xy" HardSigmoidhardsigmoid_half_testZ
x





b
y





B
\ No newline at end of file
hardsigmoid_verify_test:X

xy" HardSigmoidhardsigmoid_verify_testZ
x


b
y


B
\ No newline at end of file
hardswish_test:M

xy" HardSwishhardswish_testZ
x


b
y


B
\ No newline at end of file
mean_broadcast_test:Ã

0
1
2
3
4mean"Meanmean_broadcast_testZ
0



Z
1




Z
2

Z
3

Z
4



b
mean




B
\ No newline at end of file
mean_fp16_test:Ž

0
1
2mean"Meanmean_fp16_testZ
0




Z
1




Z
2




b
mean




B
\ No newline at end of file
mean_invalid_broadcast_test:›

0
1
2mean"Meanmean_invalid_broadcast_testZ
0



Z
1



Z
2



b
mean



B
\ No newline at end of file
mean_single_input_test:^

0mean"Meanmean_single_input_testZ
0



b
mean



B
\ No newline at end of file
 mean_test:Í
*
0
1
2
3
4
5
6
7
8
9mean"Mean mean_testZ
0
 


Z
1
 


Z
2
 


Z
3
 


Z
4
 


Z
5
 


Z
6
 


Z
7
 


Z
8
 


Z
9
 


b
mean
 


B
\ No newline at end of file
multinomial_generated_seed_test:
0
inputoutput" Multinomial*
sample_size
multinomial_generated_seed_testZ
input



b
output



B
\ No newline at end of file
......@@ -1549,6 +1549,24 @@ TEST_CASE(greater_bool_test)
EXPECT(p == prog);
}
TEST_CASE(greaterorequal_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto input1 = mm->add_parameter("x1", migraphx::shape{migraphx::shape::float_type, {3}});
auto input2 = mm->add_parameter("x2", migraphx::shape{migraphx::shape::float_type, {3}});
auto temp = mm->add_instruction(migraphx::make_op("less"), input1, input2);
auto bt = mm->add_instruction(
migraphx::make_op("convert", {{"target_type", migraphx::shape::bool_type}}), temp);
auto ge = mm->add_instruction(migraphx::make_op("not"), bt);
mm->add_return({ge});
auto prog = migraphx::parse_onnx("greaterorequal_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(group_conv_test)
{
migraphx::program p;
......@@ -1563,6 +1581,140 @@ TEST_CASE(group_conv_test)
EXPECT(p == prog);
}
TEST_CASE(hardsigmoid_default_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{1, 3, 4, 5};
auto input_type = migraphx::shape::float_type;
migraphx::shape s{input_type, input_lens};
auto x = mm->add_parameter("x", s);
float alpha = 0.2;
float beta = 0.5;
auto mb_alpha = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {alpha}}));
auto mb_beta = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {beta}}));
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {0}}));
auto mb_one =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto mul = mm->add_instruction(migraphx::make_op("mul"), mb_alpha, x);
auto add = mm->add_instruction(migraphx::make_op("add"), mb_beta, mul);
mm->add_instruction(migraphx::make_op("clip"), add, mb_zero, mb_one);
auto prog = optimize_onnx("hardsigmoid_default_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(hardsigmoid_double_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{1, 3, 4, 5};
auto input_type = migraphx::shape::double_type;
migraphx::shape s{input_type, input_lens};
auto x = mm->add_parameter("x", s);
float alpha = 0.3;
float beta = 0.7;
auto mb_alpha = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {alpha}}));
auto mb_beta = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {beta}}));
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {0}}));
auto mb_one =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto mul = mm->add_instruction(migraphx::make_op("mul"), mb_alpha, x);
auto add = mm->add_instruction(migraphx::make_op("add"), mb_beta, mul);
mm->add_instruction(migraphx::make_op("clip"), add, mb_zero, mb_one);
auto prog = optimize_onnx("hardsigmoid_double_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(hardsigmoid_half_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{1, 3, 4, 5};
auto input_type = migraphx::shape::half_type;
migraphx::shape s{input_type, input_lens};
auto x = mm->add_parameter("x", s);
float alpha = 0.2;
float beta = 0.5;
auto mb_alpha = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {alpha}}));
auto mb_beta = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {beta}}));
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {0}}));
auto mb_one =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto mul = mm->add_instruction(migraphx::make_op("mul"), mb_alpha, x);
auto add = mm->add_instruction(migraphx::make_op("add"), mb_beta, mul);
mm->add_instruction(migraphx::make_op("clip"), add, mb_zero, mb_one);
auto prog = optimize_onnx("hardsigmoid_half_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(hardswish_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{2, 5};
auto input_type = migraphx::shape::float_type;
migraphx::shape s{input_type, input_lens};
auto x = mm->add_parameter("x", s);
float alpha = 1.0 / 6.0;
float beta = 0.5;
auto mb_alpha = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {alpha}}));
auto mb_beta = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {beta}}));
auto mb_zero =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {0}}));
auto mb_one =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto mul = mm->add_instruction(migraphx::make_op("mul"), mb_alpha, x);
auto add = mm->add_instruction(migraphx::make_op("add"), mb_beta, mul);
auto hardsigmoid = mm->add_instruction(migraphx::make_op("clip"), add, mb_zero, mb_one);
mm->add_instruction(migraphx::make_op("mul"), x, hardsigmoid);
auto prog = optimize_onnx("hardswish_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(if_else_test)
{
migraphx::program p;
......@@ -2340,6 +2492,50 @@ TEST_CASE(maxpool_same_upper_test)
EXPECT(p == prog);
}
TEST_CASE(mean_invalid_broadcast_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("mean_invalid_broadcast_test.onnx"); }));
}
TEST_CASE(mean_single_input_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
auto data0 = mm->add_parameter("0", migraphx::shape{migraphx::shape::float_type, {1, 2, 3}});
mm->add_return({data0});
auto prog = migraphx::parse_onnx("mean_single_input_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(mean_test)
{
const std::size_t num_data = 3;
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::half_type, {1, 2, 3}};
auto data0 = mm->add_parameter("0", s);
auto data1 = mm->add_parameter("1", s);
auto data2 = mm->add_parameter("2", s);
auto div_lit = mm->add_literal(migraphx::literal{migraphx::shape{s.type()}, {num_data}});
auto divisor =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), div_lit);
auto mean = mm->add_instruction(migraphx::make_op("div"), data0, divisor);
divisor =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), div_lit);
data1 = mm->add_instruction(migraphx::make_op("div"), data1, divisor);
mean = mm->add_instruction(migraphx::make_op("add"), mean, data1);
divisor =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", s.lens()}}), div_lit);
data2 = mm->add_instruction(migraphx::make_op("div"), data2, divisor);
mean = mm->add_instruction(migraphx::make_op("add"), mean, data2);
auto prog = optimize_onnx("mean_fp16_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(min_test)
{
migraphx::program p;
......@@ -2388,6 +2584,14 @@ TEST_CASE(multinomial_dtype_error_test)
EXPECT(test::throws([&] { migraphx::parse_onnx("multinomial_dtype_error_test.onnx"); }));
}
TEST_CASE(multinomial_generated_seed_test)
{
auto p1 = optimize_onnx("multinomial_generated_seed_test.onnx");
auto p2 = optimize_onnx("multinomial_generated_seed_test.onnx");
EXPECT(p1 != p2);
}
TEST_CASE(multinomial_int64_test)
{
migraphx::program p;
......@@ -2891,6 +3095,14 @@ TEST_CASE(randomnormal_dtype_error_test)
EXPECT(test::throws([&] { migraphx::parse_onnx("randomnormal_dtype_error_test.onnx"); }));
}
TEST_CASE(randomnormal_generated_seed_test)
{
auto p1 = optimize_onnx("randomnormal_generated_seed_test.onnx");
auto p2 = optimize_onnx("randomnormal_generated_seed_test.onnx");
EXPECT(p1 != p2);
}
TEST_CASE(randomnormal_shape_error_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("randomnormal_shape_error_test.onnx"); }));
......@@ -2953,6 +3165,14 @@ TEST_CASE(randomuniform_dtype_error_test)
EXPECT(test::throws([&] { migraphx::parse_onnx("randomuniform_dtype_error_test.onnx"); }));
}
TEST_CASE(randomuniform_generated_seed_test)
{
auto p1 = optimize_onnx("randomuniform_generated_seed_test.onnx");
auto p2 = optimize_onnx("randomuniform_generated_seed_test.onnx");
EXPECT(p1 != p2);
}
TEST_CASE(randomuniform_shape_error_test)
{
EXPECT(test::throws([&] { migraphx::parse_onnx("randomuniform_shape_error_test.onnx"); }));
......@@ -3423,7 +3643,7 @@ TEST_CASE(resize_nonstd_input_test)
EXPECT(p == prog);
}
TEST_CASE(resize_upsample_linear_ac_test)
static auto create_upsample_linear_prog()
{
migraphx::program p;
auto* mm = p.get_main_module();
......@@ -3514,6 +3734,12 @@ TEST_CASE(resize_upsample_linear_ac_test)
auto add1 = mm->add_instruction(migraphx::make_op("add"), mul1, slc10);
mm->add_return({add1});
return p;
}
TEST_CASE(resize_upsample_linear_ac_test)
{
auto p = create_upsample_linear_prog();
auto prog = migraphx::parse_onnx("resize_upsample_linear_ac_test.onnx");
EXPECT(p == prog);
}
......@@ -3972,6 +4198,86 @@ TEST_CASE(softmax_nonstd_input_test)
EXPECT(p == prog);
}
TEST_CASE(softplus_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{5};
auto input_type = migraphx::shape::float_type;
auto x = mm->add_parameter("x", migraphx::shape{input_type, input_lens});
auto mb_ones =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto exp = mm->add_instruction(migraphx::make_op("exp"), x);
auto add = mm->add_instruction(migraphx::make_op("add"), exp, mb_ones);
mm->add_instruction(migraphx::make_op("log"), add);
auto prog = optimize_onnx("softplus_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(softplus_nd_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{3, 4, 5};
auto input_type = migraphx::shape::half_type;
auto x = mm->add_parameter("x", migraphx::shape{input_type, input_lens});
auto mb_ones =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto exp = mm->add_instruction(migraphx::make_op("exp"), x);
auto add = mm->add_instruction(migraphx::make_op("add"), exp, mb_ones);
mm->add_instruction(migraphx::make_op("log"), add);
auto prog = optimize_onnx("softplus_nd_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(softsign_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{5};
auto input_type = migraphx::shape::float_type;
auto x = mm->add_parameter("x", migraphx::shape{input_type, input_lens});
auto mb_ones =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto abs = mm->add_instruction(migraphx::make_op("abs"), x);
auto add = mm->add_instruction(migraphx::make_op("add"), abs, mb_ones);
mm->add_instruction(migraphx::make_op("div"), x, add);
auto prog = optimize_onnx("softsign_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(softsign_nd_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<std::size_t> input_lens{3, 4, 5};
auto input_type = migraphx::shape::half_type;
auto x = mm->add_parameter("x", migraphx::shape{input_type, input_lens});
auto mb_ones =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", input_lens}}),
mm->add_literal(migraphx::literal{migraphx::shape{input_type}, {1}}));
auto abs = mm->add_instruction(migraphx::make_op("abs"), x);
auto add = mm->add_instruction(migraphx::make_op("add"), abs, mb_ones);
mm->add_instruction(migraphx::make_op("div"), x, add);
auto prog = optimize_onnx("softsign_nd_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(split_minus_axis_test)
{
migraphx::program p;
......@@ -4453,6 +4759,13 @@ TEST_CASE(unknown_test_throw)
EXPECT(test::throws([&] { migraphx::parse_onnx("unknown_test.onnx"); }));
}
TEST_CASE(upsample_linear_test)
{
auto p = create_upsample_linear_prog();
auto prog = migraphx::parse_onnx("upsample_linear_test.onnx");
EXPECT(p == prog);
}
TEST_CASE(upsample_test)
{
migraphx::program p;
......
 randomnormal_generated_seed_test:
1
inputoutput" RandomNormal*
sample_size
 randomnormal_generated_seed_testZ
input



b
output



B
\ No newline at end of file
!randomuniform_generated_seed_test:
2
inputoutput" RandomUniform*
sample_size
!randomuniform_generated_seed_testZ
input



b
output



B
\ No newline at end of file
softplus_nd_test:V

xy"Softplussoftplus_nd_testZ
x




b
y




B
\ No newline at end of file
 softplus_test:C

xy"Softplus softplus_testZ
x

b
y

B
\ No newline at end of file
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment