Commit 3a474fca authored by Khalique Ahmed's avatar Khalique Ahmed
Browse files

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/AMDMIGraphX into mi100_opts

parents d9568511 0b7672d7
#include <iostream>
#include <vector>
#include <cmath>
#include <random>
#include <migraphx/literal.hpp>
#include <migraphx/op/pooling.hpp>
#include <migraphx/op/batch_norm_inference.hpp>
......@@ -2687,6 +2688,56 @@ TEST_CASE(mul_test)
EXPECT(migraphx::verify_range(results_vector, gold));
}
TEST_CASE(multinomial_test)
{
migraphx::program p;
auto* mm = p.get_main_module();
size_t sample_size = 100000;
float seed = 0.0f;
std::mt19937 gen(seed);
std::uniform_real_distribution<> dis(0.0, 1.0);
std::vector<float> rand_samples(sample_size);
std::generate(rand_samples.begin(), rand_samples.end(), [&]() { return dis(gen); });
migraphx::shape rs{migraphx::shape::float_type, {1, sample_size}};
auto rs_lit = mm->add_literal(migraphx::literal{rs, rand_samples});
migraphx::shape s{migraphx::shape::float_type, {1, 5}};
std::vector<int> dist{15, 25, 15, 25, 20};
std::vector<float> data(5);
std::transform(dist.begin(), dist.end(), data.begin(), [&](auto d) { return std::log(d); });
auto input = mm->add_literal(migraphx::literal(s, data));
auto maxes = mm->add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), input);
auto mb_maxes =
mm->add_instruction(migraphx::make_op("multibroadcast", {{"out_lens", {1, 5}}}), maxes);
auto cdf = mm->add_instruction(migraphx::make_op("sub"), input, mb_maxes);
cdf = mm->add_instruction(migraphx::make_op("exp"), cdf);
cdf = mm->add_instruction(
migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf);
mm->add_instruction(migraphx::make_op("multinomial"), cdf, rs_lit);
p.compile(migraphx::ref::target{});
auto result = p.eval({}).back();
std::vector<int32_t> result_vec(sample_size);
result.visit([&](auto output) { result_vec.assign(output.begin(), output.end()); });
std::vector<int> res_dist(5, 0);
for(auto& r : result_vec)
res_dist[r]++;
auto dist_sum = std::accumulate(dist.begin(), dist.end(), 0);
auto res_dist_sum = std::accumulate(res_dist.begin(), res_dist.end(), 0);
std::vector<float> norm(5);
std::vector<float> res_norm(5);
std::transform(dist.begin(), dist.end(), norm.begin(), [&](auto n) {
return static_cast<double>(n) / dist_sum;
});
std::transform(res_dist.begin(), res_dist.end(), res_norm.begin(), [&](auto n) {
return static_cast<double>(n) / res_dist_sum;
});
EXPECT(migraphx::verify_range(norm, res_norm, 100000));
}
TEST_CASE(neg_test)
{
migraphx::program p;
......
......@@ -81,3 +81,20 @@ struct test_layernorm_triadd : verify_program<test_layernorm_triadd>
return p;
}
};
struct test_layernorm_triadd_large : verify_program<test_layernorm_triadd_large>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
std::vector<size_t> dims = {1, 384, 1024};
auto x = mm->add_parameter("x", migraphx::shape{migraphx::shape::float_type, dims});
auto y = mm->add_parameter("y", migraphx::shape{migraphx::shape::float_type, dims});
auto z = mm->add_parameter("z", migraphx::shape{migraphx::shape::float_type, dims});
auto add1 = mm->add_instruction(migraphx::make_op("add"), x, y);
auto add2 = mm->add_instruction(migraphx::make_op("add"), add1, z);
add_layernorm(*mm, add2, dims);
return p;
}
};
#include "verify_program.hpp"
#include <migraphx/program.hpp>
#include <migraphx/generate.hpp>
#include <migraphx/make_op.hpp>
struct test_multinomial : verify_program<test_multinomial>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
size_t sample_size = 10;
size_t batch_size = 2;
float seed = 0.0f;
std::mt19937 gen(seed);
std::uniform_real_distribution<> dis(0.0, 1.0);
std::vector<float> rand_samples(batch_size * sample_size);
std::generate(rand_samples.begin(), rand_samples.end(), [&]() { return dis(gen); });
migraphx::shape rs{migraphx::shape::float_type, {batch_size, sample_size}};
auto rs_lit = mm->add_literal(migraphx::literal{rs, rand_samples});
migraphx::shape s{migraphx::shape::float_type, {batch_size, 5}};
auto input = mm->add_parameter("input", s);
auto maxes = mm->add_instruction(migraphx::make_op("reduce_max", {{"axes", {1}}}), input);
auto mb_maxes = mm->add_instruction(
migraphx::make_op("multibroadcast", {{"out_lens", {batch_size, 5}}}), maxes);
auto cdf = mm->add_instruction(migraphx::make_op("sub"), input, mb_maxes);
cdf = mm->add_instruction(migraphx::make_op("exp"), cdf);
cdf = mm->add_instruction(
migraphx::make_op("prefix_scan_sum", {{"axis", 1}, {"exclusive", false}}), cdf);
mm->add_instruction(migraphx::make_op("multinomial"), cdf, rs_lit);
return p;
}
};
......@@ -27,3 +27,16 @@ template struct test_reduce_op_large<migraphx::op::reduce_mean, 1, migraphx::sha
template struct test_reduce_op_large<migraphx::op::reduce_min, 1, migraphx::shape::float_type>;
template struct test_reduce_op_large<migraphx::op::reduce_prod, 2, migraphx::shape::float_type>;
template struct test_reduce_op_large<migraphx::op::reduce_sum, 1, migraphx::shape::float_type>;
struct test_reduce_mean : verify_program<test_reduce_mean>
{
migraphx::program create_program() const
{
migraphx::program p;
auto* mm = p.get_main_module();
migraphx::shape s{migraphx::shape::float_type, {1, 384, 1024}};
auto x = mm->add_parameter("x", s);
mm->add_instruction(migraphx::op::reduce_mean{{1}}, x);
return p;
};
};
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment